Numerical methods for Hamilton Jacobi Bellman (HJB) equations and Mean Field games (MFG)

Thomas Bourany THE UNIVERSITY OF CHICAGO – ECONOMICS

MFG workshop : Economists meet mathematicians

March 2020

- \triangleright Nowadays, heterogeneous agents models are ubiquitous is economic theory
	- Started in the 1990s with Bewley-Huggett-Aiyagari framework for household inequality and Hopenhayn for entry and exit of firms
	- Became increasingly used : match micro-data using macro models

- \triangleright Nowadays, heterogeneous agents models are ubiquitous is economic theory
	- Started in the 1990s with Bewley-Huggett-Aiyagari framework for household inequality and Hopenhayn for entry and exit of firms
	- Became increasingly used : match micro-data using macro models
- ▶ Why Mean-Field Games?
	- When formalized in continuous time, these models take the form of systems of PDE, called MFG system
	- Recent (2007-) development by J. M. Lasry and P. L. Lions and Caines, Huang and Malhamé \Rightarrow now a large applied math literature

- \triangleright Nowadays, heterogeneous agents models are ubiquitous is economic theory
	- Started in the 1990s with Bewley-Huggett-Aiyagari framework for household inequality and Hopenhayn for entry and exit of firms
	- Became increasingly used : match micro-data using macro models
- ▶ Why Mean-Field Games?
	- When formalized in continuous time, these models take the form of systems of PDE, called MFG system
	- Recent (2007-) development by J. M. Lasry and P. L. Lions and Caines, Huang and Malhamé \Rightarrow now a large applied math literature
- \triangleright What are we talking about ?

 \triangleright A Hamilton-Jacobi-Bellman : backward in time

How the agent value/decisions change when distribution is given

- \triangleright Nowadays, heterogeneous agents models are ubiquitous is economic theory
	- Started in the 1990s with Bewley-Huggett-Aiyagari framework for household inequality and Hopenhayn for entry and exit of firms
	- Became increasingly used : match micro-data using macro models
- ▶ Why Mean-Field Games?
	- When formalized in continuous time, these models take the form of systems of PDE, called MFG system
	- Recent (2007-) development by J. M. Lasry and P. L. Lions and Caines, Huang and Malhamé \Rightarrow now a large applied math literature
- \blacktriangleright What are we talking about?
	- \triangleright A Hamilton-Jacobi-Bellman : backward in time *How the agent value/decisions change when distribution is given*
	- \triangleright A Kolmogorov-Forward (Fokker-Planck) : forward in time *How the distribution changes, when agents control is given*
	- \triangleright These two relations are *coupled*:

e.g. due to equilibrium prices (r^t /wt) ⇒ *need to look for a fixed point* T. Bourany [Numerical methods for HJB equations and MFG systems](#page-0-0) March 2020 2 / 31

Introduction – recent progress and open questions

\blacktriangleright Recent progress :

- Very fast to compute the stationary equilibrium
- Recent methods that rely on linearity of the model (more on this later)
- \blacktriangleright However, plenty of open questions
	- No ideal methods with transition path.
	- Simulation with aggregate shocks/common noise still impossible
	- Understanding the gain and losses induced by simplification :
		- See [other set of slides](https://thomasbourany.github.io/files/W1_TBourany_HA_AggShocks.pdf) about methods with aggregate shocks
- \blacktriangleright Today : numerical methods for
	- 1. "Standard" HJB, extensions to MFG \Rightarrow ex. w/ Aiyagari (1994)
	- 2. Impulse control and HJB-VI and MFG \Rightarrow ex. w/ Hopenhayn (1992)
	- 3. Introduction to common noise : MIT shocks and Jacobian methods

Baseline model – Aiyagari model

\blacktriangleright Let us recap the Aiyagari framework :

- Will use it thoroughly as an example for the different algorithms
- Continuous time version of the stationary case :

Baseline model – Aiyagari model

 \blacktriangleright Let us recap the Aiyagari framework :

- Will use it thoroughly as an example for the different algorithms
- Continuous time version of the stationary case :
- Household :
	- States variables : wealth *a* and labor prod. *z*; control : consumption *c*
	- Idiosyncratic fluctuations in *z* (Pure jump/Jump-drift process)
	- State constraint (no borrowing) $a \ge a$
	- Maximization :

$$
\max_{\{c_i\}} \mathbb{E}_{t_0} \int_{t_0}^{\infty} e^{-\rho t} u(c_t) dt \qquad d a_t = \underbrace{(z_t w_t + r_t a_t - c_t)}_{=s^* (t, a, z)} dt \qquad a|_{t_0} = a_0
$$

- Neoclassical firms : $Y_t = Z_t K_t^{\alpha} z_{av}^{1-\alpha}$
	- $-$ Interest rate : $r_t = \alpha Z_t K_t^{\alpha-1} z_{av}^{1-\alpha} \delta$ & wage $w_t = (1 \alpha) Z_t K^\alpha z_{av}^{-\alpha}$

- Capital demand
$$
K_t(r) := \left(\frac{\alpha Z_t}{r_t + \delta}\right)^{\frac{1}{1-\alpha}} z_{av}
$$

Discrete time version [here](#page-77-0)

MFG system - Aiyagari model - 1

- \triangleright Original Aiyagari model :
	- Idiosyncratic noise on z_j is a Markov jump-process, $1 \le j \le n_z$, intensity λ_j and $z \stackrel{\mathcal{L}}{\sim} \phi(\cdot)$ conditional on jumping

•
$$
da_t = (z_t w_t + r_t a_t - c_t) dt
$$
 and state space : $(a,z_j) \in [a,\infty) \times \{z_1,\ldots,z_{n_z}\} =: \mathbb{X}$
= $s(t, a, z, r_t(g), c_t) = s^*(t, a, z)$

 \Box [Baseline model](#page-6-0)

MFG system - Aiyagari model - 1

- \triangleright Original Aiyagari model :
	- Idiosyncratic noise on z_j is a Markov jump-process, $1 \le j \le n_z$, intensity λ_j and $z \stackrel{\mathcal{L}}{\sim} \phi(\cdot)$ conditional on jumping

•
$$
da_t = (z_t w_t + r_t a_t - c_t) dt
$$
 and state space : $(a, z_j) \in [a, \infty) \times \{z_1, ..., z_{n_z}\} =: \mathbb{X}$
= $s(t, a, z, r_t(g), c_t) = s^*(t, a, z)$

$$
- \partial_t v(t, a, z_j) + \rho v(t, a, z_j) = \max_{c} u(c) + \partial_a v(t, a, z_j) s(t, a, z_j)
$$

$$
+ \lambda_j \sum_{j} \phi(z_{-j}) (v(t, a, z_{-j}) - v(t, a, z_j))
$$

 \Box [Baseline model](#page-6-0)

MFG system - Aiyagari model - 1

- \triangleright Original Aiyagari model :
	- Idiosyncratic noise on z_j is a Markov jump-process, $1 \le j \le n_z$, intensity λ_j and $z \stackrel{\mathcal{L}}{\sim} \phi(\cdot)$ conditional on jumping • *da*_{*t*} = $(z_t w_t + r_t a_t - c_t) dt$ and state space : $(a, z_j) \in [a, \infty) \times \{z_1, ..., z_{n_z}\} = x$

$$
= s(t, a, z, r_t(g), c_t) = s^*(t, a, z)
$$

$$
- \partial_t v(t, a, z_j) + \rho v(t, a, z_j) = \max_{c} u(c) + \partial_a v(t, a, z_j) s(t, a, z_j)
$$

\n
$$
\forall (t, a, z) \in [0, T) \times \mathbb{X} \longrightarrow f(t, a, z_j) = -\partial_a [s(t, a, z_i) g(t, a, z_i)] - \lambda_i g(t, a, z_i) + \phi(z_i) \sum_{j} \lambda_{j} g(t, a, z_{j-1})
$$

$$
\forall (t,a,z_j) \in [0,T) \times \mathbb{X} \quad \partial_t g(t,a,z_j) = -\partial_a \Big[s(t,a,z_j) \, g(t,a,z_j) \Big] - \lambda_j g(t,a,z_j) + \phi(z_j) \sum_{j} \lambda_{j} g(t,a,z_{j})
$$

 \Box [Baseline model](#page-6-0)

MFG system - Aiyagari model - 1

- \triangleright Original Aiyagari model :
	- Idiosyncratic noise on z_j is a Markov jump-process, $1 \le j \le n_z$, intensity λ_j and $z \stackrel{\mathcal{L}}{\sim} \phi(\cdot)$ conditional on jumping

•
$$
da_t = (z_t w_t + r_t a_t - c_t) dt
$$
 and state space : $(a_{z_i}) \in [a, \infty) \times \{z_1, ..., z_{n_z}\} =: \mathbb{X}$
= $s(t, a, z, r_t(g), c_t) = s^*(t, a, z)$

$$
- \partial_t v(t, a, z_j) + \rho v(t, a, z_j) = \max_c u(c) + \partial_a v(t, a, z_j) s(t, a, z_j)
$$

$$
+ \lambda_j \sum_{j} \phi(z_{-j}) (v(t, a, z_{-j}) - v(t, a, z_j))
$$

 $\forall_{(t,a,z_j)\in[0,T)\times\mathbb{X}}\;\;\left.\partial_t g_{(t,a,z_j)}=-\partial_a\big[s_{(t,a,z_j)}\,g_{(t,a,z_j)}\big]-\lambda_j g_{(t,a,z_j)}+\phi_{(z_j)}\sum\right]$ −*j* λ−*jg*(*t*,*a*,*z*−*j*)

$$
S_t(r_t) := \sum_{z_j} \int_a^{\infty} a g(t, da, z_j) = K_t(r_t)
$$

$$
v(r, a, z) = v_{\infty}(a, z) \qquad g(t_0, a, z) = g_0(a, z) \qquad \forall (a, z_j) \in \mathbb{X}
$$

MFG system - Aiyagari model - 2

In Diffusion-version of Aiyagari model :

• Idiosyncratic noise *z* is now a diffusion process $dz = \mu(z)dt + \sigma^2 dB_t$.

•
$$
da_t = (z_t w_t + r_t a_t - c_t) dt
$$
 and state space : $(a, z) \in [a, \infty) \times [z, \overline{z}] = : \mathbb{X}$
= $s(t, a, z, r_t(g), c_t) = s^*(t, a, z)$

MFG system - Aiyagari model - 2

In Diffusion-version of Aiyagari model :

• Idiosyncratic noise *z* is now a diffusion process $dz = \mu(z)dt + \sigma^2 dB_t$.

•
$$
da_t = (z_t w_t + r_t a_t - c_t) dt
$$
 and state space : $(a, z) \in [a, \infty) \times [z, \overline{z}] = : \mathbb{X}$
= $s(t, a, z, r_t(g), c_t) = s^*(t, a, z)$

$$
- \partial_t v(t, a, z_j) + \rho v(t, a, z_j) = \max_c u(c) + \partial_a v(t, a, z) s(t, a, z) \n+ \mu(z) \partial_z v(t, a, z) + \frac{\sigma^2}{2} \partial_{zz}^2 v(t, a, z)
$$

MFG system - Aiyagari model - 2

In Diffusion-version of Aiyagari model :

• Idiosyncratic noise *z* is now a diffusion process $dz = \mu(z)dt + \sigma^2 dB_t$.

•
$$
da_t = (z_t w_t + r_t a_t - c_t) dt
$$
 and state space : $(a,z) \in [a,\infty) \times [\underline{z},\overline{z}] = : \mathbb{X}$
= $s(t, a, z, r_t(g), c_t) = s^*(t, a, z)$

$$
- \partial_t v(t, a, z_j) + \rho v(t, a, z_j) = \max_c u(c) + \partial_a v(t, a, z) s(t, a, z) + \mu(z) \partial_z v(t, a, z) + \frac{\sigma^2}{2} \partial_{zz}^2 v(t, a, z) + \mu(z) \partial_z v(t, a, z) + \frac{\sigma^2}{2} \partial_{zz}^2 v(t, a, z)
$$

 \forall (t,a,z) \in [0,T) \times X $\partial_t g(t, a, z_j) = -\partial_a \big[s(t, a, z) \, g(t, a, z_j)\big] - \partial_z \big[\mu(z) \, g(t, a, z)\big] + \frac{\sigma^2}{2}$ $\frac{\sigma^2}{2} \partial^2_{zz} g(t,a,z)$

MFG system - Aiyagari model - 2

 \triangleright Diffusion-version of Aiyagari model :

• Idiosyncratic noise *z* is now a diffusion process $dz = \mu(z)dt + \sigma^2 dB_t$.

•
$$
da_t = (z_t w_t + r_t a_t - c_t) dt
$$
 and state space : $(a,z) \in [a,\infty) \times [\underline{z},\overline{z}] = : \mathbb{X}$
= $s(t, a, z, r_t(g), c_t) = s^*(t, a, z)$

$$
- \partial_t v(t, a, z_j) + \rho v(t, a, z_j) = \max_c u(c) + \partial_a v(t, a, z) s(t, a, z)
$$

$$
\forall (t, a, z) \in [0, T) \times \mathbb{X}
$$

$$
+ \mu(z) \partial_z v(t, a, z) + \frac{\sigma^2}{2} \partial_{zz}^2 v(t, a, z)
$$

 \forall (t,a,z) \in [0,T) \times X $\partial_t g(t, a, z_j) = -\partial_a \big[s(t, a, z) \, g(t, a, z_j)\big] - \partial_z \big[\mu(z) \, g(t, a, z)\big] + \frac{\sigma^2}{2}$ $\frac{\sigma^2}{2} \partial^2_{zz} g(t,a,z)$ $S_t(r_t) := \sum$ *zj* \int^{∞} *a* $a g(t, da, z_j) = K_t(r_t)$ $v(T, a, z) = v_{\infty}(a, z)$ $g(t_0, a, z) = g_0(a, z)$ $\forall (a, z_i) \in \mathbb{X}$

The algorithm : an overview

- \blacktriangleright Aim : find the stationary equilibria : i.e. the functions *v* and *g*, over [0, *T*] and the interest rate path *r*.
- \blacktriangleright General structure :
	- 1. Guess interest rate path r^{ℓ} , compute capital demand $K(r^{\ell})$ & wages $w(K)$
	- 2. Solve the HJB using finite differences (semi-implicit method) : obtain $s^{\ell}(a,z_j)$ and then $v^{\ell}(a,z_j)$, by a system of sort : $\rho \mathbf{v} = \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v};r)\mathbf{v}$
	- 3. Using A^T , solve the FP equation (finite diff. system : $\mathbf{A}(\mathbf{v}; r)^T \mathbf{g} = 0$, and obtain $g(a, z_j)$
	- 4. Compute the capital supply $S(\mathbf{g}, r) = \sum_j \int_a^{\infty} a g(a, z_j) da$
	- 5. If $S(r) > K(r)$, decrease $r^{\ell+1}$ (update using bisection method), and conversely, and come back to step 2.
	- 6. Stop if $S(r) \approx K(r)$

The algorithm, advantages relative to discrete time :

- 1. Borrowing constraint only appears in the boundary conditions
	- FOCs $u'(c(a)) = \partial_a v^i(a)$ and HJB eq. always holds with equality
	- No need to split the Bellman equation (constrained vs. unconstrained agents)

The algorithm, advantages relative to discrete time :

1. Borrowing constraint only appears in the boundary conditions

- FOCs $u'(c(a)) = \partial_a v^i(a)$ and HJB eq. always holds with equality
- No need to split the Bellman equation (constrained vs. unconstrained agents)
- 2. In continuous time there is no future (i.e. $t + 1$) only present *t*!
	- Only involve contemporaneous variables (FOC are 'static')
	- No need to use costly root-finding to obtain optimal $c(a, z)$.

The algorithm, advantages relative to discrete time :

- 1. Borrowing constraint only appears in the boundary conditions
	- FOCs $u'(c(a)) = \partial_a v^i(a)$ and HJB eq. always holds with equality
	- No need to split the Bellman equation (constrained vs. unconstrained agents)
- 2. In continuous time there is no future (i.e. $t + 1$) only present $t!$
	- Only involve contemporaneous variables (FOC are 'static')
	- No need to use costly root-finding to obtain optimal $c(a, z)$.
- 3. The discretized system is easy to solve :
	- 'Simply' a matrix inversion (due to finite differences).
	- Matrices are sparse (tridiagonal)
	- Continuous space : one step left or one step right

The algorithm, advantages relative to discrete time :

- 1. Borrowing constraint only appears in the boundary conditions
	- FOCs $u'(c(a)) = \partial_a v^i(a)$ and HJB eq. always holds with equality
	- No need to split the Bellman equation (constrained vs. unconstrained agents)
- 2. In continuous time there is no future (i.e. $t + 1$) only present *t*!
	- Only involve contemporaneous variables (FOC are 'static')
	- No need to use costly root-finding to obtain optimal $c(a, z)$.
- 3. The discretized system is easy to solve :
	- 'Simply' a matrix inversion (due to finite differences).
	- Matrices are sparse (tridiagonal)
	- Continuous space : one step left or one step right
- 4. HJB and FP are coupled
	- The matrix to solve FP is the transpose of the one of HJB.
	- Why? Operator in FP is simply the 'adjoint' of the operator in HJB : 'Two birds one stone'
	- Specificity of MFG!

The algorithm : transition dynamics

\blacktriangleright The algorithm for transition dynamics :

- Discretization : $v_{i,j}^n$ and $g_{i,j}^n$ stacked into v^n and g^n
- Somehow, it is more specific to Mean Field Games :

The algorithm : transition dynamics

\blacktriangleright The algorithm for transition dynamics :

- Discretization : $v_{i,j}^n$ and $g_{i,j}^n$ stacked into v^n and g^n
- Somehow, it is more specific to Mean Field Games :
- \triangleright Take advantage of the backward-forward structure of the MFG
	- Make a guess r_t^{ℓ} $(t = 1, ..., N)$ on the *path* interest rates.
	- Solve the HJB (implicit scheme), given terminal condition;

$$
-\frac{v^{n+1} - v^n}{\Delta t} + \rho v^{n+1} = u^n + \mathbf{A}(v^{n+1}; r^n) v^{n+1}
$$

$$
v^N = v_\infty \qquad \text{(terminal condition = steady state)}
$$

The algorithm : transition dynamics

\blacktriangleright The algorithm for transition dynamics :

- Discretization : $v_{i,j}^n$ and $g_{i,j}^n$ stacked into v^n and g^n
- Somehow, it is more specific to Mean Field Games :
- \blacktriangleright Take advantage of the backward-forward structure of the MFG
	- Make a guess r_t^{ℓ} $(t = 1, ..., N)$ on the *path* interest rates.
	- Solve the HJB (implicit scheme), given terminal condition;

$$
-\frac{v^{n+1} - v^n}{\Delta t} + \rho v^{n+1} = u^n + \mathbf{A}(v^{n+1}; r^n) v^{n+1}
$$

$$
v^N = v_\infty \qquad \text{(terminal condition = steady state)}
$$

Solve the FP forward, given the initial condition

$$
\frac{g^{n+1} - g^n}{\Delta t} = \mathbf{A}(v^n; r^n)^T g^{n+1}
$$

$$
g^1 = g_0 \qquad \text{(initial condition)}
$$

• Update the interest rates path

The algorithm for HJB : Finite difference

- \blacktriangleright Finite difference scheme :
	- Discretize the state-space a_i for $i = 1, \ldots, n_a$ and z_j for $j = 1, \ldots, n_z$, and time $t = 1, \ldots, N$

$$
\partial_a v(a_i, z_j) \approx \frac{v_{i+1,j} - v_{i,j}}{\Delta a} \equiv v'_{i,j,F} \qquad \qquad \partial_a v(a_i, z_j) \approx \frac{v_{i-1,j} - v_{i,j}}{\Delta a} \equiv v'_{i,j,B}
$$

$$
\partial_{zz}^2 v(a_i, z_j) \approx \frac{v_{i+1,j} - 2v_{i,j} + v_{i-1,j}}{\Delta a} \qquad \qquad \partial_t v(t, a_i, z_j) \approx \frac{v'^{n+1}_{i,j} - v^n_{i,j}}{\Delta t}
$$

The algorithm for HJB : Finite difference

- \blacktriangleright Finite difference scheme :
	- Discretize the state-space a_i for $i = 1, \ldots, n_a$ and z_j for $j = 1, \ldots, n_z$, and time $t = 1, \ldots, N$

$$
\partial_a v(a_i, z_j) \approx \frac{v_{i+1,j} - v_{i,j}}{\Delta a} \equiv v'_{i,j,F} \qquad \qquad \partial_a v(a_i, z_j) \approx \frac{v_{i-1,j} - v_{i,j}}{\Delta a} \equiv v'_{i,j,B}
$$

$$
\partial_{zz}^2 v(a_i, z_j) \approx \frac{v_{i+1,j} - 2v_{i,j} + v_{i-1,j}}{\Delta a} \qquad \qquad \partial_t v(t, a_i, z_j) \approx \frac{v_{i,j}^{n+1} - v_{i,j}^n}{\Delta t}
$$

▶ Looking for v^{n+1} as a function v^n . Implicit method

• Inversion of time : HJB runs backward – from $T \equiv 1$ to $t_0 \equiv N$

$$
-\frac{v^{n+1}-v^n}{\Delta t}+\rho v^{n+1}=u^n+\mathbf{A}(v^n;r^n)v^{n+1}
$$

The algorithm for HJB : Finite difference

- \blacktriangleright Finite difference scheme :
	- Discretize the state-space a_i for $i = 1, \ldots, n_a$ and z_j for $j = 1, \ldots, n_z$, and time $t = 1, \ldots, N$

$$
\partial_a v(a_i, z_j) \approx \frac{v_{i+1,j} - v_{i,j}}{\Delta a} \equiv v'_{i,j,F} \qquad \qquad \partial_a v(a_i, z_j) \approx \frac{v_{i-1,j} - v_{i,j}}{\Delta a} \equiv v'_{i,j,B}
$$

$$
\partial_{zz}^2 v(a_i, z_j) \approx \frac{v_{i+1,j} - 2v_{i,j} + v_{i-1,j}}{\Delta a} \qquad \qquad \partial_t v(t, a_i, z_j) \approx \frac{v'^{n+1}_{i,j} - v^n_{i,j}}{\Delta t}
$$

▶ Looking for v^{n+1} as a function v^n . Implicit method

• Inversion of time : HJB runs backward – from $T \equiv 1$ to $t_0 \equiv N$ $-\frac{v^{n+1}-v^n}{\Delta}$ $\frac{1-v}{\Delta t} + \rho v^{n+1} = u^n + \mathbf{A}(v^n; r^n) v^{n+1}$

• Main issue for HJB : controls depend on v^{n+1} through the max :

• We rely on semi-implicit methods for control c : use $c_{i,j}^n$ instead of $c_{i,j}^{n+1}$ for the fully-implicit

$$
c_{i,j}^n = (u')^{-1}(v_{i,j}^n)
$$

T. Bourany [Numerical methods for HJB equations and MFG systems](#page-0-0) March 2020 10 / 31

) instead of *v*

n+1 0 *i*,*j*

[Numerical method for Hamilton-Jacobi-Bellman equation](#page-24-0)

The algorithm for HJB : Finite difference

 \triangleright Optimality condition in the maximization of the HJB

• Hamiltonian and FOC :
$$
p \equiv \partial_a v
$$

$$
H(g, p) := \max_{c} u(c) + s(r(g), c)p \qquad \Rightarrow \qquad u'(c) = p
$$

$$
c^* = (u')^{-1}(p) \qquad \qquad s^*(t, a, z) = \partial_p H(g, \partial_a v_{(t, a, z)})
$$

[Numerical method for Hamilton-Jacobi-Bellman equation](#page-24-0)

The algorithm for HJB : Finite difference

- \triangleright Optimality condition in the maximization of the HJB
	- Hamiltonian and FOC : $p \equiv \partial_a v$

$$
H(g, p) := \max_{c} u(c) + s(r(g), c)p \qquad \Rightarrow \qquad u'(c) = p
$$

$$
c^* = (u')^{-1}(p) \qquad s^*(t, a, z) = \partial_p H(g, \partial_a v_{(t, a, z)})
$$

\blacktriangleright Upwind scheme :

Choose direction of difference as fct of the sign of drift :

The algorithm for HJB : Finite difference scheme

- \blacktriangleright Boundary conditions :
	- State constraint in *a*

$$
a \ge \underline{a} \qquad s(t, \underline{a}, z) \ge 0 \qquad \Rightarrow \quad \underline{c}_t = r_t \underline{a} + w_t z
$$

$$
v'_{1,j,B} = \partial_a v(t, \underline{a}, z) = u'(\underline{c}_t)
$$

Boundaries in z : implied by the reflecting barrier

$$
\partial_z \nu_{(t,a,\underline{z})} = \partial_z \nu_{(t,a,\overline{z})} = 0 \qquad \Rightarrow \qquad \nu_{i,j,F}' = \nu_{i,j,B}' = 0
$$

- \blacktriangleright All this determines the operator in HJB
	- The matrix $\mathbf{A}(v^n; r^n)$ is sparse
	- Fast to invert
- \triangleright Solving the (now) linear system for the HJB

$$
-\frac{v^{n+1}-v^n}{\Delta t}+\rho v^{n+1}=u^n+\mathbf{A}(v^n;r^n)v^{n+1}
$$

The algorithm for HJB : theoretical result

- ▶ [Barles and Souganidis \(1991\)](#page-71-0) : *Convergence of approximation schemes for fully nonlinear second order equations*, Asymptotic Anal. 4
	- Generalization of [Souganidis \(1985\)](#page-76-0) *Approximation Schemes for Viscosity Solutions of Hamilton-Jacobi Equations*, J. Differential Equations
	- Result much more general than most econ application
- In This numerical solution v^{ρ} converges uniformly ($\rho \to 0$) to the unique (viscosity) solution *v* of the HJB, under some conditions :
	- 1. Monotonicity ($Aw \geq Au$ if $w \leq u$)
	- 2. Consistent (lim sup_{$\xi \rightarrow 0, \rho \rightarrow 0$} $\mathbf{A}(v + \xi) = \mathcal{A}(v)$)
	- 3. Stability (v^{ρ} is bounded uniformly in ρ)
- \blacktriangleright The matrix is monotonous :
	- The upwind scheme insures the convergence of the algorithm

[Numerical methods for HJB equations and MFG systems](#page-0-0) [The algorithm : generalization to MFGs](#page-31-0)

The algorithm : generalization to MFGs

 \blacktriangleright Fokker Planck solved immediately

$$
\frac{g^{n+1}-g^n}{\Delta t} = \mathbf{A}(v^n; r^n)^T g^{n+1}
$$

- The finite difference scheme is analogous, except that the upwind scheme is reversed
- Additional gain : Property that the operator in FP $A^*/A(v^n; r^n)^T$ is the adjoint of $A/A(v^n; r^n)$ in HJB

[Numerical methods for HJB equations and MFG systems](#page-0-0) [The algorithm : generalization to MFGs](#page-31-0)

The algorithm : generalization to MFGs

 \blacktriangleright Fokker Planck solved immediately

$$
\frac{g^{n+1}-g^n}{\Delta t} = \mathbf{A}(v^n; r^n)^T g^{n+1}
$$

- The finite difference scheme is analogous, except that the upwind scheme is reversed
- Additional gain : Property that the operator in FP $A^*/A(v^n; r^n)^T$ is the adjoint of $A/A(v^n; r^n)$ in HJB
- \blacktriangleright Mean Field Games system : (v_t, g_t, r_t)
	- Idea analogous to Schauder fixed point used in the proofs :
		- 1. Start from a guess $\{g_t\}_{t\in[0,T]}$ and $\{r_t(g_t)\}_t$
		- 2. Solve for $\{v_t\}_t$ in the HJB
		- 3. Solve for $\{\widetilde{g}_t\}_t$ in the FP
		- 4. If $||\widetilde{g}_t g_t||_{\infty} > \varepsilon$, update

The algorithm : generalization to MFGs

 \blacktriangleright Finding an equilibrium path $\{r_t\}_t$

- Such that HJB, FP and market clearing $S(t, r_t) := \int_{\mathbb{X}} a g(t, a, z) = K(r_t) =: K_t \text{ hold}$
- ▶ Question : how do you update ?
	- No systematic answer !
	- In practice, update path of r_t or K_t , for example, at step ℓ :

$$
r_t^{\ell+1} = r_t^{\ell} + \theta_\ell e^{-\alpha t} \widehat{S}_t
$$

with $S_t := K_t - S_t$ or $S_t = \partial_t (K_t - S_t)$

The algorithm : generalization to MFGs

 \blacktriangleright Finding an equilibrium path $\{r_t\}_t$

- Such that HJB, FP and market clearing $S(t, r_t) := \int_{\mathbb{X}} a g(t, a, z) = K(r_t) =: K_t \text{ hold}$
- ▶ Question : how do you update ?
	- No systematic answer !
	- In practice, update path of r_t or K_t , for example, at step ℓ :

$$
r_t^{\ell+1} = r_t^{\ell} + \theta_\ell e^{-\alpha t} \widehat{S}_t
$$

with $S_t := K_t - S_t$ or $S_t = \partial_t (K_t - S_t)$

 \blacktriangleright Performance of the algorithm :

- Very fast : Stationary equilibrium in less than 0.3 sec
- Fast for partial-equilibrium solution $\{v_t, g_t\}$ given path r_t
- But may be super slow for finding a fixed point (i.e. in *rt*)

Convergence theorems

- I [Achdou and Capuzzo-Dolcetta \(2010\)](#page-70-0) *Mean field games : numerical methods*. SIAM J. Numer. Anal., 48(3) :1136-1162
	- Stationary case
- [Achdou and Porretta \(2016\)](#page-70-1) *Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games*. SIAM Journal on Numerical Analysis, 54(1), 161-186.
	- Time varying case, implicit in time $n = 1, \ldots N$
- **In Results for typical second order MFG**
	- Diffusion : ν∆*v*, Separable Hamiltonian $H(x, m, p) = H(x, p) - f(m)$, periodic sets T
- \blacktriangleright Plenty of other numerical methods for variational MFG :
	- MFG system as optimality condition of a control problem
	- Can solve directly the optimal planning/optimal transport problem
	- Rely on calculus of variation and convex duality
Convergence theorem

► Finite difference scheme : *h*, $v \approx V^{h,\Delta t}$ and $g \equiv M^{h,\Delta t}$

$$
(D_t V)^n - \nu (\Delta_h V^n)_{i,j} + g(x_{i,j}, [D_h V^n]_{i,j}) = V_h[M^{n+1}]
$$

$$
(D_t M)^n - \nu (\Delta_h M)_{i,j} + B_{i,j}(V, M) = 0
$$

$$
V_i^N = \phi(M_i^N) \qquad M_i^0 = m_0(x_i)
$$

- Assumption on Hamiltonian $g(\cdot)$:
	- − Monotonicity : $\forall x, g(x, [p^+, p^-])$ non decreasing in p^+ and non increasing in *p* −
	- Consistency : ∀*x*, *g*(*x*, [*p*, *p*]) = *H*(*x*, *p*)
	- Differentiability *H* is a class C^1
	- \sim Convexity of $g(x, [p^+, p^-])$ in *p*
	- Growth condition :

 $g_q(x,q) \cdot q - g(x,q) \geq c_1 |g_q(x,q)|^2 - c_2 \qquad |g_q(x,q)| \leq c_3 |q| + c_4$

▶ Theorem 3 : Convergence in norm L^p to the solution : $V^{h,\Delta t} \to \nu$ and $M^{h,\Delta t} \to \nu$, where (ν, g) is a weak solution of the MFG system

Introduction to Impulse control and MFG

- Many economic problem feature impulse control (with Mean Field interaction !) :
	- Not considered as such since all the variables "jump" in discrete time
	- Fixed cost / non-convex cost of controls / Stopping time problem
	- Create "inaction regions" when agents don't exert control and thresholds where they pay the cost and jump

Introduction to Impulse control and MFG

- Many economic problem feature impulse control (with Mean Field interaction !) :
	- Not considered as such since all the variables "jump" in discrete time
	- Fixed cost / non-convex cost of controls / Stopping time problem
	- Create "inaction regions" when agents don't exert control and thresholds where they pay the cost and jump
- \blacktriangleright Applications to :
	- Entry and Exit of Firms : [Hopenhayn \(1992\)](#page-74-0), application to international trade : [Melitz \(2003\)](#page-75-0)
	- Pricing models à la [Golosov and Lucas Jr \(2007\)](#page-73-0) and Calvo+ (c.f. [Alvarez and Lippi \(2014\)](#page-71-0), [Alvarez et al. \(2016\)](#page-71-1))
	- Heterogeneous firms with lumpy invest*nt*, e.g. [Khan and Thomas](#page-74-1) [\(2008\)](#page-74-1), [Winberry \(2016](#page-76-0)*a*)
	- \triangleright Book : "Economics of Inaction : Stochastic Control models with fixed costs" [Stokey \(2009\)](#page-76-1)

 \triangleright I'll cover the framework of Hopenhayn since it's the most simple and can be easily generalized.

Baseline model – Hopenhayn model

\blacktriangleright Let us introduce a simplified version of Hopenhayn :

- Time varying case (while stationary in the original article)
- Endogenous exit but exogenous entry : mass of agents stay constant

Baseline model – Hopenhayn model

\blacktriangleright Let us introduce a simplified version of Hopenhayn :

- Time varying case (while stationary in the original article)
- Endogenous exit but exogenous entry : mass of agents stay constant
- Firm :
	- States variables : production *z*; control : employment *n* and exit time τ
	- Idiosyncratic fluctuations in *z* (Jump-drift process / Diffusion : Brownian with reflecting barriers [*z*,*z*]
	- Maximization :

$$
v(z_{t_0}) = \max_{\{n_t\}} \mathbb{E}_{t_0} \int_{t_0}^{\tau} e^{-\rho t} \pi(z_t, n_t) dt + e^{-\rho \tau} v^{\star}
$$

$$
\pi(z_t, n_t) = p_t f(z_t, n_t) - w_t n_t - c^f \qquad dz = \mu(z) dt + \sigma^2 dB_t \qquad z|_{t_0} = z_0
$$

Baseline model – Hopenhayn model

\blacktriangleright Let us introduce a simplified version of Hopenhayn :

- Time varying case (while stationary in the original article)
- Endogenous exit but exogenous entry : mass of agents stay constant
- Firm :
	- States variables : production *z*; control : employment *n* and exit time τ
	- Idiosyncratic fluctuations in *z* (Jump-drift process / Diffusion : Brownian with reflecting barriers [*z*,*z*]
	- Maximization :

$$
v(z_{t_0}) = \max_{\{n_t\}} \mathbb{E}_{t_0} \int_{t_0}^{\tau} e^{-\rho t} \pi(z_t, n_t) dt + e^{-\rho \tau} v^{\star}
$$

$$
\pi(z_t, n_t) = p_t f(z_t, n_t) - w_t n_t - c^f \qquad dz = \mu(z) dt + \sigma^2 dB_t \qquad z|_{t_0} = z_0
$$

- Mean field interaction through price *p* and wage *w*
	- Wage : $w = W(N)$ where $n^*(z)$ optimal employment and aggregate employment $N = \int_{z}^{\overline{z}} n^{\star}(z)g(z)dz$
	- Price of good : $p = D(Q)$ where $q^*(z) := f(z, n(z))$ and aggregate good supply $Q = \int_{z}^{\overline{z}} q^{\star}(z)g(z)dz$
- Plenty of extension : endogenous entry, multiple state variables

- \blacktriangleright Hopenhaym model :
	- Profit $\pi(z_t, n_t) = p_t f(z_t, n_t) w_t n_t c_f$ and Coupling $p_t = \mathcal{P}(g_t)$ and $w = \mathcal{W}(g)$
	- Inaction region : $\mathcal{Z} \subset [z, \overline{z}]$

- \blacktriangleright Hopenhaym model :
	- Profit $\pi(z_t, n_t) = p_t f(z_t, n_t) w_t n_t c_f$ and Coupling $p_t = \mathcal{P}(g_t)$ and $w = \mathcal{W}(g)$
	- Inaction region : $\mathcal{Z} \subset [z, \overline{z}]$

$$
- \partial_t v(t, z) + \rho v(t, z) = \max_n \pi(z, n) + \partial_z v(t, z) \mu(t, z) + \frac{\sigma^2(z)}{2} \partial_{zz}^2 v(t, z)
$$

when $v(z) \ge v^*$

- \blacktriangleright Hopenhaym model :
	- Profit $\pi(z_t, n_t) = p_t f(z_t, n_t) w_t n_t c_f$ and Coupling $p_t = \mathcal{P}(g_t)$ and $w = \mathcal{W}(g)$
	- Inaction region : $\mathcal{Z} \subset [z, \overline{z}]$

$$
-\partial_t v(t,z) + \rho v(t,z) = \max_n \pi(z,n) + \partial_z v(t,z) \mu(t,z) + \frac{\sigma^2(z)}{2} \partial_{zz}^2 v(t,z)
$$

when $v(z) \ge v^*$

 \forall (*t*,*z*)∈[0,*T*)×[*z*,*z*]\Z *v*(*z*) = *v*^{*} when $-\partial_t v + \rho v \ge \max_n \pi(z,n) + \partial_z v \cdot \mu(z) + \frac{\sigma^2(z)}{2}$ $\frac{1}{2}$ ² $\frac{1}{2}$ ² $\frac{1}{2}$ *v*

$$
\blacktriangleright
$$
 Hopen
haym model :

• Profit
$$
\pi(z_t, n_t) = pf(z_t, n_t) - w_t n_t - c_f
$$
 and
Coupling $p_t = \mathcal{P}(g_t)$ and $w = \mathcal{W}(g)$

• Inaction region :
$$
\tilde{Z} \subset [\underline{z}, \overline{z}]
$$

$$
- \partial_t v(t,z) + \rho v(t,z) = \max_n \pi(z,n) + \partial_z v(t,z) \mu(t,z) + \frac{\sigma^2(z)}{2} \partial_{zz}^2 v(t,z)
$$

$$
\forall (t,z) \in [0,T) \times \mathbb{Z} \quad \text{when} \quad v(z) \ge v^*
$$

$$
\forall (t,z) \in [0,T) \times [\underline{z},\overline{z}] \setminus \mathbb{Z} \quad v(z) = v^*
$$
 when $-\partial_t v + \rho v \ge \max_n \pi(z,n) + \partial_z v \cdot \mu(z) + \frac{\sigma^2(z)}{2} \partial_{zz}^2 v$

$$
\forall (t,z) \in [0,T) \times [\underline{z},\overline{z}] \quad \partial_t g(t,z) = -\partial_z \left[\mu(z) g(t,z) \right] + \frac{1}{2} \partial_{zz}^2 [\sigma^2(z) g(t,z)] + m_t \psi(z)
$$

- \blacktriangleright Hopenhaym model :
	- Profit $\pi(z_t, n_t) = p_t f(z_t, n_t) w_t n_t c_f$ and Coupling $p_t = \mathcal{P}(g_t)$ and $w = \mathcal{W}(g)$
	- Inaction region : $\mathcal{Z} \subset [z, \overline{z}]$

$$
- \partial_t v(t,z) + \rho v(t,z) = \max_n \pi(z,n) + \partial_z v(t,z) \mu(t,z) + \frac{\sigma^2(z)}{2} \partial_{zz}^2 v(t,z)
$$

$$
\forall (t,z) \in [0,T) \times \mathbb{Z} \quad \text{when} \quad v(z) \ge v^*
$$

$$
\forall (t,z) \in [0,T) \times [\underline{z},\overline{z}] \times \mathbb{Z} \quad v(z) = v^*
$$
 when $-\partial_t v + \rho v \ge \max_n \pi(z,n) + \partial_z v + \mu(z) + \frac{\sigma^2(z)}{2} \partial_{zz}^2 v$

$$
\forall (t,z) \in [0,T) \times [\underline{z},\overline{z}] \quad \partial_t g(t,z) = -\partial_z \left[\mu(z) g(t,z) \right] + \frac{1}{2} \partial_{zz}^2 [\sigma^2(z) g(t,z)] + m_t \psi(z)
$$

$$
v(T,z) = v_{\infty}(z) \quad g(t_0,z) = g_0(z) \quad \forall z \in [\underline{z},\overline{z}]
$$

MFG system - Hopenhayn model - 2, HJB-VI

- \blacktriangleright Hopenhayn model, reformulation with variational inequality :
	- Optimal choice of labor $n(z) = (p\partial_n f(z, \cdot))^{-1}(w)$ & $\pi^*(z) = \pi(z, n(z))$
	- Operator : $(A_t v)(t, z) = \partial_z v(t, z) \mu(t, z) + \frac{\sigma^2(z)}{2}$ $\frac{z}{2} \partial^2_{zz} v(t,z)$

MFG system - Hopenhayn model - 2, HJB-VI

- \blacktriangleright Hopenhayn model, reformulation with variational inequality :
	- Optimal choice of labor $n(z) = (p\partial_n f(z, \cdot))^{-1}(w)$ & $\pi^*(z) = \pi(z, n(z))$
	- Operator : $(A_t v)(t, z) = \partial_z v(t, z) \mu(t, z) + \frac{\sigma^2(z)}{2}$ $\frac{z}{2} \partial^2_{zz} v(t,z)$
	- Exit : Integrating the FP, we obtain mass of firm exit : $m_t = -\int_{\mathcal{Z}} \mathcal{A}^* g(t,x) dx$ over Inaction region \mathcal{Z}
	- Adjoint : $(A_t^* g)(t, z) = -\partial_z [g(t, z) \mu(t, z)] + \partial_z^2 \left[\frac{\sigma^2(z)}{2}\right]$ $\frac{f(z)}{2}g(t,z)$

MFG system - Hopenhayn model - 2, HJB-VI

- \blacktriangleright Hopenhayn model, reformulation with variational inequality :
	- Optimal choice of labor $n(z) = (p\partial_n f(z, \cdot))^{-1}(w)$ & $\pi^*(z) = \pi(z, n(z))$

• Operator:
$$
(A_t v)(t, z) = \partial_z v(t, z) \mu(t, z) + \frac{\sigma^2(z)}{2} \partial_{zz}^2 v(t, z)
$$

Exit : Integrating the FP, we obtain mass of firm exit : $m_t = -\int_{\mathcal{Z}} \mathcal{A}^* g(t,x) dx$ over Inaction region \mathcal{Z}

• Adjoint:
$$
(\mathcal{A}_t^* g)(t, z) = -\partial_z [g(t, z) \mu(t, z)] + \partial_{zz}^2 \left[\frac{\sigma^2(z)}{2} g(t, z)\right]
$$

• Reformulate as a Variational inequality :

$$
\forall (t,z) \in [0,T) \times [\underline{z},\overline{z}] \quad \min \left\{ -\partial_t v(t,z) + \rho v(t,z_j) - \pi^*(z) - \mathcal{A}v(t,z); v(z) - v^* \right\} = 0
$$

$$
\forall (t,z) \in [0,T) \times \mathcal{Z} \quad \partial_t g(t,z) = \mathcal{A}^* g(t,z) + m_t \psi(z)
$$

$$
\forall z \in [\underline{z},\overline{z}] \quad v(T,z) = v_\infty(z) \quad g(t_0,z) = g_0(z)
$$

Numerical methods for HJB-VI

- \triangleright Solving the QVI-HJB with Implicit scheme finite difference methods :
	- Splitting the problem :
	- In the inaction region $\mathcal Z$ the problem is the same as above and we obtain : *n* $±$ 1 *n*

$$
\frac{v^{n+1} - v^n}{\Delta t} + \rho v^{n+1} = \pi^n + \mathbf{A}(v^n; p^n, w^n) v^{n+1}
$$

• Action
$$
v^{n+1} = v^*
$$

 \triangleright Can be reformulated as a Linear Complementarity problem (LCP) of the form : =*B*

$$
\begin{aligned} \n\text{(}\nu - \nu^*)^T \left(\left[\rho - \frac{1}{\Delta t} - \mathbf{A} \right] \nu - \pi + \frac{\nu^o}{\Delta t} \right) &= 0 \\ \n\text{(}\nu - \nu^* &\geq 0 \\ \n\text{(}\n\mathbf{B}\nu - \pi + \frac{\nu^o}{\Delta t} &\geq 0 \n\end{aligned}
$$

- \triangleright Some solvers exists to handle this LCP problems
- I Other iterative methods exist like PSOR (Projected Successive Over Relaxation) or semi smooth Newton Methods

T. Bourany [Numerical methods for HJB equations and MFG systems](#page-0-0) March 2020 22 / 31

- \triangleright What are the problems with aggregate risk?
	- Aggregate shocks will affects the shape of the distribution
	- Agents needs to forecast its motion (of $g_t(\cdot)$) to make expectations about future prices $(r_t \dots)$ and value v_t

- \triangleright What are the problems with aggregate risk?
	- Aggregate shocks will affects the shape of the distribution
	- Agents needs to forecast its motion (of $g_t(\cdot)$) to make expectations about future prices $(r_t \dots)$ and value v_t
		- Only in case of strategic complementarity coupling of HJB with FP.
	- The distribution $g(t, a, z_i)$, which is an infinite-dimensional object, becomes a state variable for each agent.
	- This changes for each path/history of aggregate shocks *Z^t*

- \triangleright What are the problems with aggregate risk?
	- Aggregate shocks will affects the shape of the distribution
	- Agents needs to forecast its motion (of $g_t(\cdot)$) to make expectations about future prices $(r_t \dots)$ and value v_t
		- Only in case of strategic complementarity coupling of HJB with FP.
	- The distribution $g(t, a, z_i)$, which is an infinite-dimensional object, becomes a state variable for each agent.
	- This changes for each path/history of aggregate shocks *Z^t*
- \blacktriangleright Examples :
	- AR(1)-change in agg. TFP Z_t : $dZ_t = \theta(\bar{Z} Z_t)dt + \sigma dB_t$
	- Could also consider :
		- Shock to credit constraint *a* or to asset supply (gov*nt* bond issuance)
		- Demand shocks/patience shock ρ
		- Change in idiosyncratic volatility $\sigma_z \equiv \text{Var}(z)$ or transition probas λ

In MIT shocks are unexpected shocks : zero-probability events

- \triangleright MIT shocks are unexpected shocks : zero-probability events
	- Z_t is subject to a one-time shock on dB_t , i.e. normal $\mathcal{N}(0, \sigma)$
	- Then Z_t follows the OU-(AR(1)) drift process $dZ_t = \theta(\bar{Z} Z_t)dt$

 \triangleright MIT shocks are unexpected shocks : zero-probability events

- Z_t is subject to a one-time shock on dB_t , i.e. normal $\mathcal{N}(0, \sigma)$
- Then Z_t follows the OU-(AR(1)) drift process $dZ_t = \theta(\bar{Z} Z_t)dt$
- I *Main idea :*
	- Agents do no anticipate this and hence do not draw expectations
		- v_0 does not include the potentiality of such shocks
		- Once the shock is "revealed" there is no more uncertainty on the path of *Z^t*
	- \Rightarrow Certainty equivalence (CE):
		- No influence of variance σ : only size of the shock matters
		- CE typically holds in Linear-Quadratic model with (additive) shocks : quadratic utility/objective fct. and linear transition/policy functions
		- (good approximation for more general models ?)

- \triangleright MIT shocks are unexpected shocks : zero-probability events
	- Z_t : One-time shock on dB_t then follows OU/AR(1) deterministically
- \blacktriangleright Solution method :
	- \triangleright Almost no difference compared to deterministic case (cf. above)

- \triangleright MIT shocks are unexpected shocks : zero-probability events
	- Z_t : One-time shock on dB_t then follows OU/AR(1) deterministically

\blacktriangleright Solution method :

- \triangleright Almost no difference compared to deterministic case (cf. above)
- 1. Solve the HJB using backward induction : start from steady state v_T where *T* large (close to stationary)
- 2. Solve the KF forward : start from the "before-shock" steady state *g*⁰
- 3. Find the equilibrium fixed-point, by iterating on the entire *path* of prices $\{r_t\}_{t\in[0,T]}$
- \triangleright Method most commonly used as a starting point
	- Certainty equivalence and no anticipation
	- Often implies small GE effects (little price effects)

Combining Linearization and MIT shocks : BKM

\triangleright [Boppart, Krusell and Mitman \(2018\)](#page-72-0)

- *Exploiting MIT shocks in heterogeneous-agent economies : the impulse response as a numerical derivative*, JEDC
- Recent generalization by [Auclert et al. \(2019\)](#page-71-2) and recent work by Kaplan-Moll-Violante

I *Main idea :*

- Combining non-linearity of responses to MIT shocks
- With linearity assumption to combine multiple shocks
- IRF of an MIT shock is a derivative of the system :

 \Rightarrow we "just" need to "compute" it once !

Combining Linearization and MIT shocks : BKM

- \blacktriangleright More details on BKM
	- Sequential representation of heterogeneous agents models :
	- Express aggregate variables K_t (or C_t) as a fct of past shocks on Z_t
		- Sequence form :

$$
dK_t = \mathcal{K}(\{dZ_s\}_{s\leq t}) \approx \mathcal{K}(dZ_t, dZ_{t-1}, \dots)
$$

– vs. Recursive form : $K_t = \widetilde{\mathcal{K}}(\Theta_t)$ with Θ_t states var. (v_t, g_t, r_t)

 \blacktriangleright Linearity assumption of the system :

$$
dK_t = \int_0^t \partial_{dZ_s} \mathcal{K}(0) dZ_s
$$

\n
$$
\approx \underbrace{\mathcal{K}(\varepsilon, 0, 0, \dots)}_{\varepsilon-\text{-sized MIT shock}} dZ_t + \mathcal{K}(0, \varepsilon, 0, \dots) dZ_{t-1} + \dots
$$

\n
$$
\approx \underbrace{\mathcal{K}(\varepsilon, 0, 0, \dots)}_{\equiv \mathcal{K}_{dZ}(0)} dZ_t
$$

Combining Linearization and MIT shocks : BKM

- \triangleright Solution method in practice :
	- 1. Simulate the IRF to a small (sized ε) MIT shocks :
		- Shock at date *s* gives IRF : $dK_t^s = \mathcal{K}(0, \dots, \varepsilon, 0, \dots)$
		- Such path represent the non-linear derivative ∂*dZs*K(0) of the system to a shock
	- 2. Simulate a sequence of shocks $({dZ_s}_{s \leq t})$
	- 3. Sum the IRF for different shock, rescaling by the size of the shock :

$$
dK_t = \int_0^t \partial_{dZ_s} \mathcal{K}(0) dZ_s \approx \sum_s^t \frac{1}{\varepsilon} dK_t^s dZ_s
$$

– Possibility of testing the linearity assumption by changing the size/sign of ε

- \blacktriangleright Auclert, Bardóczy, Rognlie and Straub (2019)'s SHADE :
	- Equilibrium relations as the system :

 $H(K_t, Z_t) = 0$

• Linearizing :

$$
H_K(\overline{K},\overline{Z})dK_t + H_Z(\overline{K},\overline{Z})dZ_t = 0
$$

• Path of capital as function of past shocks :

$$
dK_t = \underbrace{-[\overline{H}_K]^{-1}\overline{H}_Z}_{\equiv \mathcal{K}_{dZ}(0)} dZ_t
$$

- \blacktriangleright Auclert, Bardóczy, Rognlie and Straub (2019)'s SHADE :
	- Equilibrium relations as the system :

 $H(K_t, Z_t) = 0$

Linearizing :

$$
H_K(\overline{K},\overline{Z})dK_t + H_Z(\overline{K},\overline{Z})dZ_t = 0
$$

• Path of capital as function of past shocks :

$$
dK_t = \underbrace{-[\overline{H}_K]^{-1}\overline{H}_Z}_{\equiv \mathcal{K}_{dZ}(0)} dZ_t
$$

- \blacktriangleright \overline{H}_K and \overline{H}_Z called "sequence space Jacobians"
	- Need to be computed once
	- Sufficient statistics : all we need, to know the agg. system response
	- Fast : used in estimation (of shock process *dZs*)

 \blacktriangleright These "sequence space Jacobians" :

- Are the sufficient statistics :
	- \overline{H}_K , \overline{H}_Z and $\mathcal{K}_{dZ} \equiv -[\overline{H}_K]^{-1} \overline{H}_Z$ as a $T \times T$ matrix
	- IRF for a path ${dZ_t}_t$: \approx derivative of system in response to shocks
	- "News" of different horizons *s* shocks : *s*-th columns of K_{dZ}
	- Include "under the hood" the underlying heterogeneity

 \blacktriangleright These "sequence space Jacobians" :

- Are the sufficient statistics :
	- \overline{H}_K , \overline{H}_Z and $\mathcal{K}_{dZ} \equiv -[\overline{H}_K]^{-1} \overline{H}_Z$ as a $T \times T$ matrix
	- IRF for a path ${dZ_t}_t$: \approx derivative of system in response to shocks
	- "News" of different horizons *s* shocks : *s*-th columns of K_{dZ}
	- Include "under the hood" the underlying heterogeneity
- Methods to compute it :
	- Direct methods (finite difference)
	- *Fake news* algorithm : linearize the underlying heterogeneous agents model and avoid recomputing several of the matrices

 \blacktriangleright These "sequence space Jacobians" :

- Are the sufficient statistics :
	- \overline{H}_K , \overline{H}_Z and $\mathcal{K}_{dZ} \equiv -[\overline{H}_K]^{-1} \overline{H}_Z$ as a $T \times T$ matrix
	- IRF for a path ${dZ_t}_t$: \approx derivative of system in response to shocks
	- "News" of different horizons *s* shocks : *s*-th columns of K*dZ*
	- Include "under the hood" the underlying heterogeneity
- Methods to compute it :
	- Direct methods (finite difference)
	- *Fake news* algorithm : linearize the underlying heterogeneous agents model and avoid recomputing several of the matrices

 \triangleright Substantial speed gains :

- Linearization and no need to recompute the Jacobian
- Lots of clever methods :
	- Directed acyclic graph to exploit the sparsity of system : dimension reduction by composition of Jacobians along the blocks of this DAG
	- Likelihood-based estimation : feasible now for even large models

MIT shocks and sequence space methods

Conclusion

- \triangleright Challenging problem and many different methods
- \triangleright Stationary equilibria well understood
- \triangleright No perfect solution for common noise unfortunately
	- Every algorithm with its own way of bypassing difficulties
	- e.g. trade-off : Linearity/simplification for "speed" vs. Role for uncertainty/shape of distribution for "accuracy"
- \triangleright Still lack of theoretical results on the strength of various methods
	- Global methods vs. Local perturbation/MIT shocks
	- Could compare them for various (closed-form) models

MIT shocks and sequence space methods

Conclusion

- \triangleright Challenging problem and many different methods
- \triangleright Stationary equilibria well understood
- \triangleright No perfect solution for common noise unfortunately
	- Every algorithm with its own way of bypassing difficulties
	- e.g. trade-off : Linearity/simplification for "speed" vs. Role for uncertainty/shape of distribution for "accuracy"
- \triangleright Still lack of theoretical results on the strength of various methods
	- Global methods vs. Local perturbation/MIT shocks
	- Could compare them for various (closed-form) models
- **FIRANK YOU FOR YOUR ATTENTION!**

[Numerical methods for HJB equations and MFG systems](#page-0-0) \Box Références

Achdou, Yves and Alessio Porretta (2016), 'Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games', *SIAM Journal on Numerical Analysis* 54(1), 161–186.

- Achdou, Yves, Fabio Camilli and Italo Capuzzo-Dolcetta (2013), 'Mean field games : convergence of a finite difference method', *SIAM Journal on Numerical Analysis* 51(5), 2585–2612.
- Achdou, Yves, Francisco J Buera, Jean-Michel Lasry, Pierre-Louis Lions and Benjamin Moll (2014), 'Partial differential equation models in macroeconomics', *Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences* 372(2028), 20130397.
- Achdou, Yves and Italo Capuzzo-Dolcetta (2010), 'Mean field games : Numerical methods', *SIAM Journal on Numerical Analysis* 48(3), 1136–1162.
- Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions and Benjamin Moll (2017), 'Income and wealth distribution in macroeconomics : A continuous-time approach', *R & R, Review of Economic Studies* (NBER 23732).
- Achdou, Yves and Mathieu Lauriere (2020), 'Mean field games and applications : Numerical aspects'.
- Ahn, SeHyoun, Greg Kaplan, Benjamin Moll, Thomas Winberry and Christian Wolf (2018), 'When inequality matters for macro and macro matters for inequality', *NBER Macroeconomics annual* $32(1), 1-75.$
- Aiyagari, S Rao (1994), 'Uninsured idiosyncratic risk and aggregate saving', *The Quarterly Journal of Economics* 109(3), 659–684.
- Algan, Yann, Olivier Allais and Wouter J Den Haan (2008), 'Solving heterogeneous-agent models with parameterized cross-sectional distributions', *Journal of Economic Dynamics and Control* 32(3), 875–908.

- Algan, Yann, Olivier Allais, Wouter J Den Haan and Pontus Rendahl (2014), 'Solving and simulating models with heterogeneous agents and aggregate uncertainty', 3, 277–324.
- Alvarez, Fernando and Francesco Lippi (2014), 'Price setting with menu cost for multiproduct firms', *Econometrica* 82(1), 89–135.
- Alvarez, Fernando, Herve Le Bihan and Francesco Lippi (2016), 'The real effects of monetary shocks in sticky price models : a sufficient statistic approach', *American Economic Review* 106(10), 2817–51.
- Aruoba, S Boragan, Jesus Fernandez-Villaverde and Juan F Rubio-Ramirez (2006), 'Comparing ˘ solution methods for dynamic equilibrium economies', *Journal of Economic dynamics and Control* 30(12), 2477–2508.
- Auclert, Adrien (2019), 'Monetary policy and the redistribution channel', *American Economic Review* 109(6), 2333–67.
- Auclert, Adrien, Bence Bardoczy, Matthew Rognlie and Ludwig Straub (2019), Using the ´ sequence-space jacobian to solve and estimate heterogeneous-agent models, Technical report, National Bureau of Economic Research.
- Barles, Guy and Panagiotis E Souganidis (1991), 'Convergence of approximation schemes for fully nonlinear second order equations', *Asymptotic analysis* 4(3), 271–283.
- Bewley, Truman (1986), 'Stationary monetary equilibrium with a continuum of independently fluctuating consumers', *Contributions to mathematical economics in honor of Gerard Debreu ´* 79.
- Bhandari, Anmol, David Evans, Mikhail Golosov and Thomas J Sargent (2018), 'Inequality, business cycles, and monetary-fiscal policy'.
- Bloom, Nicholas (2014), 'Fluctuations in uncertainty', *Journal of Economic Perspectives* 28(2), 153–76.
- Boppart, Timo, Per Krusell and Kurt Mitman (2018), 'Exploiting mit shocks in heterogeneous-agent economies : the impulse response as a numerical derivative', *Journal of Economic Dynamics and Control* 89, 68–92.
- Bourany, Thomas (2018), 'Wealth distribution over the business cycle : A mean-field game with common noise', *Master Thesis, Sorbonne – Paris Diderot, Applied Mathematics Departments (LJLL)* .
- Brunnermeier, Markus K, Thomas M Eisenbach and Yuliy Sannikov (2012), Macroeconomics with financial frictions : A survey, Technical report, National Bureau of Economic Research.
- Brunnermeier, Markus K and Yuliy Sannikov (2014), 'A macroeconomic model with a financial sector', *American Economic Review* 104(2), 379–421.
- Capuzzo-Dolcetta, Italo and P-L Lions (1990), 'Hamilton-jacobi equations with state constraints', *Transactions of the American Mathematical Society* 318(2), 643–683.
- Cardaliaguet, Pierre (2013/2018), 'Notes on mean field games.', *Lecture notes from P.L. Lions' lectures at College de France and P. Cardaliaguet at Paris Dauphine* .
- Cardaliaguet, Pierre, Francois Delarue, Jean-Michel Lasry and Pierre-Louis Lions (2017), 'The master equation and the convergence problem in mean field games', *arXiv preprint arXiv :1509.02505* .
- Cardaliaguet, Pierre, François Delarue, Jean-Michel Lasry and Pierre-Louis Lions (2019), *The Master Equation and the Convergence Problem in Mean Field Games :(AMS-201)*, Vol. 381, Princeton University Press.

- Carmona, René and François Delarue (2018), *Probabilistic Theory of Mean Field Games with Applications I-II*, Springer.
- Carmona, René, Francois Delarue and Daniel Lacker (2016), 'Mean field games with common noise', *The Annals of Probability* 44(6), 3740–3803.
- Christiano, Lawrence J, Martin Eichenbaum and Charles L Evans (2005), 'Nominal rigidities and the dynamic effects of a shock to monetary policy', *Journal of political Economy* 113(1), 1–45.
- Clementi, Gian Luca and Berardino Palazzo (2016), 'Entry, exit, firm dynamics, and aggregate fluctuations', *American Economic Journal : Macroeconomics* 8(3), 1–41.
- Den Haan, Wouter J (1997), 'Solving dynamic models with aggregate shocks and heterogeneous agents', *Macroeconomic dynamics* 1(2), 355–386.
- Fernández-Villaverde, Jesús and Juan F Rubio-Ramírez (2007), 'Estimating macroeconomic models : A likelihood approach', *The Review of Economic Studies* 74(4), 1059–1087.
- Fernández-Villaverde, Jesús, Juan Francisco Rubio-Ramirez and Frank Schorfheide (2016), 'Solution and estimation methods for dsge models', 2, 527–724.
- Fernández-Villaverde, Jesús and Oren Levintal (2018), 'Solution methods for models with rare disasters', *Quantitative Economics* 9(2), 903–944.
- Fernández-Villaverde, Jesús, Samuel Hurtado and Galo Nuno (2019), 'Financial frictions and the wealth distribution'.
- Golosov, Mikhail and Robert E Lucas Jr (2007), 'Menu costs and phillips curves', *Journal of Political Economy* 115(2), 171–199.

- He, Zhiguo and Arvind Krishnamurthy (2013), 'Intermediary asset pricing', *American Economic Review* 103(2), 732–70.
- Hopenhayn, Hugo A (1992), 'Entry, exit, and firm dynamics in long run equilibrium', *Econometrica : Journal of the Econometric Society* pp. 1127–1150.
- Hopenhayn, Hugo and Richard Rogerson (1993), 'Job turnover and policy evaluation : A general equilibrium analysis', *Journal of political Economy* 101(5), 915–938.
- Jermann, Urban and Vincenzo Quadrini (2012), 'Macroeconomic effects of financial shocks', *The American Economic Review* 102(1), 238–271.
- Kaplan, Greg, Benjamin Moll and Giovanni L Violante (2018), 'Monetary policy according to hank', *American Economic Review* 108(3), 697–743.
- Kaplan, Greg and Giovanni L Violante (2018), 'Microeconomic heterogeneity and macroeconomic shocks', *Journal of Economic Perspectives* 32(3), 167–94.
- Khan, Aubhik and Julia K. Thomas (2008), 'Idiosyncratic shocks and the role of nonconvexities in plant and aggregate investment dynamics', *Econometrica* 76(2), 395–436.
- Khan, Aubhik and Julia K Thomas (2013), 'Credit shocks and aggregate fluctuations in an economy with production heterogeneity', *Journal of Political Economy* 121(6), 1055–1107.
- Krusell, Per and Anthony A Smith, Jr (1998), 'Income and wealth heterogeneity in the macroeconomy', *Journal of political Economy* 106(5), 867–896.
- Le Grand, Francois, Xavier Ragot et al. (2017), 'Optimal fiscal policy with heterogeneous agents and aggregate shocks', *Document de travail* .

- Levintal, Oren (2017), 'Fifth-order perturbation solution to dsge models', *Journal of Economic Dynamics and Control* 80, 1–16.
- Levintal, Oren (2018), 'Taylor projection : A new solution method for dynamic general equilibrium models', *International Economic Review* 59(3), 1345–1373.
- McKay, Alisdair, Emi Nakamura and Jón Steinsson (2016), 'The power of forward guidance revisited', *American Economic Review* 106(10), 3133–58.
- Melitz, Marc J (2003), 'The impact of trade on intra-industry reallocations and aggregate industry productivity', *econometrica* 71(6), 1695–1725.
- Mongey, Simon and Jerome Williams (2017), 'Firm dispersion and business cycles : Estimating aggregate shocks using panel data', *Manuscript, New York University* .
- Nuño, Galo (2017), 'Optimal social policies in mean field games', *Applied Mathematics & Optimization* 76(1), 29–57.
- Nuño, Galo and Carlos Thomas (2016), 'Optimal monetary policy with heterogeneous agents'.
- Ragot, Xavier (2018), 'Heterogeneous agents in the macroeconomy : reduced-heterogeneity representations', 4, 215–253.
- Reiter, Michael (2009), 'Solving heterogeneous-agent models by projection and perturbation', *Journal of Economic Dynamics and Control* 33(3), 649–665.
- Reiter, Michael (2010), 'Solving the incomplete markets model with aggregate uncertainty by backward induction', *Journal of Economic Dynamics and Control* 34(1), 28–35.

Reiter, Michael (2018), 'Comments on" exploiting mit shocks in heterogeneous-agent economies : The impulse response as a numerical derivative" by t. boppart, p. krusell and k. mitman', *Journal of Economic Dynamics and Control* 89, 93–99.

- Schmitt-Grohe, Stephanie and Martın Uribe (2004), 'Solving dynamic general equilibrium models ´ using a second-order approximation to the policy function', *Journal of economic dynamics and control* 28(4), 755–775.
- Souganidis, Panagiotis E (1985), 'Approximation schemes for viscosity solutions of hamilton-jacobi equations', *Journal of differential equations* 59(1), 1–43.
- Stokey, Nancy L (2009), *The Economics of Inaction : Stochastic Control models with fixed costs*, Princeton University Press.
- Terry, Stephen J. (2017), 'Alternative methods for solving heterogeneous firm models', *Journal of Money, Credit and Banking* 49(6), 1081–1111.
- Vavra, Joseph (2013), ' Inflation Dynamics and Time-Varying Volatility : New Evidence and an Ss Interpretation *', *The Quarterly Journal of Economics* 129(1), 215–258.
- Winberry, Thomas (2016*a*), 'Lumpy investment, business cycles, and stimulus policy', *Revise and resubmit, American Economic Review* .
- Winberry, Thomas (2016*b*), 'A toolbox for solving and estimating heterogeneous agent macro models', *Forthcoming Quantitative Economics* .
- Young, Eric R (2010), 'Solving the incomplete markets model with aggregate uncertainty using the krusell–smith algorithm and non-stochastic simulations', *Journal of Economic Dynamics and Control* 34(1), 36–41.

\blacktriangleright Household :

- Two states : wealth *a* and labor prod. *z*; control consumption : *c*
- Idiosyncratic fluctuation in *z* (Markov chain/AR(1) process)
- State constraint (no borrowing) $a_t > a$
- Maximization :

$$
\max_{c_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t) \qquad c_t + a_{t+1} = z_t w_t + r_t (1 + a_t)
$$

► Neoclassical firms : $Y_t = Z_t K_t^{\alpha} z_{av}^{1-\alpha}$

- Interest rate : $r_t = \alpha Z_t K_t^{\alpha-1} z_{av}^{1-\alpha} \delta$ & wage $w_t = (1-\alpha)Z_t K_{\alpha} z_{av}^{-\alpha}$
- Capital demand $K_t(r) := \left(\frac{\alpha Z_t}{r_t + \delta}\right)^{\frac{1}{1-\alpha}} z_{av}$

Aiyagari model without aggregate risk – discrete time \blacktriangleright Equilibrium (recursive) relations :

- \blacktriangleright Equilibrium (recursive) relations :
	- \triangleright A Bellman equation : backward in time *How the agent value/decisions change when distribution is given*

$$
v_t(a, z) = \max_{c, a'} u(c) + \beta \mathbb{E} \left[v_{t+1}(a', z') \middle| \sigma(z) \right]
$$

s.t.
$$
c + a' = zw_t + r_t (1+a) \quad a' \geq a \quad \Rightarrow \quad a'^{\star} = \mathcal{A}(a, z)
$$

- \blacktriangleright Equilibrium (recursive) relations :
	- \triangleright A Bellman equation : backward in time *How the agent value/decisions change when distribution is given*
	- \triangleright A Law of Motion of the distribution : forward in time *How the distribution changes, when agents control is given*

$$
v_t(a, z) = \max_{c, a'} u(c) + \beta \mathbb{E} \left[v_{t+1}(a', z') \middle| \sigma(z) \right]
$$

s.t.
$$
c + a' = zw_t + r_t (1+a) \quad a' \ge a \implies a'^* = \mathcal{A}(a, z)
$$

$$
\forall \widetilde{A} \subset [a, \infty) \qquad g_{t+1}(\widetilde{A}, z') = \sum_z \pi_{z'|z} \int \mathbb{1} \{ \mathcal{A}(a, z) \in \widetilde{A} \} g_t(da, z)
$$

[Back](#page-6-0)

- \blacktriangleright Equilibrium (recursive) relations :
	- \triangleright A Bellman equation : backward in time *How the agent value/decisions change when distribution is given*
	- \triangleright A Law of Motion of the distribution : forward in time *How the distribution changes, when agents control is given*
	- \triangleright These two relations are *coupled*: *Through firm pricing (r_t* $\&$ w_t) \Rightarrow *need to look for an eq. fixed point*

$$
v_t(a, z) = \max_{c, a'} u(c) + \beta \mathbb{E} \left[v_{t+1}(a', z') \middle| \sigma(z) \right]
$$

s.t.
$$
c + a' = zw_t + r_t (1+a) \quad a' \geq a \implies a'^* = \mathscr{A}(a, z)
$$

$$
\forall \widetilde{A} \subset [\underline{a}, \infty) \qquad g_{t+1}(\widetilde{A}, z') = \sum_{z} \pi_{z'|z} \int \mathbb{1}_{\{\mathscr{A}(a,z) \in \widetilde{A}\}} g_{t}(da, z)
$$

$$
S_t(r) := \sum_{z} \int_a^{\infty} a g_t(da, z_j) = K_t(r)
$$

[Back](#page-6-0)

T. Bourany [Numerical methods for HJB equations and MFG systems](#page-0-0) March 2020 2 / 2