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HA models w/ agg. shocks

Introduction and motivation

Introduction – Motivation
I Many macro articles have to deal with agent heterogeneity and

aggregate uncertainty
• Incomplete Markets à la Bewley-Huggett-Aiyagari, Extension to HANKs
• Pricing models à la Golosov-Lucas and Calvo+
• Heterogeneous firms with lumpy investnt (Hopenhayn/Kahn-Thomas)
• Intermediary asset pricing (He-Krishnamurty/Brunnermeier-Sannikov)
• Search & Matching models (e.g OJS a la Robin, Shimer . . .)
• Network models with business cycles
⇒ Any models where distribution of allocation matters for aggregates

I Most of the computational economics literature has tried to solve
this insolvable problem for more than 20 years
• Why unsolvable?
– Composition of aggregate and idiosyncratic uncertainty :

⇒ need to keep track of all the histories of shocks
– Infinite dimensional problem :

⇒ need to keep track of the distribution of agents
⇒ The literature has reduced the problem in different ways
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HA models w/ agg. shocks

Introduction and motivation

Baseline model – Aiyagari without aggregate risk

I Let us recap the Aiyagari model
• Will use it thoroughly as an example for the different algorithms
• Continuous time version of the stationary case :

• Household :
I Two states : wealth a and labor prod. z ; control consumption : c
I Idiosyncratic fluctuations in z (Pure jump/Jump-drift process)
I State constraint (no borrowing) a ≥ a
I Maximization :

max
ct

E0

∫ ∞
0

e−ρtu(ct)dt dat = (ztwt + rt at − ct︸ ︷︷ ︸
=s?(t,a,z)

)dt

• Neoclassical firms : Yt=ZtKαt z1−α
av

I Interest rate : rt = α ZtKα−1
t z1−α

av − δ & wage wt = (1−α) ZtKαz−αav

I Capital demand Kt(r) :=
(
αZt

rt+δ

) 1
1−α zav

• Discrete time version here
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HA models w/ agg. shocks

Introduction and motivation

Baseline model – Aiyagari without aggregate risk
I Equilibrium relations :

� A Hamilton-Jacobi-Bellman : backward in time
How the agent value/decisions change when distribution is given

� A Kolmogorov-Forward (Fokker-Planck) : forward in time
How the distribution changes, when agents control is given

� These two relations are coupled :
Through firm pricing (rt & wt)⇒ need to look for an eq. fixed point

− ∂tv(t,a,zj) + ρv(t,a,zj) = max
c

u(c) + ∂av(t,a,zj)s(t,a,zj) + λj(v(t,a,z−j)− v(t,a,zj))

∂tg(t,a,zj) = − d
da

[s(t,a,zj) g(t,a,zj)]− λjg(t,a,zj) + λ−jg(t,a,z−j)

St(r) :=
∑

zj

∫ ∞
a

a g(t, da, zj) = Kt(r)
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HA models w/ agg. shocks

Aggregate uncertainty : problems and potential solutions

Adding aggregate uncertainty

I What are the problems with aggregate risk?
• Aggregate shocks will affects the shape of the distribution
• Agents needs to forecast its motion (of gt(·)) to make expectations

about future prices (rt . . . ) and value vt

– Only in case of strategic complementarity – coupling of HJB with KF.

• The distribution g(t, a, zj), which is an infinite-dimensional object,
becomes a state variable for each agent.

• This changes for each path/history of aggregate shocks Zt

I Examples :
• AR(1)-change in agg. TFP Zt : dZt = θ(Z̄ − Zt)dt + σdBt
• Could also consider :

– Shock to credit constraint a or to asset supply (govnt bond issuance)
– Demand shocks/patience shock ρ
– Change in idiosyncratic volatility σz ≡ Var(z) or transition probas λ
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HA models w/ agg. shocks

Aggregate uncertainty : problems and potential solutions

Adding aggregate uncertainty : Ideas for solution

I Potential solutions :

1. Consider unexpected shocks⇒MIT shocks

2. Reduce the dimensionality of g(·) ⇒ Krusell-Smith

3. Simplify the problem (linearize it)⇒ Perturbation à la Reiter

4. Combine 1 & 3 (linear combin. of MIT shocks)⇒ BKM & ARS

5. Discretize the aggregate shocks⇒ Achdou-Bourany

6. Keep the infinite-dimensionality⇒ math-literature/Lions-Lasry

I Today (hopefully) : will cover 1, 2 and 3
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4. Combine 1 & 3 (linear combin. of MIT shocks)⇒ BKM & ARS

5. Discretize the aggregate shocks⇒ Achdou-Bourany

6. Keep the infinite-dimensionality⇒ math-literature/Lions-Lasry

I Today (hopefully) : will cover 1, 2 and 3

Thomas Bourany HA models w/ agg. shocks January 2020 6 / 27



HA models w/ agg. shocks

Aggregate uncertainty : problems and potential solutions

Adding aggregate uncertainty : Ideas for solution

I Potential solutions :

1. Consider unexpected shocks⇒MIT shocks

2. Reduce the dimensionality of g(·) ⇒ Krusell-Smith

3. Simplify the problem (linearize it)⇒ Perturbation à la Reiter
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4. Combine 1 & 3 (linear combin. of MIT shocks)⇒ BKM & ARS

5. Discretize the aggregate shocks⇒ Achdou-Bourany

6. Keep the infinite-dimensionality⇒ math-literature/Lions-Lasry

I Today (hopefully) : will cover 1, 2 and 3

Thomas Bourany HA models w/ agg. shocks January 2020 6 / 27



HA models w/ agg. shocks

Aggregate uncertainty : problems and potential solutions

Adding aggregate uncertainty : Ideas for solution

I Potential solutions :

1. Consider unexpected shocks⇒MIT shocks

2. Reduce the dimensionality of g(·) ⇒ Krusell-Smith

3. Simplify the problem (linearize it)⇒ Perturbation à la Reiter
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HA models w/ agg. shocks

MIT shocks

MIT shocks : unexpected shocks

I MIT shocks are unexpected shocks : zero-probability events

• Zt is subject to a one-time shock on dBt, i.e. normal N (0, σ)

• Then Zt follows the OU-(AR(1)) drift process dZt = θ(Z̄ − Zt)dt

I Main idea :
• Agents do no anticipate this and hence do not draw expectations

– v0 does not include the potentiality of such shocks
– Once the shock is ”revealed” there is no more uncertainty

on the path of Zt

⇒ Certainty equivalence (CE) :
– No influence of variance σ : only size of the shock matters
– CE typically holds in Linear-Quadratic model with (additive) shocks :

quadratic utility/objective fct. and linear transition/policy functions
– (good approximation for more general models ?)
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HA models w/ agg. shocks

MIT shocks

MIT shocks : unexpected shocks

I MIT shocks are unexpected shocks : zero-probability events
• Zt : One-time shock on dBt then follows OU/AR(1) deterministically

I Solution method :
� Almost no difference compared to deterministic case (cf recap here )

1. Solve the HJB using backward induction : start from steady state vT

where T large (close to stationary)
2. Solve the KF forward : start from the “before-shock” steady state g0

3. Find the equilibrium fixed-point, by iterating on the entire path of
prices {rt}t∈[0,T]

I Method most commonly used as a starting point
• Certainty equivalence and no anticipation
• Often implies small GE effects (little price effects)
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HA models w/ agg. shocks

Krusell-Smith

Krusell-Smith Algorithm
I Krusell & Smith (1998)

• Income & Wealth Heterogeneity in the Macroeconomy, Journal of Pol. Econ.
• over 2000 cites, a lot for a technical/computational econ paper !

I Main idea :
• Reduce the dimensionality of the problem :
• Dynamics of the infinite dimensional g(t,a,zj) – usually governed by

the Kolmogorov Forward – will be simplified :
• Agents perceive the law of motion to be log-linear in the aggregate

variable
• Only consider the first moment of g, i.e.

Kt ≡ St(rt) =
∑

j

∫
a

a g(t,da,zj)

Discrete time
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HA models w/ agg. shocks

Krusell-Smith

Krusell-Smith Algorithm
I The agents take their decision (in HJB) by making expectation

about the future path of interest rate {rt}t∈[0,T], which depends on
KF :

∂tg(t,a,zj) = H(gt,Zt, dZt) ∀(t, a, zj)

I Krusell-Smith’s method :
• Bounded-rationality : agents do not anticipate the full complexity of

this law of motion / KF
• Replace H(gt,Zt, dZt), function of g by Ĥ a log linear function in a

finite set of moment m = (m1, . . . ,mI)
• In practice, keep only the first moment m1 ≡ K ≡ S(r)

d log Kt = a(Zt) dt + b(Zt) log Kt dt

• Why? for such model, the first moment is enough !
⇒ Phenomenon called approximate aggregation
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HA models w/ agg. shocks

Krusell-Smith

Krusell-Smith Algorithm – Approximate aggregation

I Phenomenon called approximate aggregation :
• Keeping the first moment m1 ≡ Kt =

∑
j

∫
a a g(t,da,zj) is enough

• Compute the value function v(t,a,zj,K)

– Value functo iteration on v(a,K) & approxion outside grid (cubic spline)
– Given ”perceived” log-linear law of motion of K̂t

– Monte Carlo on the employment status
(5,000 agents and 10,000 periods)

• Accuracy measure?
– Compare the aggregate K given all the decision of agents s(t, a, zj,K)
– Regress future aggregate capital on its past values

(using these 10,000 values)
– The ”reality” Kt respects the perceived Law of Motion K̂t

– R2 > 0.9999 and Var(ε) < 0.004% with ε = Kt − K̂t
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HA models w/ agg. shocks

Krusell-Smith

Krusell-Smith Algorithm – Extensions and issues
I Simplifications in Krusell-Smith :

1. Take only the first moment :
– Can be checked in adding more moments (m2, . . . ,mI) in Ĥ and

regressing Kt on K̂t

– Usually R2 is still very high for most models.
2. Take a (log-) linear law of motion for these moments

– Can take non-linear dynamics/ flexible functional form for Ĥ
– Fernández-Villaverde, Hurtado, Nuño (2019, WP) use a non-linear

approximation for Ĥ :
– Agents infer/”learn” a non-linear Ĥ using machine learning

techniques (neural network)
I One (main !) problem remains :

• Can we hope that this algorithm does not create ”self-fulfilling”
expectations?

• The agents may act in a linear / approximate-aggregated way
because they expected the others to do so?
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– Agents infer/”learn” a non-linear Ĥ using machine learning
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HA models w/ agg. shocks

Perturbation methods

Perturbation methods :
I A second literature rely on linearization and perturbation methods

• For HA models : Reiter (2009)
– Solving heterogeneous agents models by projection and perturbation, JEDC

• Follows a large anterior literature
– DSGE lit. (RBC/medium-scale NK), Schmitt-Grohe Uribe (2004)
– Used heavily for estimation (MCMC), because very fast

• Large literature following this :
– Reiter (2010), Den Haan (2010), Algan-Allais-Den Haan (2008)
– Winberry (2018) Quantit. Econ., Mongey-Williams (2017) JMP
– Ahn, Kaplan, Moll, Winberry and Wolf (2017) NBER Macro Annual

I Main idea :
• Linearize the model in the aggregate shock Zt

– Linear perturbation in Zt around the stationary equilibrium
– but keep the non-linearity in idiosyncratic shocks
– Large linear system : nb of states ≈ nb of gridpoints

• Projection to simplify the large system and go faster
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HA models w/ agg. shocks

Perturbation methods

Reiter Algorithm
I Consider the equilibrium relations as the following system :

• HJB, KF, Def of prices, Mkt clearing, Dynamics of agg. shocks
• States : Θt = (vt, gt, pt), agg. shocks Zt
• Could have a formulation with present/future state/control var. here

Et[dΘt] = F(Θt, dZt,Zt)

I Steps :

1. Solve the stationary system :

Et[dΘ] = F(Θ, 0,Z)

2. Linearize the system around it, perturbing in the agg. shock :

Et[dΘ̂t] = LF := ∂ΘF(Θ, 0,Z) · Θ̂tdt + ∂ZFZ(Θ, 0,Z) · dZ

3. Reduce the state-space, with projection : basis x for Θ

Θt ≈ X =
∑

j

γjtxj ⇒ LF(Θ,Z)·[Θ̂tdt, dZ] ≈ L̂F(X,Z)·[X̂tdt, dZ]
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HA models w/ agg. shocks

Perturbation methods

Reiter Algorithm, Linearization and issues

I What is lost due to linearization, and what is preserved?

1. Certainty equivalence in aggregate uncertainty :
– No influence of variance σ : only size of the shock Zt matters
– Agents do not “change” their decisions with aggregate uncertainty
– Perturbation methods (at least in first order) not suited for asset

pricing/portfolio choice models
– However, agents still account for idiosyncratic variance : valid method

to study uncertainty shocks (c.f. Bloom (2014))
– Break certainty equivalence with higher order perturbation (2nd, 4th)

2. State dependence, in particular of the aggregate IRF to the
distribution g0

3. Path dependence, different histories of shocks {Zt}t∈[0,T] won’t have
the same final effects on aggregate KT or CT

4. No sign and size dependence : linearity of the system in Zt make the
response of a λZ0 shocks λ time larger than a Z0-sized shock.
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HA models w/ agg. shocks

Perturbation methods

Reiter Algorithm - Extensions
I Winberry (2018)

• Use the technique developed in Algan-Allais-Den Haan (2008) to
approximate the distrib. g(a, z) with a parametric fctal form :

log g(a, z) ≈
ng∑
k

k∑
`

γ`k (z− mz
1)k−`(log a− ma

1)`

– Reduce the infinite dimensional object to a finite dim. one : ng

– Can compute the law of motion (replace the KF)
– Use the same perturbation methods as in Reiter
– Bayesian estimation of parameters

I Mongey and Williams (2017)
– Use Reiter’s algorithm and estimate it with aggregates time series

and cross-sectional micro data :
– Bayesian estimation and variance decomposition (4 different shocks)
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HA models w/ agg. shocks

Perturbation methods

Reiter Algorithm - Extensions

I Ahn, Kaplan, Moll, Winberry and Wolf (2018) combines :

1. Continuous-time à la Achdou, Han, Lasry, Lions and Moll (2017)
– Large speed gain for computing stationary equilibrium

2. Algorithm à la Reiter (2009) for linearization and perturbation w.r.t.
aggregate shocks

– Automatic differentiation to linearize the system (more accurate than
finite diffo. / faster than symbolic diffo)

3. Clever dimensionality reduction (projection for g and v on a time
invariant basis x)

– More than tenfold speed for solving the linear system and IRFs

I Large literature using/developing these techniques for estimation...
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HA models w/ agg. shocks

MIT shocks and sequence space methods

Combining Linearization and MIT shocks : BKM

I Boppart, Krusell and Mitman (2018)
– Exploiting MIT shocks in heterogeneous-agent economies : the impulse

response as a numerical derivative, JEDC
– Recent generalization by Auclert et al. (2019) and recent work by

Kaplan-Moll-Violante

I Main idea :
• Combining non-linearity of responses to MIT shocks
• With linearity assumption to combine multiple shocks
• IRF of an MIT shock is a derivative of the system :

⇒ we ”just” need to “compute” it once !
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HA models w/ agg. shocks

MIT shocks and sequence space methods

Combining Linearization and MIT shocks : BKM
I More details on BKM

• Sequential representation of heterogeneous agents models :
• Express aggregate variables Kt (or Ct) as a fct of past shocks on Zt

– Sequence form :

dKt = K({dZs}s≤t) ≈ K(dZt, dZt−1, . . . )

– vs. Recursive form : Kt = K̃(Θt) with Θt states var. (vt, gt, pt)

I Linearity assumption of the system :

dKt =

∫ t

0
∂dZsK(0)dZs

≈ K(ε, 0, 0, . . . )︸ ︷︷ ︸
IRFto a 1-time

ε−sized MIT shock
≡KdZ(0)

dZt +K(0, ε, 0, . . . )dZt−1 + . . .

Thomas Bourany HA models w/ agg. shocks January 2020 19 / 27



HA models w/ agg. shocks

MIT shocks and sequence space methods

Combining Linearization and MIT shocks : BKM

I Solution method in practice :
1. Simulate the IRF to a small (sized ε) MIT shocks :

– Shock at date s gives IRF : dKs
t = K(0, . . . , ε, 0, . . . )

– Such path represent the non-linear derivative ∂dZsK(0) of the system
to a shock

2. Simulate a sequence of shocks ({dZs}s≤t

3. Sum the IRF for different shock, rescaling by the size of the shock :

dKt =

∫ t

0
∂dZsK(0)dZs ≈

t∑
s

1
εdKs

t dZs

– Possibility of testing the linearity assumption by changing the
size/sign of ε
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HA models w/ agg. shocks

MIT shocks and sequence space methods

Linearization & MIT shocks – Extensions : SHADE
I Auclert, Bardóczy, Rognlie and Straub (2019)’s SHADE :

• Equilibrium relations as the system :

H(Kt,Zt) = 0

• Linearizing :

HK(K,Z)dKt + HZ(K,Z)dZt = 0

• Path of capital as function of past shocks :

dKt = −[HK ]−1HZ︸ ︷︷ ︸
≡KdZ(0)

dZt

I HK and HZ called “sequence space Jacobians”
• Need to be computed once
• Sufficient statistics : all we need, to know the agg. system response
• Fast : used in estimation (of shock process dZs)
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HA models w/ agg. shocks

MIT shocks and sequence space methods

Linearization & MIT shocks – Extensions : SHADE
I These “sequence space Jacobians” :

• Are the sufficient statistics :
– HK , HZ and KdZ ≡ −[HK ]−1HZ as a T×T matrix
– IRF for a path {dZt}t : ≈ derivative of system in response to shocks
– “News” of different horizons s shocks : s-th columns of KdZ

– Include “under the hood” the underlying heterogeneity

• Methods to compute it :
– Direct methods (finite difference)
– Fake news algorithm : linearize the underlying heterogeneous agents

model and avoid recomputing several of the matrices
I Substantial speed gains :

• Linearization and no need to recompute the Jacobian
• Lots of clever methods :

– Directed acyclic graph to exploit the sparsity of system : dimension
reduction by composition of Jacobians along the blocks of this DAG

– Likelihood-based estimation : feasible now for even large models
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– Directed acyclic graph to exploit the sparsity of system : dimension
reduction by composition of Jacobians along the blocks of this DAG

– Likelihood-based estimation : feasible now for even large models
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Other techniques and math literature

Other solution methods and optimal policies

I Linearization techniques to handle optimal policies/Ramsey plans
• Bhandari, Evans, Golosov and Sargent (2018)

– Linearization w.r.t all the variables/distribution (Fréchet derivative)
• Comp. eq. vs. Constrained Efficiency vs. Pareto optimal ?

Nuño (2017) and Nuño-Moll (2017)
• “Major & minor agents” : Nuño and Thomas (2016)
⇒ Léo’s presentation next week !

I Other methods involving “reduced heterogeneity” :
• Ways to “summarize” heterogeneity : Ragot (2018)
• History Representation of HA models : summarize the different

paths of idiosyncratic shocks with “representative histories”
• Possible to determine optimal fiscal-monetary policy : Le Grand,

Ragot et al. (2017)
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Other techniques and math literature

Tree structure for aggregate shocks : Achdou-Bourany

I Achdou-Bourany (2018)
• Master thesis under supervision of Y. Achdou

I Main idea : approximate the process for the Zt by a finite number
of “simple” shocks :
• Every ∆T (deterministic times), Zt jumps stochastically to one of K

outcomes
• Repeat this : a finite M number of “wave” of uncertainty
• This way, you can build a tree of KM paths of Zt with deterministic

branches separated by stochastic shocks
• Taking ∆T → 0, you can approximate any process

(e.g. Donsker’s theorem for Brownian motion)
• Need to link the branches together in an appropriate way
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Other techniques and math literature

Tree structure for aggregate shocks : Achdou-Bourany
I Grafting branches :

• On each branch (between each shock), compute the evolution of the
system : HJB and KF : v(a,zj,Z̃) and g(a,zj,Z̃)

I To account for future and past shocks?
⇒ use boundary conditions of the PDEs !

– t−m time before revelation of the shock (Zt−m
= Zm)

– t+m : time when shocks hits (Zt+m
= Zm+1 take K values)

v(a,zj,Zm) =
∑

k|Zm+1=Zk

P(Zm+1|Zm) v(a,zj,Zm+1)

g(a,zj,Zm) = g(a,zj,Zm+1)

– Agents are forward looking, form expectations over the different
future branches (paths of Zt)

– Continuity of g(·) in time t
I Loop to find eq. fixed point on the entire tree (all branches !)

– Problem : computationally heavy/slow!
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Other techniques and math literature

Existence & Uniqueness – Mathematical literature on MFG
⇒ Heterogeneous agents ≡Mean Field Games (MFG)
I Cardaliaguet, Delarue, Lasry and Lions (2019)

• Master equation in infinite-dimension :
– Value U(t,a,zj,Z,g) = v(t,a,zj,Z) definite along the characteristics of the

system (v, g) for the dynamics of Zt.
– Equation (& U and DmU) in Wasserstein space g ∈ P([0,T]×[a,∞],[Z,Z])

I Carmona, Delarue and Lacker (2016)
• Stochastic Partial Diff. equations (SPDE) :

– Both HJB & KF equations become stochastic with aggreg. shocks Zt

I Carmona and Delarue (2018)
• Forward-Backward Stochastic Diff. equations (FBSDE) :

– Stochastic Pontryagin Maximum Principle (Hamiltonian !)
– Forward states variables Kt, gt and Backward costates ≈ vt

⇒ Different approaches summarized in secto 3 of my master thesis here :

MFG literature exploding in the recent years !
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Other techniques and math literature

Conclusion

I Challenging problem and many different methods
I No perfect solution – (un)fortunately?

• Every algorithm with its own way of bypassing difficulties
• e.g. trade-off : Linearity/simplification for “speed”

vs. Role for uncertainty/shape of distribution for “accuracy”

I Still lack of theoretical results on the strength of various methods
• Global methods vs. Local (higher order) perturbation
• Could compare them for various (closed-form) models

I Large gains despite fixed cost of entering in this literature

I THANK YOU FOR YOUR ATTENTION !
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Fernández-Villaverde, Jesús, Samuel Hurtado and Galo Nuno (2019), ‘Financial frictions and the
wealth distribution’.

He, Zhiguo and Arvind Krishnamurthy (2013), ‘Intermediary asset pricing’, American Economic
Review 103(2), 732–70.

Hopenhayn, Hugo A (1992), ‘Entry, exit, and firm dynamics in long run equilibrium’,
Econometrica : Journal of the Econometric Society pp. 1127–1150.

Hopenhayn, Hugo and Richard Rogerson (1993), ‘Job turnover and policy evaluation : A general
equilibrium analysis’, Journal of political Economy 101(5), 915–938.

Jermann, Urban and Vincenzo Quadrini (2012), ‘Macroeconomic effects of financial shocks’, The
American Economic Review 102(1), 238–271.

Kaplan, Greg, Benjamin Moll and Giovanni L Violante (2018), ‘Monetary policy according to
hank’, American Economic Review 108(3), 697–743.

Kaplan, Greg and Giovanni L Violante (2018), ‘Microeconomic heterogeneity and macroeconomic
shocks’, Journal of Economic Perspectives 32(3), 167–94.

Khan, Aubhik and Julia K. Thomas (2008), ‘Idiosyncratic shocks and the role of nonconvexities in
plant and aggregate investment dynamics’, Econometrica 76(2), 395–436.

Thomas Bourany HA models w/ agg. shocks January 2020 27 / 27



HA models w/ agg. shocks
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Aiyagari model in discrete time

Aiyagari model without aggregate risk – discrete time

I Household :
• Two states : wealth a and labor prod. z ; control consumption : c
• Idiosyncratic fluctuation in z (Markov chain/AR(1) process)
• State constraint (no borrowing) at ≥ a
• Maximization :

max
ct

E0

∞∑
t=0

βtu(ct) ct + at+1 = ztwt + rt (1 + at)

I Neoclassical firms : Yt=ZtKαt z1−α
av

• Interest rate : rt = α ZtKα−1
t z1−α

av − δ & wage wt = (1−α)ZtKαz−αav

• Capital demand Kt(r) :=
(
αZt

rt+δ

) 1
1−α zav
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Aiyagari model in discrete time

Aiyagari model without aggregate risk – discrete time
I Equilibrium (recursive) relations :

� A Bellman equation : backward in time
How the agent value/decisions change when distribution is given

� A Law of Motion of the distribution : forward in time
How the distribution changes, when agents control is given

� These two relations are coupled :
Through firm pricing (rt & wt)⇒ need to look for an eq. fixed point

vt(a, z) = max
c,a′

u(c) + βE
[
vt+1(a′, z′)

∣∣σ(z)
]

s.t. c+a′=zwt+rt (1+a) a′≥a ⇒ a′? = A (a, z)

∀ Ã ⊂ [a,∞) gt+1(Ã, z′) =
∑

z

πz′|z

∫
1{A (a,z)∈Ã}gt(da, z)

St(r) :=
∑

z

∫ ∞
a

a gt(da, zj) = Kt(r)

Back
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The algorithm

The algorithm : an overview
I Aim : find the stationary equilibria : i.e. the functions v(a,zj) and

g(a,zj) and the interest rate r.
I General structure :

1. Guess interest rate r`, compute capital demand K(r`) & wages w(K)

2. Solve the HJB using finite differences (semi-implicit method) :
obtain s`(a,zj) and then v`(a,zj), by a system of sort :
ρ v = u(v) + A(v; r)v

3. Using AT , solve the FP equation (finite diff. system :
A(v; r)Tg = 0), and obtain g(a,zj)

4. Compute the capital supply S(g, r) =
∑

j

∫∞
a a g(a,zj)da

5. If S(r) > K(r), decrease r`+1 (update using bisection method), and
conversely, and come back to step 2.

6. Stop if S(r) ≈ K(r)

Stationary MFG equations
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The algorithm

The algorithm : advantages relative to discrete time :
1. Borrowing constraint only appears in the boundary conditions

• FOCs u′(c(a,zj)) = ∂av(a,zj) and HJB eq. always holds with equality
• No need to split the Bellman equation (constrained vs.

unconstrained agents)

2. In continuous time there is no future (i.e. t + 1) only present t !
• Only involve contemporaneous variables (FOC are ’static’)
• No need to use costly root-finding to obtain optimal c(a,zj).

3. The discretized system is easy to solve :
• ’Simply’ a matrix inversion

(Finite differences : taught in 1st year in any engineering school).
• Matrix is sparse (tridiagonal)
• Continuous space : one step left or one step right

4. HJB and FP are coupled
• The matrix to solve FP is the transpose of the one of HJB.
• Why? Operator in FP is simply the ’adjoint’ of the operator in HJB :

’Two birds one stone’
• Specificity of MFG!
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• No need to use costly root-finding to obtain optimal c(a,zj).

3. The discretized system is easy to solve :
• ’Simply’ a matrix inversion

(Finite differences : taught in 1st year in any engineering school).
• Matrix is sparse (tridiagonal)
• Continuous space : one step left or one step right

4. HJB and FP are coupled
• The matrix to solve FP is the transpose of the one of HJB.
• Why? Operator in FP is simply the ’adjoint’ of the operator in HJB :

’Two birds one stone’
• Specificity of MFG!
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The algorithm

The algorithm : Finite difference scheme
I Finite difference scheme : discretize the state-space ai for

i = 1, . . . I.

∂av(ai,zj) ≈
vi+1,j − vi,j

∆a
≡ v′i,j,F ∂av(ai,zj) ≈

vi−1,j − vi,j

∆a
≡ v′i,j,B

I Vector form :

I Linear system to solve A is sparse.

ρ v = u(v) + A(v; r)v

0 = A(v; r)Tg
S(g, r) = K(r)
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The algorithm : theoretical results

I This numerical solution converges to the unique (viscosity) solution
of the HJB, under some conditions :

1. Monotonicity (invertible and inverse positive)
2. Consistent (approx error is majored by powers of step sizes)
3. Stability (iteration in k is bounded)

I Is the matrix monotonous?
• In the scheme for solving the HJB, one can distinguish if the drift is

positive or negative :
• that is the upwind scheme
• When s(a) > 0 use v′i,j,F, and s(a) < 0, use v′i,j,B
• This insures the convergence of the algorithm
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The algorithm

The algorithm : transition dynamics
I The algo for transitions is a generalization :

• Discretization : vn
i,j and gn

i,j stacked into vn and gn

• Somehow, it is more specific to Mean Field Games :

I Take advantage of the backward-forward structure of the MFG
• Make a guess r`t (t = 1, . . . ,N) on the path interest rates.
• Solve the HJB (implicit scheme), given terminal condition ;

ρvn+1 = un + A(vn+1; rn) vn+1 +
vn+1 − vn

∆t
vN = v∞ (terminal condition = steady state)

• Solve the FP forward, given the initial condition

gn+1 − gn

∆t
= A(vn; rn)Tgn+1

g1 = g0 (initial condition)

• Update the interest rates path
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The algorithm : wrapping up
I This algorithm to compute the dynamics of the system will be used

a lot when adding aggregate shocks.
• HJB start from the end (what agent anticipate) and runs backward

until the computation of the initial value function
• FP start from the beginning (what wealth agents hold) and runs

forward to compute the evolution of distributions.
• If there are discrepancies between capital demand and capital

supply, loop to correct the path of interest rate.

I Performance of the algorithm :
• ≈ 1000 grid points in space, 400 in time :
• Stationary equilibrium : 0.25-0.4 sec
• Transition dynamics : around 30-50 secs

– Perfect foresight or MIT shocks.
– 10−6 error on the path of interest rate.

• What about anticipated aggregate shocks?
⇒ Very different speeds for different algos ! Back
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The algorithm

Krusell-Smith Algorithm in Discrete time
I Model in discrete time :

• Using the discrete time Aiyagari model
• Add a jump/AR(1) process for aggregate productivity Zt

vt(a, z; g,Z) = max
c,a′

u(c) + βE
[
vt+1(a′, z′; g′,Z′))

∣∣σ(z,Z)
]

s.t. c + a′ = zwt(K,Z) + rt(K,Z) (1 + a) a′ ≥ a

g′ = H(g,Z) = Π(g,v,K,Z) · g
S(r) :=

∑
j

∫∞
a a g(da,zj) = K(r)

• The agents take their decision (in Bellman eq.) by making
expectation about the future path of prices {rt,wt}t∈[0,T], which
depends on the Law of Motion of the distribution

– Law of Motion H(·) is “perceived” to be log linear in the first
aggregate moment K
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The algorithm

Krusell-Smith Algorithm in Discrete time

I Krusell-Smith’s method : change the ”perceived” law of motion :
• Bounded-rationality : agents do not anticipate the full complexity of

this law of motion / KF
• Replace H(g,Z), function of g...

g′ = H(g,Z) = Π(g,v,K,Z) · g ⇒ K′ = f (K; g, v,Z)

... by Ĥ a log linear function in a finite set of moment m = (m1 . . .mI)

• In practice, keep only the first moment m1 ≡ K ≡ S(r)

m = Ĥ(m,Z) ⇒ log K′ = a(Z) + b(Z) log K

• Why? for such model, the first moment is enough !
⇒ Phenomenon called approximate aggregation

Back
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Krusell-Smith Algorithm
I Krusell-Smith results on approximate aggregation

Back
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The algorithm

Perturbation methods in discrete time : Reiter

I Equilibrium relations of Krusell-Smith model in discrete time :
• Euler equation, Law of motion of distribution (discretized as an

histogram), Price/TFP dynamics
– εt Exog. shocks on Zt and ηt expectation error.

H(Θt+1,Θt, ηt+1, εt+1) = 0

• Stationary equilibrium :

H(Θ,Θ, 0, 0) = 0

• Linearization (finite diffo) :

H1(Θ,Θ, 0, 0)Θ̂t+1 + H2(Θ,Θ, 0, 0)Θ̂t + H3ηt+1 + H4εt+1 = 0

Back
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