Heterogeneous Agents models with Aggregate Shocks Theory and Solution Methods

Thomas Bourany

Beyond Macro Reading Group

January 2020

Thomas Bourany

HA models w/ agg. shocks

- Many macro articles have to deal with agent heterogeneity and aggregate uncertainty
 - Incomplete Markets à la Bewley-Huggett-Aiyagari, Extension to HANKs
 - · Pricing models à la Golosov-Lucas and Calvo+
 - Heterogeneous firms with lumpy invest^{*nt*} (Hopenhayn/Kahn-Thomas)
 - Intermediary asset pricing (He-Krishnamurty/Brunnermeier-Sannikov)
 - Search & Matching models (e.g OJS a la Robin, Shimer ...)
 - Network models with business cycles
 - \Rightarrow Any models where distribution of allocation matters for aggregates

- Many macro articles have to deal with agent heterogeneity and aggregate uncertainty
 - Incomplete Markets à la Bewley-Huggett-Aiyagari, Extension to HANKs
 - · Pricing models à la Golosov-Lucas and Calvo+
 - Heterogeneous firms with lumpy invest^{nt} (Hopenhayn/Kahn-Thomas)
 - Intermediary asset pricing (He-Krishnamurty/Brunnermeier-Sannikov)
 - Search & Matching models (e.g OJS a la Robin, Shimer ...)
 - Network models with business cycles
 - \Rightarrow Any models where distribution of allocation matters for aggregates
- Most of the computational economics literature has tried to solve this insolvable problem for more than 20 years

- Many macro articles have to deal with agent heterogeneity and aggregate uncertainty
 - Incomplete Markets à la Bewley-Huggett-Aiyagari, Extension to HANKs
 - · Pricing models à la Golosov-Lucas and Calvo+
 - Heterogeneous firms with lumpy invest^{nt} (Hopenhayn/Kahn-Thomas)
 - Intermediary asset pricing (He-Krishnamurty/Brunnermeier-Sannikov)
 - Search & Matching models (e.g OJS a la Robin, Shimer ...)
 - Network models with business cycles
 - \Rightarrow Any models where distribution of allocation matters for aggregates
- Most of the computational economics literature has tried to solve this insolvable problem for more than 20 years
 - Why unsolvable?
 - Composition of aggregate and idiosyncratic uncertainty :
 - \Rightarrow need to keep track of all the histories of shocks
 - Infinite dimensional problem :

 \Rightarrow need to keep track of the distribution of agents

- Many macro articles have to deal with agent heterogeneity and aggregate uncertainty
 - Incomplete Markets à la Bewley-Huggett-Aiyagari, Extension to HANKs
 - · Pricing models à la Golosov-Lucas and Calvo+
 - Heterogeneous firms with lumpy invest^{nt} (Hopenhayn/Kahn-Thomas)
 - Intermediary asset pricing (He-Krishnamurty/Brunnermeier-Sannikov)
 - Search & Matching models (e.g OJS a la Robin, Shimer ...)
 - Network models with business cycles
 - \Rightarrow Any models where distribution of allocation matters for aggregates
- Most of the computational economics literature has tried to solve this insolvable problem for more than 20 years
 - Why unsolvable?
 - Composition of aggregate and idiosyncratic uncertainty :
 - \Rightarrow need to keep track of all the histories of shocks
 - Infinite dimensional problem :

 \Rightarrow need to keep track of the distribution of agents \Rightarrow The literature has reduced the problem in different ways

Thomas Bourany

HA models w/ agg. shocks

Let us recap the Aiyagari model

- Will use it thoroughly as an example for the different algorithms
- Continuous time version of the stationary case :

Let us recap the Aiyagari model

- Will use it thoroughly as an example for the different algorithms
- Continuous time version of the stationary case :
- Household :
 - Two states : wealth *a* and labor prod. *z*; control consumption : *c*
 - Idiosyncratic fluctuations in z (Pure jump/Jump-drift process)
 - State constraint (no borrowing) $a \ge \underline{a}$
 - Maximization :

$$\max_{c_t} \mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t) dt \qquad \qquad da_t = \underbrace{(z_t w_t + r_t a_t - c_t)}_{=s^*(t,a,z)} dt$$

- Neoclassical firms : $Y_t = Z_t K_t^{\alpha} z_{av}^{1-\alpha}$
 - Interest rate : $r_t = \alpha Z_t K_t^{\alpha 1} z_{av}^{1 \alpha} \delta$ & wage $w_t = (1 \alpha) Z_t K^{\alpha} z_{av}^{-\alpha}$

• Capital demand
$$K_t(r) := \left(\frac{\alpha Z_t}{r_t + \delta}\right)^{\frac{1}{1-\alpha}} z_{av}$$

Discrete time version here

Thomas Bourany

Baseline model – Aiyagari without aggregate risk ► Equilibrium relations :

Equilibrium relations :

▷ A Hamilton-Jacobi-Bellman : backward in time

How the agent value/decisions change when distribution is given

$$-\partial_t v(t,a,z_j) + \rho v(t,a,z_j) = \max_c u(c) + \partial_a v(t,a,z_j) s(t,a,z_j) + \lambda_j (v(t,a,z_{-j}) - v(t,a,z_j))$$

Equilibrium relations :

- A Hamilton-Jacobi-Bellman : backward in time How the agent value/decisions change when distribution is given
- ▷ A Kolmogorov-Forward (Fokker-Planck) : forward in time How the distribution changes, when agents control is given

$$-\partial_t v(t,a,z_j) + \rho v(t,a,z_j) = \max_c u(c) + \partial_a v(t,a,z_j) s(t,a,z_j) + \lambda_j (v(t,a,z_{-j}) - v(t,a,z_j))$$

$$\partial_t g(t,a,z_j) = -\frac{d}{da} [s(t,a,z_j) g(t,a,z_j)] - \lambda_j g(t,a,z_j) + \lambda_{-j} g(t,a,z_{-j})$$

Equilibrium relations :

- A Hamilton-Jacobi-Bellman : backward in time How the agent value/decisions change when distribution is given
- ▷ A Kolmogorov-Forward (Fokker-Planck) : forward in time How the distribution changes, when agents control is given
- ▷ These two relations are *coupled* : Through firm pricing $(r_t \& w_t) \Rightarrow$ need to look for an eq. fixed point

$$-\partial_t v(t,a,z_j) + \rho v(t,a,z_j) = \max_c u(c) + \partial_a v(t,a,z_j) s(t,a,z_j) + \lambda_j (v(t,a,z_{-j}) - v(t,a,z_j))$$

$$\partial_t g(t,a,z_j) = -\frac{d}{da} \left[s(t,a,z_j) g(t,a,z_j) \right] - \lambda_j g(t,a,z_j) + \lambda_{-j} g(t,a,z_{-j})$$

$$S_t(r) := \sum_{z_j} \int_a^\infty a g(t, da, z_j) = K_t(r)$$

Thomas Bourany

HA models w/ agg. shocks

Aggregate uncertainty : problems and potential solutions

Adding aggregate uncertainty

- ► What are the problems with aggregate risk?
 - Aggregate shocks will affects the shape of the distribution
 - Agents needs to forecast its motion (of g_t(·)) to make expectations about future prices (r_t...) and value v_t

Aggregate uncertainty : problems and potential solutions

Adding aggregate uncertainty

- ► What are the problems with aggregate risk?
 - Aggregate shocks will affects the shape of the distribution
 - Agents needs to forecast its motion (of g_t(·)) to make expectations about future prices (r_t...) and value v_t
 - Only in case of strategic complementarity coupling of HJB with KF.
 - The distribution $g(t, a, z_j)$, which is an infinite-dimensional object, becomes a state variable for each agent.
 - This changes for each path/history of aggregate shocks Z_t

Aggregate uncertainty : problems and potential solutions

Adding aggregate uncertainty

- ► What are the problems with aggregate risk?
 - Aggregate shocks will affects the shape of the distribution
 - Agents needs to forecast its motion (of g_t(·)) to make expectations about future prices (r_t...) and value v_t
 - Only in case of strategic complementarity coupling of HJB with KF.
 - The distribution $g(t, a, z_j)$, which is an infinite-dimensional object, becomes a state variable for each agent.
 - This changes for each path/history of aggregate shocks Z_t
- Examples :
 - AR(1)-change in agg. TFP $Z_t : dZ_t = \theta(\overline{Z} Z_t)dt + \sigma dB_t$
 - Could also consider :
 - Shock to credit constraint \underline{a} or to asset supply (gov^{*nt*} bond issuance)
 - Demand shocks/patience shock ρ
 - Change in idiosyncratic volatility $\sigma_z \equiv \mathbb{V}ar(z)$ or transition probas λ

Potential solutions :

- Potential solutions :
- 1. Consider unexpected shocks \Rightarrow MIT shocks

- Potential solutions :
- 1. Consider unexpected shocks \Rightarrow MIT shocks
- 2. Reduce the dimensionality of $g(\cdot) \Rightarrow$ Krusell-Smith

- Potential solutions :
- 1. Consider unexpected shocks \Rightarrow MIT shocks
- 2. Reduce the dimensionality of $g(\cdot) \Rightarrow$ Krusell-Smith
- 3. Simplify the problem (linearize it) \Rightarrow Perturbation à la Reiter

- Potential solutions :
- 1. Consider unexpected shocks \Rightarrow MIT shocks
- 2. Reduce the dimensionality of $g(\cdot) \Rightarrow$ Krusell-Smith
- 3. Simplify the problem (linearize it) \Rightarrow Perturbation à la Reiter
- 4. Combine 1 & 3 (linear combin. of MIT shocks) \Rightarrow BKM & ARS

- Potential solutions :
- 1. Consider unexpected shocks \Rightarrow MIT shocks
- 2. Reduce the dimensionality of $g(\cdot) \Rightarrow$ Krusell-Smith
- 3. Simplify the problem (linearize it) \Rightarrow Perturbation à la Reiter
- 4. Combine 1 & 3 (linear combin. of MIT shocks) \Rightarrow BKM & ARS
- 5. Discretize the aggregate shocks \Rightarrow Achdou-Bourany

- Potential solutions :
- 1. Consider unexpected shocks \Rightarrow MIT shocks
- 2. Reduce the dimensionality of $g(\cdot) \Rightarrow$ Krusell-Smith
- 3. Simplify the problem (linearize it) \Rightarrow Perturbation à la Reiter
- 4. Combine 1 & 3 (linear combin. of MIT shocks) \Rightarrow BKM & ARS
- 5. Discretize the aggregate shocks \Rightarrow Achdou-Bourany
- 6. Keep the infinite-dimensionality \Rightarrow math-literature/Lions-Lasry

- Potential solutions :
- 1. Consider unexpected shocks \Rightarrow MIT shocks
- 2. Reduce the dimensionality of $g(\cdot) \Rightarrow$ Krusell-Smith
- 3. Simplify the problem (linearize it) \Rightarrow Perturbation à la Reiter
- 4. Combine 1 & 3 (linear combin. of MIT shocks) \Rightarrow BKM & ARS
- 5. Discretize the aggregate shocks \Rightarrow Achdou-Bourany
- 6. Keep the infinite-dimensionality \Rightarrow math-literature/Lions-Lasry
- ► Today (hopefully) : will cover 1, 2 and 3

MIT shocks are unexpected shocks : zero-probability events

- MIT shocks are unexpected shocks : zero-probability events
 - Z_t is subject to a one-time shock on dB_t , i.e. normal $\mathcal{N}(0, \sigma)$
 - Then Z_t follows the OU-(AR(1)) drift process $dZ_t = \theta(\bar{Z} Z_t)dt$

MIT shocks are unexpected shocks : zero-probability events

- Z_t is subject to a one-time shock on dB_t , i.e. normal $\mathcal{N}(0, \sigma)$
- Then Z_t follows the OU-(AR(1)) drift process $dZ_t = \theta(\bar{Z} Z_t)dt$
- Main idea :
 - Agents do no anticipate this and hence do not draw expectations
 - $-v_0$ does not include the potentiality of such shocks
 - Once the shock is "revealed" there is no more uncertainty on the path of Z_t
 - \Rightarrow Certainty equivalence (CE) :
 - No influence of variance σ : only size of the shock matters
 - CE typically holds in Linear-Quadratic model with (additive) shocks : quadratic utility/objective fct. and linear transition/policy functions
 - (good approximation for more general models?)

- MIT shocks are unexpected shocks : zero-probability events
 - Z_t : One-time shock on dB_t then follows OU/AR(1) deterministically

Solution method :

▷ Almost no difference compared to deterministic case (cf recap here)

- MIT shocks are unexpected shocks : zero-probability events
 - Z_t : One-time shock on dB_t then follows OU/AR(1) deterministically

Solution method :

- ▷ Almost no difference compared to deterministic case (cf recap here)
- 1. Solve the HJB using backward induction : start from steady state v_T where *T* large (close to stationary)
- 2. Solve the KF forward : start from the "before-shock" steady state g_0
- Find the equilibrium fixed-point, by iterating on the entire *path* of prices {*r*_t}_{t∈[0,T]}
- Method most commonly used as a starting point
 - Certainty equivalence and no anticipation
 - Often implies small GE effects (little price effects)

- ► Krusell & Smith (1998)
 - Income & Wealth Heterogeneity in the Macroeconomy, Journal of Pol. Econ.
 - over 2000 cites, a lot for a technical/computational econ paper !

- Krusell & Smith (1998)
 - Income & Wealth Heterogeneity in the Macroeconomy, Journal of Pol. Econ.
 - over 2000 cites, a lot for a technical/computational econ paper !

Main idea :

- Reduce the dimensionality of the problem :
- Dynamics of the infinite dimensional g(t,a,zj) usually governed by the Kolmogorov Forward – will be simplified :
- Agents perceive the law of motion to be log-linear in the aggregate variable
- Only consider the first moment of g, i.e.

$$K_t \equiv S_t(r_t) = \sum_j \int_a a g(t, da, z_j)$$

Thomas Bourany

► The agents take their decision (in HJB) by making expectation about the future path of interest rate {r_t}_{t∈[0,T]}, which depends on KF :

$$\partial_t g(t,a,z_j) = H(g_t, Z_t, dZ_t) \qquad \forall (t,a,z_j)$$

► The agents take their decision (in HJB) by making expectation about the future path of interest rate {r_t}_{t∈[0,T]}, which depends on KF :

$$\partial_t g(t,a,z_j) = H(g_t, Z_t, dZ_t) \qquad \forall (t,a,z_j)$$

Krusell-Smith's method :

- Bounded-rationality : agents do not anticipate the full complexity of this law of motion / KF
- Replace $H(g_t, Z_t, dZ_t)$, function of g by \widehat{H} a log linear function in a finite set of moment $m = (m_1, \dots, m_l)$
- In practice, keep only the first moment $m_1 \equiv K \equiv S(r)$

$$d\log K_t = a(Z_t) dt + b(Z_t) \log K_t dt$$

► The agents take their decision (in HJB) by making expectation about the future path of interest rate {r_t}_{t∈[0,T]}, which depends on KF :

$$\partial_t g(t,a,z_j) = H(g_t, Z_t, dZ_t) \qquad \forall (t,a,z_j)$$

Krusell-Smith's method :

- Bounded-rationality : agents do not anticipate the full complexity of this law of motion / KF
- Replace $H(g_t, Z_t, dZ_t)$, function of g by \hat{H} a log linear function in a finite set of moment $m = (m_1, \dots, m_l)$
- In practice, keep only the first moment $m_1 \equiv K \equiv S(r)$

$$d\log K_t = a(Z_t) dt + b(Z_t) \log K_t dt$$

- Why? for such model, the first moment is enough!
- \Rightarrow Phenomenon called approximate aggregation

Thomas Bourany

Krusell-Smith Algorithm – Approximate aggregation

- Phenomenon called approximate aggregation :
 - Keeping the first moment $m_1 \equiv K_t = \sum_j \int_a a g(t, da, z_j)$ is enough

Krusell-Smith Algorithm – Approximate aggregation

Phenomenon called approximate aggregation :

- Keeping the first moment $m_1 \equiv K_t = \sum_j \int_a a g(t, da, z_j)$ is enough
- Compute the value function $v(t,a,z_j,K)$
 - Value funct^o iteration on v(a,K) & approx^{ion} outside grid (cubic spline)
 - Given "perceived" log-linear law of motion of \widehat{K}_t
 - Monte Carlo on the employment status (5,000 agents and 10,000 periods)
- Accuracy measure?
 - Compare the aggregate K given all the decision of agents $s(t, a, z_j, K)$
 - Regress future aggregate capital on its past values (using these 10,000 values)
 - The "reality" K_t respects the perceived Law of Motion \widehat{K}_t
 - $R^2 > 0.9999$ and $\mathbb{V}ar(\varepsilon) < 0.004\%$ with $\varepsilon = K_t \widehat{K}_t$

Krusell-Smith Algorithm – Extensions and issues

Simplifications in Krusell-Smith :

Krusell-Smith Algorithm – Extensions and issues

- Simplifications in Krusell-Smith :
 - 1. Take only the first moment :
 - Can be checked in adding more moments (m_2, \ldots, m_l) in \widehat{H} and regressing K_t on \widehat{K}_t
 - Usually \tilde{R}^2 is still very high for most models.

Krusell-Smith Algorithm – Extensions and issues

Simplifications in Krusell-Smith :

- 1. Take only the first moment :
 - Can be checked in adding more moments (m_2, \ldots, m_l) in \widehat{H} and regressing K_t on \widehat{K}_t
 - Usually R^2 is still very high for most models.
- 2. Take a (log-) linear law of motion for these moments
 - Can take non-linear dynamics/ flexible functional form for \widehat{H}
 - Fernández-Villaverde, Hurtado, Nuño (2019, WP) use a non-linear approximation for \hat{H} :
 - Agents infer/"learn" a non-linear \widehat{H} using machine learning techniques (neural network)

Krusell-Smith Algorithm – Extensions and issues

Simplifications in Krusell-Smith :

- 1. Take only the first moment :
 - Can be checked in adding more moments (m_2, \ldots, m_l) in \widehat{H} and regressing K_t on \widehat{K}_t
 - Usually R^2 is still very high for most models.
- 2. Take a (log-) linear law of motion for these moments
 - Can take non-linear dynamics/ flexible functional form for \widehat{H}
 - Fernández-Villaverde, Hurtado, Nuño (2019, WP) use a non-linear approximation for \hat{H} :
 - Agents infer/"learn" a non-linear \hat{H} using machine learning techniques (neural network)
- One (main !) problem remains :
 - Can we hope that this algorithm does not create "self-fulfilling" expectations?
 - The agents may act in a linear / approximate-aggregated way because they expected the others to do so?

Thomas Bourany

Perturbation methods :

- A second literature rely on linearization and perturbation methods
 - For HA models : Reiter (2009)
 - Solving heterogeneous agents models by projection and perturbation, JEDC

Perturbation methods :

- A second literature rely on linearization and perturbation methods
 - For HA models : Reiter (2009)
 - Solving heterogeneous agents models by projection and perturbation, JEDC
 - Follows a large anterior literature
 - DSGE lit. (RBC/medium-scale NK), Schmitt-Grohe Uribe (2004)
 - Used heavily for estimation (MCMC), because very fast
 - Large literature following this :
 - Reiter (2010), Den Haan (2010), Algan-Allais-Den Haan (2008)
 - Winberry (2018) Quantit. Econ., Mongey-Williams (2017) JMP
 - Ahn, Kaplan, Moll, Winberry and Wolf (2017) NBER Macro Annual

Perturbation methods :

- A second literature rely on linearization and perturbation methods
 - For HA models : Reiter (2009)
 - Solving heterogeneous agents models by projection and perturbation, JEDC
 - Follows a large anterior literature
 - DSGE lit. (RBC/medium-scale NK), Schmitt-Grohe Uribe (2004)
 - Used heavily for estimation (MCMC), because very fast
 - Large literature following this :
 - Reiter (2010), Den Haan (2010), Algan-Allais-Den Haan (2008)
 - Winberry (2018) Quantit. Econ., Mongey-Williams (2017) JMP
 - Ahn, Kaplan, Moll, Winberry and Wolf (2017) NBER Macro Annual

Main idea :

- Linearize the model in the aggregate shock Z_t
 - Linear perturbation in Z_t around the stationary equilibrium
 - but keep the non-linearity in idiosyncratic shocks
 - Large linear system : nb of states \approx nb of gridpoints
- Projection to simplify the large system and go faster

Thomas Bourany

• Consider the equilibrium relations as the following system :

- HJB, KF, Def of prices, Mkt clearing, Dynamics of agg. shocks
- States : $\Theta_t = (v_t, g_t, p_t)$, agg. shocks Z_t
- Could have a formulation with present/future state/control var. here

 $\mathbb{E}_t[d\Theta_t] = F(\Theta_t, dZ_t, Z_t)$

• Consider the equilibrium relations as the following system :

- HJB, KF, Def of prices, Mkt clearing, Dynamics of agg. shocks
- States : $\Theta_t = (v_t, g_t, p_t)$, agg. shocks Z_t
- Could have a formulation with present/future state/control var. here

$$\mathbb{E}_t[d\Theta_t] = F(\Theta_t, dZ_t, Z_t)$$

Steps :

1. Solve the stationary system :

$$\mathbb{E}_t[d\overline{\Theta}] = F(\overline{\Theta}, 0, \overline{Z})$$

• Consider the equilibrium relations as the following system :

- HJB, KF, Def of prices, Mkt clearing, Dynamics of agg. shocks
- States : $\Theta_t = (v_t, g_t, p_t)$, agg. shocks Z_t
- Could have a formulation with present/future state/control var. here

$$\mathbb{E}_t[d\Theta_t] = F(\Theta_t, dZ_t, Z_t)$$

Steps :

1. Solve the stationary system :

$$\mathbb{E}_t[d\overline{\Theta}] = F(\overline{\Theta}, 0, \overline{Z})$$

2. Linearize the system around it, perturbing in the agg. shock :

 $\mathbb{E}_t[d\widehat{\Theta}_t] = \mathcal{L}F := \partial_{\Theta}F(\overline{\Theta}, 0, \overline{Z}) \cdot \widehat{\Theta}_t dt + \partial_Z F_Z(\overline{\Theta}, 0, \overline{Z}) \cdot dZ$

• Consider the equilibrium relations as the following system :

- HJB, KF, Def of prices, Mkt clearing, Dynamics of agg. shocks
- States : $\Theta_t = (v_t, g_t, p_t)$, agg. shocks Z_t
- Could have a formulation with present/future state/control var. here

$$\mathbb{E}_t[d\Theta_t] = F(\Theta_t, dZ_t, Z_t)$$

Steps :

1. Solve the stationary system :

$$\mathbb{E}_t[d\overline{\Theta}] = F(\overline{\Theta}, 0, \overline{Z})$$

2. Linearize the system around it, perturbing in the agg. shock :

$$\mathbb{E}_t[d\widehat{\Theta}_t] = \mathcal{L}F := \partial_{\Theta}F(\overline{\Theta}, 0, \overline{Z}) \cdot \widehat{\Theta}_t dt + \partial_Z F_Z(\overline{\Theta}, 0, \overline{Z}) \cdot dZ$$

3. Reduce the state-space, with projection : basis x for Θ

$$\Theta_t \approx X = \sum_j \gamma_{jt} x_j \qquad \Rightarrow \quad \mathcal{L}F(\overline{\Theta}, \overline{Z}) \cdot [\widehat{\Theta}_t dt, dZ] \approx \widehat{\mathcal{L}F}(X, \overline{Z}) \cdot [\widehat{X}_t dt, dZ]$$

Thomas Bourany

HA models w/ agg. shocks

• What is lost due to linearization, and what is preserved?

- ▶ What is lost due to linearization, and what is preserved?
 - 1. Certainty equivalence in aggregate uncertainty :
 - No influence of variance σ : only size of the shock Z_t matters
 - Agents do not "change" their decisions with aggregate uncertainty
 - Perturbation methods (at least in first order) not suited for asset pricing/portfolio choice models
 - However, agents still account for idiosyncratic variance : valid method to study uncertainty shocks (c.f. Bloom (2014))
 - Break certainty equivalence with higher order perturbation (2nd, 4th)

- ▶ What is lost due to linearization, and what is preserved?
 - 1. Certainty equivalence in aggregate uncertainty :
 - No influence of variance σ : only size of the shock Z_t matters
 - Agents do not "change" their decisions with aggregate uncertainty
 - Perturbation methods (at least in first order) not suited for asset pricing/portfolio choice models
 - However, agents still account for idiosyncratic variance : valid method to study uncertainty shocks (c.f. Bloom (2014))
 - Break certainty equivalence with higher order perturbation (2nd, 4th)
 - 2. State dependence, in particular of the aggregate IRF to the distribution g_0

- ▶ What is lost due to linearization, and what is preserved?
 - 1. Certainty equivalence in aggregate uncertainty :
 - No influence of variance σ : only size of the shock Z_t matters
 - Agents do not "change" their decisions with aggregate uncertainty
 - Perturbation methods (at least in first order) not suited for asset pricing/portfolio choice models
 - However, agents still account for idiosyncratic variance : valid method to study uncertainty shocks (c.f. Bloom (2014))
 - Break certainty equivalence with higher order perturbation (2nd, 4th)
 - 2. State dependence, in particular of the aggregate IRF to the distribution g_0
 - 3. Path dependence, different histories of shocks $\{Z_t\}_{t \in [0,T]}$ won't have the same final effects on aggregate K_T or C_T

- What is lost due to linearization, and what is preserved?
 - 1. Certainty equivalence in aggregate uncertainty :
 - No influence of variance σ : only size of the shock Z_t matters
 - Agents do not "change" their decisions with aggregate uncertainty
 - Perturbation methods (at least in first order) not suited for asset pricing/portfolio choice models
 - However, agents still account for idiosyncratic variance : valid method to study uncertainty shocks (c.f. Bloom (2014))
 - Break certainty equivalence with higher order perturbation (2nd, 4th)
 - 2. State dependence, in particular of the aggregate IRF to the distribution g_0
 - 3. Path dependence, different histories of shocks $\{Z_t\}_{t \in [0,T]}$ won't have the same final effects on aggregate K_T or C_T
 - 4. No sign and size dependence : linearity of the system in Z_t make the response of a λZ_0 shocks λ time larger than a Z_0 -sized shock.

- Winberry (2018)
 - Use the technique developed in Algan-Allais-Den Haan (2008) to approximate the distrib. g(a, z) with a parametric fct^{al} form :

$$\log g(a,z) \approx \sum_{k}^{n_g} \sum_{\ell}^{k} \gamma_k^{\ell} (z-m_1^z)^{k-\ell} (\log a - m_1^a)^{\ell}$$

- Reduce the infinite dimensional object to a finite dim. one : n_g

- Winberry (2018)
 - Use the technique developed in Algan-Allais-Den Haan (2008) to approximate the distrib. g(a, z) with a parametric fct^{al} form :

$$\log g(a,z) \approx \sum_{k}^{n_g} \sum_{\ell}^{k} \gamma_k^{\ell} (z-m_1^z)^{k-\ell} (\log a - m_1^a)^{\ell}$$

- Reduce the infinite dimensional object to a finite dim. one : n_g
- Can compute the law of motion (replace the KF)
- Use the same perturbation methods as in Reiter
- Bayesian estimation of parameters

- ▶ Winberry (2018)
 - Use the technique developed in Algan-Allais-Den Haan (2008) to approximate the distrib. g(a, z) with a parametric fct^{al} form :

$$\log g(a,z) \approx \sum_{k}^{n_g} \sum_{\ell}^{k} \gamma_k^{\ell} (z-m_1^z)^{k-\ell} (\log a - m_1^a)^{\ell}$$

- Reduce the infinite dimensional object to a finite dim. one : n_g
- Can compute the law of motion (replace the KF)
- Use the same perturbation methods as in Reiter
- Bayesian estimation of parameters
- Mongey and Williams (2017)
 - Use Reiter's algorithm and estimate it with aggregates time series and cross-sectional micro data :
 - Bayesian estimation and variance decomposition (4 different shocks)

Ahn, Kaplan, Moll, Winberry and Wolf (2018) combines :

Ahn, Kaplan, Moll, Winberry and Wolf (2018) combines :

- 1. Continuous-time à la Achdou, Han, Lasry, Lions and Moll (2017)
 - Large speed gain for computing stationary equilibrium

- Ahn, Kaplan, Moll, Winberry and Wolf (2018) combines :
 - 1. Continuous-time à la Achdou, Han, Lasry, Lions and Moll (2017)
 - Large speed gain for computing stationary equilibrium
 - 2. Algorithm à la Reiter (2009) for linearization and perturbation w.r.t. aggregate shocks
 - Automatic differentiation to linearize the system (more accurate than finite diff^o. / faster than symbolic diff^o)

Ahn, Kaplan, Moll, Winberry and Wolf (2018) combines :

- 1. Continuous-time à la Achdou, Han, Lasry, Lions and Moll (2017)
 - Large speed gain for computing stationary equilibrium
- 2. Algorithm à la Reiter (2009) for linearization and perturbation w.r.t. aggregate shocks
 - Automatic differentiation to linearize the system (more accurate than finite diff^o. / faster than symbolic diff^o)
- 3. Clever dimensionality reduction (projection for *g* and *v* on a time invariant basis *x*)
 - More than tenfold speed for solving the linear system and IRFs

Large literature using/developing these techniques for estimation...

Combining Linearization and MIT shocks : BKM

Boppart, Krusell and Mitman (2018)

- Exploiting MIT shocks in heterogeneous-agent economies : the impulse response as a numerical derivative, JEDC
- Recent generalization by Auclert et al. (2019) and recent work by Kaplan-Moll-Violante
- Main idea :
 - Combining non-linearity of responses to MIT shocks
 - With linearity assumption to combine multiple shocks
 - IRF of an MIT shock is a derivative of the system :

 \Rightarrow we "just" need to "compute" it once !

Combining Linearization and MIT shocks : BKM

More details on BKM

- Sequential representation of heterogeneous agents models :
- Express aggregate variables K_t (or C_t) as a fet of past shocks on Z_t
 - Sequence form :

$$dK_t = \mathcal{K}(\{dZ_s\}_{s\leq t}) \approx \mathcal{K}(dZ_t, dZ_{t-1}, \dots)$$

- vs. Recursive form : $K_t = \widetilde{\mathcal{K}}(\Theta_t)$ with Θ_t states var. (v_t, g_t, p_t)

Linearity assumption of the system :

$$dK_{t} = \int_{0}^{t} \partial_{dZ_{s}} \mathcal{K}(0) dZ_{s}$$

$$\approx \underbrace{\mathcal{K}(\varepsilon, 0, 0, \dots)}_{\substack{IRF \text{to a 1-time}\\ \varepsilon-\text{sized MIT shock}}} dZ_{t} + \mathcal{K}(0, \varepsilon, 0, \dots) dZ_{t-1} + \dots$$

Combining Linearization and MIT shocks : BKM

- Solution method in practice :
 - 1. Simulate the IRF to a small (sized ε) MIT shocks :
 - Shock at date *s* gives IRF : $dK_t^s = \mathcal{K}(0, \ldots, \varepsilon, 0, \ldots)$
 - Such path represent the non-linear derivative $\partial_{dZ_x} \mathcal{K}(0)$ of the system to a shock
 - 2. Simulate a sequence of shocks $(\{dZ_s\}_{s \leq t})$
 - 3. Sum the IRF for different shock, rescaling by the size of the shock :

$$dK_t = \int_0^t \partial_{dZ_s} \mathcal{K}(0) dZ_s \approx \sum_s^t \frac{1}{\varepsilon} dK_t^s dZ_s$$

– Possibility of testing the linearity assumption by changing the size/sign of ε

- Auclert, Bardóczy, Rognlie and Straub (2019)'s SHADE :
 - Equilibrium relations as the system :

 $H(K_t, Z_t) = 0$

• Linearizing :

$$H_K(\overline{K},\overline{Z})dK_t + H_Z(\overline{K},\overline{Z})dZ_t = 0$$

• Path of capital as function of past shocks :

$$dK_t = \underbrace{-[\overline{H}_K]^{-1}\overline{H}_Z}_{\equiv \mathcal{K}_{dZ}(0)} dZ_t$$

- Auclert, Bardóczy, Rognlie and Straub (2019)'s SHADE :
 - Equilibrium relations as the system :

 $H(K_t, Z_t) = 0$

• Linearizing :

$$H_K(\overline{K},\overline{Z})dK_t + H_Z(\overline{K},\overline{Z})dZ_t = 0$$

• Path of capital as function of past shocks :

$$dK_t = \underbrace{-[\overline{H}_K]^{-1}\overline{H}_Z}_{\equiv \mathcal{K}_{dZ}(0)} dZ_t$$

- \overline{H}_K and \overline{H}_Z called "sequence space Jacobians"
 - Need to be computed once
 - Sufficient statistics : all we need, to know the agg. system response
 - Fast : used in estimation (of shock process dZ_s)

Thomas Bourany

HA models w/ agg. shocks

► These "sequence space Jacobians" :

- Are the sufficient statistics :
 - $-\overline{H}_K, \overline{H}_Z$ and $\mathcal{K}_{dZ} \equiv -[\overline{H}_K]^{-1}\overline{H}_Z$ as a $T \times T$ matrix
 - IRF for a path $\{dZ_t\}_t$: \approx derivative of system in response to shocks
 - "News" of different horizons s shocks : s-th columns of \mathcal{K}_{dZ}
 - Include "under the hood" the underlying heterogeneity

► These "sequence space Jacobians" :

- Are the sufficient statistics :
 - $-\overline{H}_K, \overline{H}_Z$ and $\mathcal{K}_{dZ} \equiv -[\overline{H}_K]^{-1}\overline{H}_Z$ as a $T \times T$ matrix
 - IRF for a path $\{dZ_t\}_t : \approx$ derivative of system in response to shocks
 - "News" of different horizons *s* shocks : *s*-th columns of \mathcal{K}_{dZ}
 - Include "under the hood" the underlying heterogeneity
- Methods to compute it :
 - Direct methods (finite difference)
 - Fake news algorithm : linearize the underlying heterogeneous agents model and avoid recomputing several of the matrices

► These "sequence space Jacobians" :

- Are the sufficient statistics :
 - $-\overline{H}_K, \overline{H}_Z$ and $\mathcal{K}_{dZ} \equiv -[\overline{H}_K]^{-1}\overline{H}_Z$ as a $T \times T$ matrix
 - IRF for a path $\{dZ_t\}_t : \approx$ derivative of system in response to shocks
 - "News" of different horizons s shocks : s-th columns of \mathcal{K}_{dZ}
 - Include "under the hood" the underlying heterogeneity
- Methods to compute it :
 - Direct methods (finite difference)
 - *Fake news* algorithm : linearize the underlying heterogeneous agents model and avoid recomputing several of the matrices

Substantial speed gains :

- Linearization and no need to recompute the Jacobian
- Lots of clever methods :
 - Directed acyclic graph to exploit the sparsity of system : dimension reduction by composition of Jacobians along the blocks of this DAG
 - Likelihood-based estimation : feasible now for even large models

Other solution methods and optimal policies

- Linearization techniques to handle optimal policies/Ramsey plans
 - Bhandari, Evans, Golosov and Sargent (2018)
 - Linearization w.r.t all the variables/distribution (Fréchet derivative)
 - Comp. eq. vs. Constrained Efficiency vs. Pareto optimal? Nuño (2017) and Nuño-Moll (2017)
 - "Major & minor agents" : Nuño and Thomas (2016)
 - \Rightarrow Léo's presentation next week !
- Other methods involving "reduced heterogeneity" :
 - Ways to "summarize" heterogeneity : Ragot (2018)
 - History Representation of HA models : summarize the different paths of idiosyncratic shocks with "representative histories"
 - Possible to determine optimal fiscal-monetary policy : Le Grand, Ragot et al. (2017)

Achdou-Bourany (2018)

• Master thesis under supervision of Y. Achdou

Achdou-Bourany (2018)

- Master thesis under supervision of Y. Achdou
- Main idea : approximate the process for the Z_t by a finite number of "simple" shocks :
 - Every ΔT (deterministic times), Z_t jumps stochastically to one of K outcomes
 - Repeat this : a finite *M* number of "wave" of uncertainty
 - This way, you can build a tree of K^M paths of Z_t with deterministic branches separated by stochastic shocks
 - Taking $\Delta T \rightarrow 0$, you can approximate any process (e.g. Donsker's theorem for Brownian motion)
 - Need to link the branches together in an appropriate way

• Grafting branches :

- On each branch (between each shock), compute the evolution of the system : HJB and KF : $v(a,z_j,\tilde{z})$ and $g(a,z_j,\tilde{z})$
- ► To account for future and past shocks?
 - \Rightarrow use boundary conditions of the PDEs !

• Grafting branches :

- On each branch (between each shock), compute the evolution of the system : HJB and KF : v(a,zj, Ž) and g(a,zj, Ž)
- ► To account for future and past shocks?
 - \Rightarrow use boundary conditions of the PDEs!
 - t_m^- time before revelation of the shock $(Z_{t_m^-} = Z_m)$

 $-t_m^+$: time when shocks hits ($Z_{t_m^+} = Z_{m+1}$ take K values)

$$v(a,z_j,Z_m) = \sum_{k|Z_{m+1}=Z_k} \mathbb{P}(Z_{m+1}|Z_m) v(a,z_j,Z_{m+1})$$

$$g(a,z_j,Z_m) = g(a,z_j,Z_{m+1})$$

- Agents are forward looking, form expectations over the different future branches (paths of Z_t)
- Continuity of $g(\cdot)$ in time *t*

• Grafting branches :

- On each branch (between each shock), compute the evolution of the system : HJB and KF : $v(a,z_j,\tilde{z})$ and $g(a,z_j,\tilde{z})$
- ► To account for future and past shocks?
 - \Rightarrow use boundary conditions of the PDEs!
 - t_m^- time before revelation of the shock $(Z_{t_m^-} = Z_m)$

 $-t_m^+$: time when shocks hits ($Z_{t_m^+} = Z_{m+1}$ take K values)

$$v(a,z_j,Z_m) = \sum_{k|Z_{m+1}=Z_k} \mathbb{P}(Z_{m+1}|Z_m) v(a,z_j,Z_{m+1})$$

$$g(a,z_j,Z_m) = g(a,z_j,Z_{m+1})$$

- Agents are forward looking, form expectations over the different future branches (paths of Z_t)
- Continuity of $g(\cdot)$ in time t
- Loop to find eq. fixed point on the entire tree (all branches !)
 - Problem : computationally heavy/slow !

Thomas Bourany

Existence & Uniqueness - Mathematical literature on MFG

- \Rightarrow Heterogeneous agents \equiv Mean Field Games (MFG)
- Cardaliaguet, Delarue, Lasry and Lions (2019)
 - Master equation in infinite-dimension :
 - Value $U_{(t,a,z_j,Z,g)} = v_{(t,a,z_j,Z)}$ definite along the characteristics of the system (v, g) for the dynamics of Z_t .
 - Equation (& U and $D_m U$) in Wasserstein space $g \in \mathcal{P}([0,T] \times [\underline{a}, \infty], [\underline{Z}, \overline{Z}])$
- Carmona, Delarue and Lacker (2016)
 - Stochastic Partial Diff. equations (SPDE) :
 - Both HJB & KF equations become stochastic with aggreg. shocks Z_t
- Carmona and Delarue (2018)
 - Forward-Backward Stochastic Diff. equations (FBSDE) :
 - Stochastic Pontryagin Maximum Principle (Hamiltonian !)
 - Forward states variables K_t , g_t and Backward costates $\approx v_t$
- ⇒ Different approaches summarized in sect^o 3 of my master thesis here : MFG literature exploding in the recent years !

Thomas Bourany

HA models w/ agg. shocks

Conclusion

- Challenging problem and many different methods
- ► No perfect solution (un)fortunately?
 - Every algorithm with its own way of bypassing difficulties
 - e.g. trade-off : Linearity/simplification for "speed" vs. Role for uncertainty/shape of distribution for "accuracy"
- Still lack of theoretical results on the strength of various methods
 - Global methods vs. Local (higher order) perturbation
 - Could compare them for various (closed-form) models
- Large gains despite fixed cost of entering in this literature

Conclusion

- Challenging problem and many different methods
- ► No perfect solution (un)fortunately?
 - Every algorithm with its own way of bypassing difficulties
 - e.g. trade-off : Linearity/simplification for "speed" vs. Role for uncertainty/shape of distribution for "accuracy"
- Still lack of theoretical results on the strength of various methods
 - Global methods vs. Local (higher order) perturbation
 - Could compare them for various (closed-form) models
- Large gains despite fixed cost of entering in this literature
- THANK YOU FOR YOUR ATTENTION !

HA models w/ agg. shocks

- Achdou, Yves, Fabio Camilli and Italo Capuzzo-Dolcetta (2013), 'Mean field games : convergence of a finite difference method', *SIAM Journal on Numerical Analysis* **51**(5), 2585–2612.
- Achdou, Yves, Francisco J Buera, Jean-Michel Lasry, Pierre-Louis Lions and Benjamin Moll (2014), 'Partial differential equation models in macroeconomics', *Philosophical Transactions of* the Royal Society A : Mathematical, Physical and Engineering Sciences **372**(2028), 20130397.
- Achdou, Yves and Italo Capuzzo-Dolcetta (2010), 'Mean field games : Numerical methods', *SIAM Journal on Numerical Analysis* **48**(3), 1136–1162.
- Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions and Benjamin Moll (2017), 'Income and wealth distribution in macroeconomics : A continuous-time approach', *R & R*, *Review of Economic Studies* (NBER 23732).
- Ahn, SeHyoun, Greg Kaplan, Benjamin Moll, Thomas Winberry and Christian Wolf (2018), 'When inequality matters for macro and macro matters for inequality', *NBER Macroeconomics annual* 32(1), 1–75.
- Aiyagari, S Rao (1994), 'Uninsured idiosyncratic risk and aggregate saving', *The Quarterly Journal of Economics* 109(3), 659–684.
- Algan, Yann, Olivier Allais and Wouter J Den Haan (2008), 'Solving heterogeneous-agent models with parameterized cross-sectional distributions', *Journal of Economic Dynamics and Control* 32(3), 875–908.
- Algan, Yann, Olivier Allais, Wouter J Den Haan and Pontus Rendahl (2014), 'Solving and simulating models with heterogeneous agents and aggregate uncertainty', **3**, 277–324.
- Aruoba, S Borağan, Jesus Fernandez-Villaverde and Juan F Rubio-Ramirez (2006), 'Comparing solution methods for dynamic equilibrium economies', *Journal of Economic dynamics and Control* **30**(12), 2477–2508.

- Auclert, Adrien (2019), 'Monetary policy and the redistribution channel', *American Economic Review* **109**(6), 2333–67.
- Auclert, Adrien, Bence Bardóczy, Matthew Rognlie and Ludwig Straub (2019), Using the sequence-space jacobian to solve and estimate heterogeneous-agent models, Technical report, National Bureau of Economic Research.
- Bewley, Truman (1986), 'Stationary monetary equilibrium with a continuum of independently fluctuating consumers', *Contributions to mathematical economics in honor of Gérard Debreu* **79**.
- Bhandari, Anmol, David Evans, Mikhail Golosov and Thomas J Sargent (2018), 'Inequality, business cycles, and monetary-fiscal policy'.
- Bloom, Nicholas (2014), 'Fluctuations in uncertainty', *Journal of Economic Perspectives* **28**(2), 153–76.
- Boppart, Timo, Per Krusell and Kurt Mitman (2018), 'Exploiting mit shocks in heterogeneous-agent economies : the impulse response as a numerical derivative', *Journal of Economic Dynamics and Control* 89, 68–92.
- Bourany, Thomas (2018), 'Wealth distribution over the business cycle : A mean-field game with common noise', *Master Thesis, Sorbonne Paris Diderot, Applied Mathematics Departments (LJLL)*.
- Brunnermeier, Markus K, Thomas M Eisenbach and Yuliy Sannikov (2012), Macroeconomics with financial frictions : A survey, Technical report, National Bureau of Economic Research.
- Brunnermeier, Markus K and Yuliy Sannikov (2014), 'A macroeconomic model with a financial sector', *American Economic Review* **104**(2), 379–421.

Thomas Bourany

- Capuzzo-Dolcetta, Italo and P-L Lions (1990), 'Hamilton-jacobi equations with state constraints', *Transactions of the American Mathematical Society* **318**(2), 643–683.
- Cardaliaguet, Pierre (2013/2018), 'Notes on mean field games.', Lecture notes from P.L. Lions' lectures at College de France and P. Cardaliaguet at Paris Dauphine.
- Cardaliaguet, Pierre, François Delarue, Jean-Michel Lasry and Pierre-Louis Lions (2017), 'The master equation and the convergence problem in mean field games', *arXiv preprint arXiv :1509.02505*.
- Cardaliaguet, Pierre, François Delarue, Jean-Michel Lasry and Pierre-Louis Lions (2019), *The Master Equation and the Convergence Problem in Mean Field Games :(AMS-201)*, Vol. 381, Princeton University Press.
- Carmona, René and François Delarue (2018), Probabilistic Theory of Mean Field Games with Applications I-II, Springer.
- Carmona, René, François Delarue and Daniel Lacker (2016), 'Mean field games with common noise', *The Annals of Probability* 44(6), 3740–3803.
- Christiano, Lawrence J, Martin Eichenbaum and Charles L Evans (2005), 'Nominal rigidities and the dynamic effects of a shock to monetary policy', *Journal of political Economy* **113**(1), 1–45.
- Clementi, Gian Luca and Berardino Palazzo (2016), 'Entry, exit, firm dynamics, and aggregate fluctuations', *American Economic Journal : Macroeconomics* **8**(3), 1–41.
- Den Haan, Wouter J (1997), 'Solving dynamic models with aggregate shocks and heterogeneous agents', *Macroeconomic dynamics* 1(2), 355–386.
- Fernández-Villaverde, Jesús and Juan F Rubio-Ramírez (2007), 'Estimating macroeconomic models : A likelihood approach', *The Review of Economic Studies* 74(4), 1059–1087.

Thomas Bourany

HA models w/ agg. shocks

- Fernández-Villaverde, Jesús, Juan Francisco Rubio-Ramirez and Frank Schorfheide (2016), 'Solution and estimation methods for dsge models', **2**, 527–724.
- Fernández-Villaverde, Jesús and Oren Levintal (2018), 'Solution methods for models with rare disasters', *Quantitative Economics* **9**(2), 903–944.
- Fernández-Villaverde, Jesús, Samuel Hurtado and Galo Nuno (2019), 'Financial frictions and the wealth distribution'.
- He, Zhiguo and Arvind Krishnamurthy (2013), 'Intermediary asset pricing', American Economic Review 103(2), 732–70.
- Hopenhayn, Hugo A (1992), 'Entry, exit, and firm dynamics in long run equilibrium', Econometrica : Journal of the Econometric Society pp. 1127–1150.
- Hopenhayn, Hugo and Richard Rogerson (1993), 'Job turnover and policy evaluation : A general equilibrium analysis', *Journal of political Economy* **101**(5), 915–938.
- Jermann, Urban and Vincenzo Quadrini (2012), 'Macroeconomic effects of financial shocks', *The American Economic Review* **102**(1), 238–271.
- Kaplan, Greg, Benjamin Moll and Giovanni L Violante (2018), 'Monetary policy according to hank', American Economic Review 108(3), 697–743.
- Kaplan, Greg and Giovanni L Violante (2018), 'Microeconomic heterogeneity and macroeconomic shocks', *Journal of Economic Perspectives* 32(3), 167–94.
- Khan, Aubhik and Julia K. Thomas (2008), 'Idiosyncratic shocks and the role of nonconvexities in plant and aggregate investment dynamics', *Econometrica* **76**(2), 395–436.

Thomas Bourany

- Khan, Aubhik and Julia K Thomas (2013), 'Credit shocks and aggregate fluctuations in an economy with production heterogeneity', *Journal of Political Economy* **121**(6), 1055–1107.
- Krusell, Per and Anthony A Smith, Jr (1998), 'Income and wealth heterogeneity in the macroeconomy', *Journal of political Economy* 106(5), 867–896.
- Le Grand, François, Xavier Ragot et al. (2017), 'Optimal fiscal policy with heterogeneous agents and aggregate shocks', *Document de travail*.
- Levintal, Oren (2017), 'Fifth-order perturbation solution to dsge models', *Journal of Economic Dynamics and Control* **80**, 1–16.
- Levintal, Oren (2018), 'Taylor projection : A new solution method for dynamic general equilibrium models', *International Economic Review* **59**(3), 1345–1373.
- McKay, Alisdair, Emi Nakamura and Jón Steinsson (2016), 'The power of forward guidance revisited', *American Economic Review* **106**(10), 3133–58.
- Mongey, Simon and Jerome Williams (2017), 'Firm dispersion and business cycles : Estimating aggregate shocks using panel data', *Manuscript, New York University*.
- Nuño, Galo (2017), 'Optimal social policies in mean field games', *Applied Mathematics & Optimization* **76**(1), 29–57.
- Nuño, Galo and Carlos Thomas (2016), 'Optimal monetary policy with heterogeneous agents'.
- Ragot, Xavier (2018), 'Heterogeneous agents in the macroeconomy : reduced-heterogeneity representations', **4**, 215–253.
- Reiter, Michael (2009), 'Solving heterogeneous-agent models by projection and perturbation', *Journal of Economic Dynamics and Control* **33**(3), 649–665.

Thomas Bourany

- Reiter, Michael (2010), 'Solving the incomplete markets model with aggregate uncertainty by backward induction', *Journal of Economic Dynamics and Control* **34**(1), 28–35.
- Reiter, Michael (2018), 'Comments on' exploiting mit shocks in heterogeneous-agent economies : The impulse response as a numerical derivative' by t. boppart, p. krusell and k. mitman', *Journal of Economic Dynamics and Control* **89**, 93–99.
- Schmitt-Grohé, Stephanie and Martın Uribe (2004), 'Solving dynamic general equilibrium models using a second-order approximation to the policy function', *Journal of economic dynamics and control* 28(4), 755–775.
- Terry, Stephen J. (2017), 'Alternative methods for solving heterogeneous firm models', Journal of Money, Credit and Banking 49(6), 1081–1111.
- Vavra, Joseph (2013), 'Inflation Dynamics and Time-Varying Volatility : New Evidence and an Ss Interpretation *', *The Quarterly Journal of Economics* 129(1), 215–258.
- Winberry, Thomas (2016a), 'Lumpy investment, business cycles, and stimulus policy', *Revise and resubmit, American Economic Review*.
- Winberry, Thomas (2016b), 'A toolbox for solving and estimating heterogeneous agent macro models', *Forthcoming Quantitative Economics*.
- Young, Eric R (2010), 'Solving the incomplete markets model with aggregate uncertainty using the krusell–smith algorithm and non-stochastic simulations', *Journal of Economic Dynamics and Control* **34**(1), 36–41.

Thomas Bourany

Aiyagari model without aggregate risk - discrete time

► Household :

- Two states : wealth *a* and labor prod. *z*; control consumption : *c*
- Idiosyncratic fluctuation in *z* (Markov chain/AR(1) process)
- State constraint (no borrowing) $a_t \ge \underline{a}$
- Maximization :

$$\max_{c_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t) \qquad c_t + a_{t+1} = z_t w_t + r_t \left(1 + a_t\right)$$

• Neoclassical firms : $Y_t = Z_t K_t^{\alpha} z_{av}^{1-\alpha}$

- Interest rate : $r_t = \alpha Z_t K_t^{\alpha 1} z_{av}^{1 \alpha} \delta$ & wage $w_t = (1 \alpha) Z_t K^{\alpha} z_{av}^{-\alpha}$
- Capital demand $K_t(r) := \left(\frac{\alpha Z_t}{r_t + \delta}\right)^{\frac{1}{1-\alpha}} z_{av}$

Aiyagari model without aggregate risk – discrete time ► Equilibrium (recursive) relations :

Aiyagari model without aggregate risk – discrete time

- Equilibrium (recursive) relations :
 - A Bellman equation : backward in time How the agent value/decisions change when distribution is given

$$v_t(a, z) = \max_{c, a'} u(c) + \beta \mathbb{E} \big[v_{t+1}(a', z') \big| \sigma(z) \big]$$

s.t. $c + a' = z w_t + r_t (1+a) \quad a' \ge a \quad \Rightarrow \quad a'^* = \mathscr{A}(a, z)$

Back

Thomas Bourany

Aiyagari model without aggregate risk – discrete time

- Equilibrium (recursive) relations :
 - A Bellman equation : backward in time How the agent value/decisions change when distribution is given
 - ▷ A Law of Motion of the distribution : forward in time How the distribution changes, when agents control is given

$$v_t(a,z) = \max_{c,a'} u(c) + \beta \mathbb{E} \left[v_{t+1}(a',z') \middle| \sigma(z) \right]$$

s.t. $c+a' = zw_t + r_t (1+a) \quad a' \ge \underline{a} \quad \Rightarrow \quad a'^* = \mathscr{A}(a,z)$
 $\forall \widetilde{A} \subset [\underline{a},\infty) \qquad g_{t+1}(\widetilde{A},z') = \sum_z \pi_{z'|z} \int \mathbb{1} \{ \mathscr{A}(a,z) \in \widetilde{A} \} g_t(da,z)$

Back

١

Aiyagari model without aggregate risk – discrete time

• Equilibrium (recursive) relations :

- A Bellman equation : backward in time How the agent value/decisions change when distribution is given
- ▷ A Law of Motion of the distribution : forward in time How the distribution changes, when agents control is given
- ▷ These two relations are *coupled* : Through firm pricing $(r_t \& w_t) \Rightarrow$ need to look for an eq. fixed point

$$v_t(a,z) = \max_{c,a'} u(c) + \beta \mathbb{E} \big[v_{t+1}(a',z') \big| \sigma(z) \big]$$

s.t. $c+a'=zw_t+r_t(1+a) \quad a' \ge \underline{a} \quad \Rightarrow \quad a'^* = \mathscr{A}(a,z)$

$$\forall \widetilde{A} \subset [\underline{a}, \infty) \qquad g_{t+1}(\widetilde{A}, z') = \sum_{z} \pi_{z'|z} \int \mathbb{1}\{\mathscr{A}(a, z) \in \widetilde{A}\} g_t(da, z)$$

$$S_t(r) := \sum_{z} \int_a^\infty a g_t(da, z_j) = K_t(r)$$

Back

Thomas Bourany

The algorithm : an overview

- Aim : find the stationary equilibria : i.e. the functions $v(a,z_j)$ and $g(a,z_j)$ and the interest rate *r*.
- ► General structure :
 - 1. Guess interest rate r^{ℓ} , compute capital demand $K(r^{\ell})$ & wages w(K)
 - Solve the HJB using finite differences (semi-implicit method) : obtain s^ℓ(a,z_j) and then v^ℓ(a,z_j), by a system of sort : ρ v = u(v) + A(v; r)v
 - 3. Using \mathbf{A}^T , solve the FP equation (finite diff. system : $\mathbf{A}(\mathbf{v}; r)^T \mathbf{g} = 0$), and obtain $g_{(a, z_j)}$
 - 4. Compute the capital supply $S(\mathbf{g}, r) = \sum_j \int_a^\infty a g(a, z_j) da$
 - 5. If S(r) > K(r), decrease $r^{\ell+1}$ (update using bisection method), and conversely, and come back to step 2.
 - 6. Stop if $S(r) \approx K(r)$

Stationary MFG equations

- 1. Borrowing constraint only appears in the boundary conditions
 - FOCs $u'(c_{(a,z_j)}) = \partial_a v_{(a,z_j)}$ and HJB eq. always holds with equality
 - No need to split the Bellman equation (constrained vs. unconstrained agents)

1. Borrowing constraint only appears in the boundary conditions

- FOCs $u'(c_{(a,z_j)}) = \partial_a v_{(a,z_j)}$ and HJB eq. always holds with equality
- No need to split the Bellman equation (constrained vs. unconstrained agents)
- 2. In continuous time there is no future (i.e. t + 1) only present t!
 - Only involve contemporaneous variables (FOC are 'static')
 - No need to use costly root-finding to obtain optimal $c(a,z_j)$.

1. Borrowing constraint only appears in the boundary conditions

- FOCs $u'(c_{(a,z_j)}) = \partial_a v_{(a,z_j)}$ and HJB eq. always holds with equality
- No need to split the Bellman equation (constrained vs. unconstrained agents)
- 2. In continuous time there is no future (i.e. t + 1) only present t!
 - Only involve contemporaneous variables (FOC are 'static')
 - No need to use costly root-finding to obtain optimal $c(a,z_j)$.
- 3. The discretized system is easy to solve :
 - 'Simply' a matrix inversion (Finite differences : taught in 1st year in any engineering school).
 - Matrix is sparse (tridiagonal)
 - Continuous space : one step left or one step right

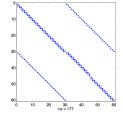
1. Borrowing constraint only appears in the boundary conditions

- FOCs $u'(c_{(a,z_j)}) = \partial_a v_{(a,z_j)}$ and HJB eq. always holds with equality
- No need to split the Bellman equation (constrained vs. unconstrained agents)
- 2. In continuous time there is no future (i.e. t + 1) only present t!
 - Only involve contemporaneous variables (FOC are 'static')
 - No need to use costly root-finding to obtain optimal $c(a,z_j)$.
- 3. The discretized system is easy to solve :
 - 'Simply' a matrix inversion (Finite differences : taught in 1st year in any engineering school).
 - Matrix is sparse (tridiagonal)
 - Continuous space : one step left or one step right
- 4. HJB and FP are coupled
 - The matrix to solve FP is the transpose of the one of HJB.
 - Why? Operator in FP is simply the 'adjoint' of the operator in HJB : 'Two birds one stone'
 - Specificity of MFG !

The algorithm : Finite difference scheme

► Finite difference scheme : discretize the state-space a_i for i = 1,...I.

$$\partial_a v(a_i, z_j) \approx \frac{v_{i+1,j} - v_{i,j}}{\Delta a} \equiv v'_{i,j,F} \qquad \partial_a v(a_i, z_j) \approx \frac{v_{i-1,j} - v_{i,j}}{\Delta a} \equiv v'_{i,j,B}$$



• Vector form :

Linear system to solve **A** is sparse.

$$\rho \mathbf{v} = \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v}; r)\mathbf{v}$$
$$0 = \mathbf{A}(\mathbf{v}; r)^T \mathbf{g}$$
$$S(\mathbf{g}, r) = K(r)$$

The algorithm : theoretical results

- This numerical solution converges to the unique (viscosity) solution of the HJB, under some conditions :
 - 1. Monotonicity (invertible and inverse positive)
 - 2. Consistent (approx error is majored by powers of step sizes)
 - 3. Stability (iteration in k is bounded)
- Is the matrix monotonous?
 - In the scheme for solving the HJB, one can distinguish if the drift is positive or negative :
 - that is the upwind scheme
 - When s(a) > 0 use v'_{i,j,F}, and s(a) < 0, use v'_{i,j,B}
 This insures the convergence of the algorithm

The algorithm : transition dynamics

The algo for transitions is a generalization :

- Discretization : vⁿ_{i,j} and gⁿ_{i,j} stacked into vⁿ and gⁿ
 Somehow, it is more specific to Mean Field Games :

The algorithm : transition dynamics

The algo for transitions is a generalization :

- Discretization : vⁿ_{i,j} and gⁿ_{i,j} stacked into vⁿ and gⁿ
 Somehow, it is more specific to Mean Field Games :
- Take advantage of the backward-forward structure of the MFG
 - Make a guess r_t^{ℓ} (t = 1, ..., N) on the *path* interest rates.
 - Solve the HJB (implicit scheme), given terminal condition;

$$\rho v^{n+1} = u^n + \mathbf{A}(v^{n+1}; r^n) v^{n+1} + \frac{v^{n+1} - v^n}{\Delta t}$$

$$v^N = v_{\infty} \qquad \text{(terminal condition = steady state)}$$

The algorithm : transition dynamics

The algo for transitions is a generalization :

- Discretization : vⁿ_{i,j} and gⁿ_{i,j} stacked into vⁿ and gⁿ
 Somehow, it is more specific to Mean Field Games :
- Take advantage of the backward-forward structure of the MFG
 - Make a guess r_t^{ℓ} (t = 1, ..., N) on the *path* interest rates.
 - Solve the HJB (implicit scheme), given terminal condition;

$$\rho v^{n+1} = u^n + \mathbf{A}(v^{n+1}; r^n) v^{n+1} + \frac{v^{n+1} - v^n}{\Delta t}$$

 $v^N = v_\infty$ (terminal condition = steady state)

Solve the FP forward, given the initial condition

$$\frac{g^{n+1} - g^n}{\Delta t} = \mathbf{A}(v^n; r^n)^T g^{n+1}$$
$$g^1 = g_0 \qquad \text{(initial condition)}$$

Update the interest rates path

Thomas Bourany

The algorithm : wrapping up

- This algorithm to compute the dynamics of the system will be used a lot when adding aggregate shocks.
 - HJB start from the end (what agent anticipate) and runs backward until the computation of the initial value function
 - FP start from the beginning (what wealth agents hold) and runs forward to compute the evolution of distributions.
 - If there are discrepancies between capital demand and capital supply, loop to correct the path of interest rate.

The algorithm : wrapping up

- This algorithm to compute the dynamics of the system will be used a lot when adding aggregate shocks.
 - HJB start from the end (what agent anticipate) and runs backward until the computation of the initial value function
 - FP start from the beginning (what wealth agents hold) and runs forward to compute the evolution of distributions.
 - If there are discrepancies between capital demand and capital supply, loop to correct the path of interest rate.
- Performance of the algorithm :
 - ≈ 1000 grid points in space, 400 in time :
 - Stationary equilibrium : 0.25-0.4 sec
 - Transition dynamics : around 30-50 secs
 - Perfect foresight or MIT shocks.
 - -10^{-6} error on the path of interest rate.
 - What about anticipated aggregate shocks?
 - \Rightarrow Very different speeds for different algos !

Back

Krusell-Smith Algorithm in Discrete time

- Model in discrete time :
 - Using the discrete time Aiyagari model
 - Add a jump/AR(1) process for aggregate productivity Z_t

$$\begin{aligned} v_t(a, z; g, Z) &= \max_{c, a'} u(c) + \beta \mathbb{E} \left[v_{t+1}(a', z'; g', Z') \right) \left| \sigma(z, Z) \right] \\ s.t. \quad c + a' &= z w_t(\kappa, z) + r_t(\kappa, z) \left(1 + a \right) \quad a' \geq \underline{a} \\ g' &= H(g, Z) = \Pi_{(g, \nu, \kappa, Z)} \cdot g \\ S(r) &:= \sum_i \int_a^\infty a g(da, z_i) = K(r) \end{aligned}$$

- The agents take their decision (in Bellman eq.) by making expectation about the future path of prices $\{r_t, w_t\}_{t \in [0,T]}$, which depends on the Law of Motion of the distribution
 - Law of Motion $H(\cdot)$ is "perceived" to be log linear in the first aggregate moment K

Krusell-Smith Algorithm in Discrete time

- ► Krusell-Smith's method : change the "perceived" law of motion :
 - Bounded-rationality : agents do not anticipate the full complexity of this law of motion / KF
 - Replace H(g, Z), function of g...

$$g' = H(g, Z) = \Pi_{(g, v, K, Z)} \cdot g \qquad \Rightarrow \qquad K' = f(K; g, v, Z)$$

... by \hat{H} a log linear function in a finite set of moment $m = (m_1 \dots m_l)$

• In practice, keep only the first moment $m_1 \equiv K \equiv S(r)$

$$m = \widehat{H}(m, Z) \qquad \Rightarrow \qquad \log K' = a(z) + b(z) \log K$$

- Why? for such model, the first moment is enough!
- \Rightarrow Phenomenon called approximate aggregation

Back

Krusell-Smith Algorithm

Krusell-Smith results on approximate aggregation

 $\log \bar{k}' = 0.095 + 0.962 \log \bar{k}; R^2 = .999998, \hat{\sigma} = 0.0028\%,$

in good times and

 $\log \bar{k}' = 0.085 + 0.965 \log \bar{k}; R^2 = .999998, \hat{\sigma} = 0.0036\%$

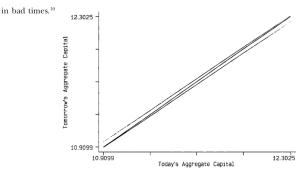


FIG. 1.-Tomorrow's vs. today's aggregate capital (benchmark model)

Thomas Bourany

HA models w/ agg. shocks

January 2020 11 / 12

Perturbation methods in discrete time : Reiter

- Equilibrium relations of Krusell-Smith model in discrete time :
 - Euler equation, Law of motion of distribution (discretized as an histogram), Price/TFP dynamics

- ε_t Exog. shocks on Z_t and η_t expectation error.

$$H(\Theta_{t+1},\Theta_t,\eta_{t+1},\varepsilon_{t+1})=0$$

• Stationary equilibrium :

$$H(\overline{\Theta},\overline{\Theta},0,0)=0$$

• Linearization (finite diff^o) :

 $H_1(\overline{\Theta},\overline{\Theta},0,0)\widehat{\Theta}_{t+1} + H_2(\overline{\Theta},\overline{\Theta},0,0)\widehat{\Theta}_t + H_3\eta_{t+1} + H_4\varepsilon_{t+1} = 0$

Back