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INTRODUCTION

• How does uncertainty interacts at the macro and the micro level?
• Macro uncertainty: discount rate (demand) shocks, ZLB (non linearities).
• Micro uncertainty: unemployment

• Endogenous link between micro-macro uncertainty:
• Aggregate demand.
• Job fluctuation.

• Develop a new global solution method to heterogeneous agents model with aggregate
shocks
• Reduce the dimensionality of the distribution by using a projection method.

• Add aggregate demand shocks and ZLB to HANK model of Kaplan, Moll, and Violante
(2018).
• Estimate that the welfare cost of business cycles increases to 3.9% of average consumption.
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A SIMPLE 2 PERIOD ECONOMY: FRAMEWORK

• 2 periods t ∈ {0, 1}
• Aggregate state of the economy at t = 1: Y1 (σε)

• ε ∼ N (0, 1) at t = 0
• σ summarizes uncertainty

• Household i faces idiosyncratic risk on its employment status zi,t ∈ {0, 1}
• State-dependent transition probability pi (Y1 (σε)) = P (zi,1 = 1|zi,0, ε)

• Maximizes time 0 expected utility: U (ci,0) + βE0 [ci,1]

• Savings decision with wage ∝ Yt, inelastic labor supply, and fixed return R:

ci,0 + ai,1 = ai,0 + γiY0zi,0

ci,1 = Rai,1 + γiY1zi,1

U′ (ci,0) = βRE0
[
U′
(
cu

i,1
)
{1− pi (Y1 (σε))}+ U′

(
ce

i,1
)

pi (Y1 (σε))
]
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A SIMPLE 2 PERIOD ECONOMY: 4 CHANNELS FOR UNCERTAINTY

• 2nd order expansion around σ = 0:

ci,0 (σ) ≈ ci,0 (0) +
1
2

d2ci,0

dσ2

∣∣∣∣
σ=0

σ2

• With:

d2ci,0

dσ2

∣∣∣
σ=0

βRMPSi,0
=

U′′′
(

ce
i,1

)
U′′′

(
c0

i,

) γ2
i pi

(
∂Y1

∂σ

)2

+ 2
U′′
(

ce
i,1

)
U′′
(
c0

i,

) p′iγi

(
∂Y1

∂σ

)2

+
U′
(

ce
i,1

)
− U′

(
cu

i,1

)
U′′
(
c0

i,

) [
p′′i (Y1)

(
∂Y1

∂σ

)2

+ p′i (Y1)
∂2Y1

∂σ2

]
+ . . .
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• Precautionary savings motive a la Kimball (1990) to insure against wage risk γi
∂Y1
∂σ ,

given employment with pi.
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• Unemployment (disaster) risk for the HH.

• Partial equilibrium effect: non linearity in the job search.
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A SIMPLE 2 PERIOD ECONOMY: 4 CHANNELS FOR UNCERTAINTY
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• Unemployment (disaster) risk for the HH.

• General equilibrium effect: macro non linearity⇒ decrease in aggregate output⇒
increase in unemployment risk.

L. APARISI / T. BOURANY / Z. FU Micro and Macro uncertainty – Schaab JMP 6 / 42



A SIMPLE 2 PERIOD ECONOMY: 4 CHANNELS FOR UNCERTAINTY
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• Joint risk between micro uncertainty
U′′(ce

i,1)
U′′(c0

i,)
and macro employment risk p′iγi

(
∂Y1
∂σ

)2
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ECONOMIC MECHANISMS FOR THE FULL MODEL
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HANK MODEL

• Heterogeneous agent New Keynesian model, as in Kaplan, Moll, Violante (2018)
• Main aggregate shock: discount rate AR(1) process:

dρt = θρ(ρ̄− ρ)dt + σρdBt

• Heterogenous Household block, with :
• Unemployment risk (micro uncertainty) depending on the macro state
• Two assets: Liquid asset (cash and flow of income) and Illiquid asset (capital, with adj. cost)

• Monopolistic competitive (intermediate) firms selling to CES retailler. Rotemberg price
adjustment
• Representative Capital producer (q theory)
• Labor demand from Labor Unions with nominal wage stickiness
• Monetary policy: Taylor rule with ZLB
• Government with distortionary tax and U.I.
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HETEROGENOUS HOUSEHOLD BLOCK: MICRO UNCERTAINTY

• Uninsurable earning risk in zj (or simply subscript j) a two-states Markov Process:
zt ∈ {zE, zU} with intensity λj

t

• λU
t the job finding (intensity) rate and λE

t the job separation rate are “state-dependent” on
changes in aggregate activity Yt

• Transitions represented as a reduce form λj
t = λj(yt) = a0 + a1yt + a2y2

t + . . .

• Estimated with the Current Population Survey (CPS)

L. APARISI / T. BOURANY / Z. FU Micro and Macro uncertainty – Schaab JMP 10 / 42



TRANSITION PROBABILITIES

Job finding rate :

λU
t = 1.39

(114.96)
+ 0.115

(13.66)
yt + 0.0026

(1.08)
y2

t + . . .

Job separation rate :

λE
t = 0.89

(88.67)
− 0.0053

(−6.85)
yt + 0.0006

(3.62)
y2

t + . . .
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HETEROGENOUS HOUSEHOLD BLOCK: TWO ASSETS MODELS

• Households discount future at rate ρt, die at rate ζ, consumes ct and supply labor ht, and
owns two assets:
• A liquid asset position evolves according to

ȧt = sj
t(a, k) = (rt + ζ) at + kt

dRt

dt
+ et − qtιt − ψ (ιt, kt)− ct

• Earning et collecting wages and rebates:

et =
(
1− τ lab) ztwtht + τ

lump
t + τUI (zt)

• Illiquid asset position as usual LoM for capital k̇t = (ζ − δ)kt + ιt = mj
t(a, k)

• Borrowing constraint on liquid asset at > 0 and short selling constraint on capital kt > 0

• Investment adjustment cost ψ(ιt, kt) = ψ0|ιt|+ ψ1
(
ιt
kt

)2kt
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FIRM BLOCK(S)

• Retailer aggregating varieties Yt =

(∫ 1
0 Yt(j)

εf−1
f dj

) εf
εf−1

yielding intermediate inputs

demand: Yt(j) = (Pt(j)/Pt)
−εf

Yt, for Pt(j) price of firm j

• Firm j’s production function is given by Yt(j) = Kt(j)1−βLt(j)β with β labor share, Lt(j)
labor demand and Wt nominal wage rate
• Rental market for capital from households with nominal rental rate ikt and rk

t = ikt /Pt,
where rk

t = MPK
• Dynamic price setting as in Rotemberg:

max
{πt(j)}

E0

∫ ∞
0

e−
∫ t

0 iks ds [(1− mct) Pt(j)Yt(j)− Λ (πt(j))] dt

with mct real marginal cost and Λ quadratic cost in price adjustment. This gives rise to a
HJB equation
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FIRM BLOCK(S)

• Capital producer: create capital with adjustment cost Φ(It/Kt)

• Profit and capital price:

ΠQ
t = qtIt − It − Φ

(
It

Kt

)
Kt qt = 1 + Φ′

(
It

Kt

)
• No arbitrage yields the return on capital in HH wealth.

dRt = (rk +
ΠQ

t

Kt
)dt

• Labor unions aggregate labor varieties Lt =

(∫
L
εw−1
εw

k,t dk
) εw
εw−1

and the dynamic wage

setting given by

max
πw

k,t

E0

∫ ∞
0

e−
∫ t

0(ρs+ζ)ds
[∫

u (ct, ht) gtd(a, k, z)− χw

2
(
πw

k,t
)2 Lt

]
dt

This gives rise to another HJB equation
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GOVERNMENTS AND AGGREGATION

• Monetary policy: simple Taylor rule and subject to zero lower bound (ZLB)

it = max {r∗ + π̄ + λππt + λYyt, 0}

• Government collects taxes, pays interests on debt BG and gives the rest lump-sum or as
Unemployment insurance
• Market clearing: 3 markets: liquid assets, goods, investment

At =

∫
agt(a, k, z)d(a, k, z) = BG

Yt = Ct + It + Φt + Ψt + Gt

It

∫
ιt(a, k, z)gt(a, k, z)d(a, k, z)

with Ct =
∫

ct(a, k, z)gt(a, k, z)d(a, k, z) and analogously for It and Ψt
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SOLUTION METHOD : OVERVIEW

• State variable of the model: idiosyncratic HH states: x = (a, k, zj) and

aggregate states Γt = (ρt, gt)

• The usual method dealing with HA models is to solve a system of (coupled) PDEs: the

Hamilton Jacobi Bellman for V(x) and the Kolmogorov Forward for g(x).

• However, with aggregate shocks, the PDE system becomes stochastic (i.e. varies w/ dBt)
• The approach of Schaab, following Cardaliaguet, Lions, Lasry, Delarue (2018) is to

focus on the master equation: an infinite dimensional equation for V(x,Γ)

• This includes the effect of the distribution on the value: δV
δg

• The idea is to use this master equation with a finite dimensional representation for gt(x)

ĝt(x) = F(αt)(x) ≈ gt(x)
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SOLUTION METHOD: KF W/O AGG. SHOCKS

• State variable of the model: idiosyncratic HH states: (a, k, zj) and aggregate states
Γt = gt

• The dynamic of the distribution of agents : g(a, k, zj) = gj(a, k) without aggregate shocks

dgj(a,k)

dt
=A∗gj

(a,k)

=− ∂a
[
sj

(a,k,Γ)gj
(a,k)
]
− ∂k

[
mj

(a,k,Γ)gj
(a,k)
]
− λj

(Γ)gj
(a,k) + λ−j

(Γ)g−j
(a,k)
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SOLUTION METHOD: MASTER EQUATION W/O AGG. SHOCKS

• The Master equation without aggregate shocks with states (a, k, zj) and aggregate states
Γt = gt

(ρ+ ζ)V j
(a,k,Γ) = max

c,h,j

{
u
(
cj, hj)+ sj∂aV j

(a,k,Γ) + mj∂kV j
(a,k,Γ)

}
+ λj(Γ)

[
V−j

(a,k,Γ)− V j
(a,k,Γ)

]
+
∑

l

∫
δV l

δg

(
A∗gl)

(a,k)d(a, k)
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SOLUTION METHOD: MASTER EQUATION W/O AGG. SHOCKS

• The Master equation without aggregate shocks with states (a, k, zj) and aggregate states
Γt = gt

(ρ+ ζ)V j
(a,k,Γ) = max

c,h,j

{
u
(
cj, hj)+ sj∂aV j

(a,k,Γ) + mj∂kV j
(a,k,Γ)

}
+ λj(Γ)

[
V−j

(a,k,Γ)− V j
(a,k,Γ)

]
+

∑
l

∫
δV l

δg

(
A∗gl)

(a,k)d(a, k)︸ ︷︷ ︸
Effect of changes of the distribution on HH value
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SOLUTION METHOD: KF WITH AGG. SHOCKS

• The dynamic of the distribution of agents : g(a, k, zj, ρ) = gj(a, k, ρ) with aggregate
shocks

dgj(a,k,ρ)

dt
= A∗gj

(a,k,ρ)dt + B∗gj
(a,k,ρ)dBt

= −∂a
[
sj

(a,k,Γ)gj
(a,k,ρ)

]
− ∂k

[
mj

(a,k,Γ)gj
(a,k,ρ)(a, k)

]
− λj

(Γ)gj
(a,k,ρ) + λ−j

(Γ)g−j
(a,k,ρ)− ∂ρ

[
θρ(ρ̄− ρ)∂ρgj

(a,k,ρ)
]

+
σ2
ρ

2
∂ρρgj

(a,k,ρ)− ∂ρ
[
σρgj

(a,k,ρ)
]

dBt
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MASTER EQUATION WITH AGG. SHOCKS

• The Master equation with aggregate shocks with states x = (a, k, zj) and aggregate states
Γt = (ρt, gt)

(ρ+ ζ)V j
(a,k,Γ) = max

c,h,j

{
u
(
cj, hj)+ sj∂aV j

(a,k,Γ) + mj∂kV j
(a,k,Γ)

}
+ λj(Γ)

[
V−j

(a,k,Γ)− V j
(a,k,Γ)

]
+ θρ(ρ̄− ρ) ∂ρV j

(a,k,Γ)

+
σ2
ρ

2
∂ρρV j

(a,k,Γ) +
∑

l

∫
δV l

δg

(
A∗gl)

(a,k,ρ)d(a, k, ρ)

+
∑

l

∫
∂ρ

[
δV l(a,k,Γ)

δg

]
d(a, k, ρ) +

σ2
ρ

2

∫ ∫
∂ρρ

δ2V l(a,k,Γ)

δg2 d(a, k, ρ)2
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MASTER EQUATION WITH AGG. SHOCKS

• The Master equation with aggregate shocks with states x = (a, k, zj) and aggregate states
Γt = (ρt, gt)

(ρ+ ζ)V j
(a,k,Γ) = max

c,h,j

{
u
(
cj, hj)+ sj∂aV j

(a,k,Γ) + mj∂kV j
(a,k,Γ)

}
+ λj(Γ)

[
V−j

(a,k,Γ)− V j
(a,k,Γ)

]
+ θρ(ρ̄− ρ) ∂ρV j

(a,k,Γ)

+
σ2
ρ

2
∂ρρV j

(a,k,Γ) +
∑

l

∫
δV l

δg

(
A∗gl)

(a,k,ρ)d(a, k, ρ)

+
∑

l

∫
∂ρ

[
δV l(a,k,Γ)

δg

]
d(a, k, ρ) +

σ2
ρ

2

∫ ∫
∂ρρ

δ2V l(a,k,Γ)

δg2 d(a, k, ρ)2
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MASTER EQUATION WITH AGG. SHOCKS

• The Master equation with aggregate shocks with states x = (a, k, zj) and aggregate states
Γt = (ρt, gt)

(ρ+ ζ)V j
(a,k,Γ) = max

c,h,j

{
u
(
cj, hj)+ sj∂aV j

(a,k,Γ) + mj∂kV j
(a,k,Γ)

}
+ λj(Γ)

[
V−j

(a,k,Γ)− V j
(a,k,Γ)

]
+ θρ(ρ̄− ρ) ∂ρV j

(a,k,Γ)

+
σ2
ρ

2
∂ρρV j

(a,k,Γ) +
∑

l

∫
δV l

δg

(
A∗gl)

(a,k,ρ)d(a, k, ρ)

+
∑

l

∫
∂ρ

[
δV l(a,k,Γ)

δg

]
d(a, k, ρ) +

σ2
ρ

2

∫ ∫
∂ρρ

δ2V l(a,k,Γ)

δg2 d(a, k, ρ)2

︸ ︷︷ ︸
Second order terms with agg. shocks
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MASTER EQUATION WITH AGG. SHOCKS

• The Master equation with aggregate shocks with states x = (a, k, zj) and aggregate states
Γt = (ρt, gt)

(ρ+ ζ)V j
(a,k,Γ) = max

c,h,j

{
u
(
cj, hj)+ sj∂aV j

(a,k,Γ) + mj∂kV j
(a,k,Γ)

}
+ λj(Γ)

[
V−j

(a,k,Γ)− V j
(a,k,Γ)

]
+ θρ(ρ̄− ρ) ∂ρV j

(a,k,Γ)

+
σ2
ρ

2
∂ρρV j

(a,k,Γ) +
∑

l

∫
δV l

δg

(
A∗gl)

(a,k,ρ)d(a, k, ρ)

+
∑

l

∫
∂ρ

[
δV l(a,k,Γ)

δg

]
d(a, k, ρ) +

σ2
ρ

2

∫ ∫
∂ρρ

δ2V l(a,k,Γ)

δg2 d(a, k, ρ)2
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MASTER EQUATION: DIMENSIONALITY REDUCTION

• Approximate cross sectional distribution: ˆg(x) = F(α)(x), and in practice in the baseline
model:

F(α)(x) = g0(x) +
∑

n

αn
t Tn(x)

• This approximation makes the model/master equation tractable, with approximate agg.
state Γ̂ = (x, ĝ) and value :

V(x, ρ, g) ≈ V(x, ρ, ĝ) = V̂(x, ρ, α)

• The household only have to track the law of motion of α:

dαt = µα(Γ̂)dt + σα(Γ̂)dBt
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APPROXIMATE MASTER EQUATION

• The HJB/Master equation with aggregate shocks with states x = (a, k, zj) and aggregate
states Γ̂t = (ρt, αt)

(ρ+ ζ)V j
(a,k,Γ̂) = max

c,h,j

{
u
(
cj, hj)+ sj∂aV j

(a,k,Γ̂) + mj∂kV j
(a,k,Γ̂)

}
+ λj(Γ̂)

[
V−j

(a,k,Γ̂)− V j
(a,k,Γ̂)

]
+ θρ(ρ̄− ρ) ∂ρV j

(a,k,Γ̂)

+
σ2
ρ

2
∂ρρV j

(a,k,Γ̂) + µα(Γ̂)∂αV j
(a,k,Γ̂) + σα(Γ̂)T∂ααV j

(a,k,Γ̂)σα(Γ̂)

+ σα(Γ̂)T∂αρV j
(a,k,Γ̂)σρ + σρ∂ραV j

(a,k,Γ̂)σα(Γ̂)T + second order terms
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OVERVIEW OF THE ALGORITHM

• Some notations:
• x: the vector for (a,k,z); Nx: the number of grid points on x; Nα: the number of grid points

for distribution.

• Key tricks:
• For KFE: Approximate the distribution using basis functions to reduce the dimensionality

I (from > Nx dimensions to 8-10 dimensions in the benchmark economy)
• For HJB: Use adaptive sparse grid to further reduces grid points

I 340 points over the (a, k) dimensions vs. 4,200
I Mostly covered in another paper Schaab and Zhang (2020)
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ALGORITHM STRUCTURE

• Concept of an equilibrium solution:
• “Micro” functions {V, g, c, ι}(x,Γ)
• Macro functions {r, rk, q,H, ...}(Γ)

Algorithm Structure:

• Level 3: Update the distribution to minimize forecast errors (Similar to Krusell and
Smith, 1998)
• Level 2: Solve for GE prices to clear markets

I Level 1: Given prices, solve the household’s master equation which give policy functions and
stationary distribution (based on Achdou et al., 2017)
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APPROXIMATE THE DISTRIBUTION

Consider the distribution in the affine form: F(αt)(x) = g0(x) +
∑

i α
i
tT

i(x), where

• g0(x) is the distribution at deterministic steady state, i.e., limσρ→0 g(x;σρ)

• T i(x) : RNx → R basis functions:
• Parametrically: Fixed as some parametric functions

I Linear basis
I Chebyshev polynomials

• Non-parametrically: Update T(x) based on errors (more on this later)

• αi
t ∈ RNα the time-varying weights on T i(x)
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DYNAMICS OF αt

Consider the case where the distribution is locally deterministic (i.e., no dB term in dαt)

• From KFE, we have:
dĝt(x) = (A∗ĝt) (x)dt

• This equation can be evaluated for every point on the grid of x.

• Using our representation of g(x), we have dĝt(x) = dF(αt)(x) = Fα(αt)(x)µα(Γ)dt
• By matching the coefficient, we have:

Fα(αt)(x)︸ ︷︷ ︸
Nx×Nα

µα(Γ)︸ ︷︷ ︸
Nα×1

= (A∗F(αt)) (x)︸ ︷︷ ︸
Nx×1

• To solve µα, we take the pseudo-inverse (OLS):

µα =
(
FT
αFα

)−1
FT
α (A∗F)
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A TRIVIAL EXAMPLE

• Consider the case where the distribution is approximated on the same grid for x using
linear basis, i.e.,

F(x;αt) =
∑

i

αi,t1{xi−1<x≤xi}

Then Fα(x) evaluated on the x-grid is exactly the identity matrix. Then the drift of µα
according to the formula above is exactly

µa = A∗F

• When Nα < Nx, the pseudo-inverse provides an efficient way to approximate the larger
grid with a small number of basis.
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CHOICE OF PARAMETRIC OR NON-PARAMETRIC REPRESENTATION

• Parametric:
• With T(x) chosen ex-ante and µ(α) computed above, we can solve the equilibrium without

the level-3 loop
• Efficient for simple models e.g. one-asset HANK, Krusell-Smith

• Non-parametric:
• Need additional steps with simulation to pin down the optimal T(x)
• Achieve the same accuracy with far fewer dimensions Na

• Used for two-asset HANK
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NON-PARAMETRIC STEPS (LEVEL 3)

• Key idea: Update T(x) using simulations from a finer grid.
• Steps:

1 Given a T(x) either from previous iteration or initialized from parametric steps.
2 Solve the equilibrium following level 1 and level2 as before;
3 Simulate the household sector from ĝ0(x), hit the economy with shocks and update ĝlom

t (x)

using law of motion (µα)

4 Simulate the household on a finer grid (e.g. the x-grid), fixing V(x,Γ), solving the static
equilibrium period by period (costly!) . Update the distribution using the real policy (KFE)

5 Compute the error
∥∥∥gn,lom

t (x)− gn,sim
t (x)

∥∥∥
(t,x)∈R×Rd

, if not converged, update T(x) (next

slide).
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UPDATING T(x)

Within the affine distribution family, we are looking for αt and T(x) to minimize the error:

min
T(x),αt

∥∥gsim
t (x)− g0(x)− αtT(x)

∥∥
L2(t×x)

It can be shown that the optimal αt and T(x) is given as:

α′t =
(
T(x)T(x)′

)−1 F(x)(gsim
t (x)− g0(x))′

T(x) =

(∑
t

α′tαt

)−1∑
t

α′t
[
gsim

t (x)− g0(x)
]

L. APARISI / T. BOURANY / Z. FU Micro and Macro uncertainty – Schaab JMP 35 / 42



ADAPTIVE SPARSE GRID

Reference is in Schaab and Zhang (2020), no where to be found. It’s said to be based on the
discrete version by Brumm and Scheidegger (2017).
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GENERAL COMMENTS ON THE ALGORITHM

• Adaptive sparse grid and distribution representation seem promising for higher
dimension problems;

• Seems still challenging to deal with stochastic KFE (the cross-derivative term?).

• More theoretical refinement required - The current stage looks like a kludge that learned
from trial and error.
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SIMULATION: A QUALITATIVE FIT OF THE MAIN MOMENTS
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COMPARISON WITH HANK-RANK
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COMPARISON WITH HANK-RANK: EFFECTS DECOMPOSITION
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UNCERTAINTY MULTIPLIER, MICRO UNCERTAINTY, AND AGGREGATE STATE
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ZLB AND MICRO-MACRO UNCERTAINTY
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