The Economic Effects of Climate Change in Dynamic Spatial Equilibrium

Rudik, Lyn, Tan, and Ortiz-Bobea Thomas Bourany

Service Francisco Paralita Construction

Spatial-Environment Reading Group – UChicago

Oct 2022

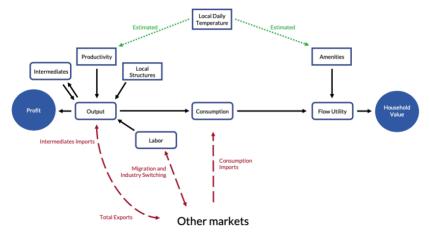
Rudik Lyn Tan Ortiz-Bobea - T. Bourany

Climate Change in Dynamic Spatial Equilibrium

Oct 2022 1 / 16

Introduction – Motivation

- Goal : measure the welfare and distributional impact of climate change, both in the US and in the world
 - 1. Develop a dynamic-spatial equilibrium model
 - 2. Build a dynamic envelope theorem method (reduce form)


Introduction – Motivation

- Goal : measure the welfare and distributional impact of climate change, both in the US and in the world
 - 1. Develop a dynamic-spatial equilibrium model
 - 2. Build a dynamic envelope theorem method (reduce form)
- Many channels of adaptation and amplifications :
 - · Heterogeneous impact across countries and sectors
 - Input-Output linkages (across sectors)
 - Trade (across countries)
 - Labor reallocations
 - Migrations

Introduction – Motivation

- Goal : measure the welfare and distributional impact of climate change, both in the US and in the world
 - 1. Develop a dynamic-spatial equilibrium model
 - 2. Build a dynamic envelope theorem method (reduce form)
- Many channels of adaptation and amplifications :
 - Heterogeneous impact across countries and sectors
 - Input-Output linkages (across sectors)
 - Trade (across countries)
 - Labor reallocations
 - Migrations
- Main results :
 - Warming reduces US welfare by 4% and global welfare by over 20%
 - Amplification due to realistic features
 - Market adaptation : small but trade and labor reallocation complementary

Graphical Representation

Rudik Lyn Tan Ortiz-Bobea - T. Bourany

Climate Change in Dynamic Spatial Equilibrium

Household, migration and labor reallocation

▶ Household welfare working in industry *k* and in country *n*

$$U(C_{n,t}^{k}, B_{n,t}) = \log \left(B_{n,t}C_{n,t}^{k}\right) \qquad \qquad B_{n,t} = \bar{B}_{n,t} \exp \left(f(\mathbf{T}_{\mathbf{n},\mathbf{t}}; \zeta_{\mathbf{B}})\right)$$

- $C_{n,t}^k$ Cobb-Douglas across sectors $c_{n,t}^{ks}$ & $c_{n,t}^{ks}$ CES across varieties ξ . Consuming wage/price index $C_{n,t}^k = w_{n,t}^k / P_{n,t}$
- f and $\zeta_{\mathbf{B}}$ to be estimated with migrations flows

Household, migration and labor reallocation

▶ Household welfare working in industry *k* and in country *n*

$$U(C_{n,t}^{k}, B_{n,t}) = \log \left(B_{n,t}C_{n,t}^{k}\right) \qquad B_{n,t} = \bar{B}_{n,t} \exp \left(f(\mathbf{T}_{\mathbf{n},\mathbf{t}}; \zeta_{\mathbf{B}})\right)$$

- $C_{n,t}^k$ Cobb-Douglas across sectors $c_{n,t}^{ks}$ & $c_{n,t}^{ks}$ CES across varieties ξ . Consuming wage/price index $C_{n,t}^k = w_{n,t}^k / P_{n,t}$
- f and $\zeta_{\mathbf{B}}$ to be estimated with migrations flows
- Migration decisions to move to country n → i and reallocate in the industry s → k
 - Receive $V_{i,t+1}^s$ discounted of a fixed cost μ_{ni}^{ks} and shocks $\nu \epsilon_{i,t}^s \sim T1EV$, Yields :

$$\pi_{ni,t}^{ks} = \frac{\exp\left[\left(\beta V_{i,t+1}^s - \mu_{ni}^{ks}\right)/\nu\right]}{\sum_{l=1}^{N} \sum_{h=0}^{K} \exp\left[\left(\beta V_{l,t+1}^h - \mu_{nl}^{kh}\right)/\nu\right]}$$

Rudik Lyn Tan Ortiz-Bobea - T. Bourany

Production and I-O Linkages

▶ In sector k, IO linkages : production $q_{n,t}^k$, cost $x_{i,t}^k$ Cobb-Douglas :

$$q_{n,t}^{k} = z_{n,t}^{k} \Big[\big(H_{n}^{k}\big)^{\psi^{k}} \big(L_{n,t}^{k}\big)^{1-\psi^{k}} \Big]^{\gamma_{n}^{k}} \prod_{s=1}^{K} \big(M_{n,t}^{ks}\big)^{\gamma_{n}^{ks}}, \quad x_{n,t}^{k} = \kappa_{n}^{k} \Big[\big(r_{n,t}^{k}\big)^{\psi^{k}} \big(w_{n,t}^{k}\big)^{1-\psi^{k}} \Big]^{\gamma_{n}^{k}} \prod_{s=1}^{K} \big(P_{n,t}^{s}\big)^{\gamma_{n}^{ks}},$$

Production and I-O Linkages

▶ In sector k, IO linkages : production $q_{n,t}^k$, cost $x_{i,t}^k$ Cobb-Douglas :

$$q_{n,t}^{k} = z_{n,t}^{k} \Big[\big(H_{n}^{k}\big)^{\psi^{k}} \big(L_{n,t}^{k}\big)^{1-\psi^{k}} \Big]^{\gamma_{n}^{k}} \prod_{s=1}^{K} \big(M_{n,t}^{ks}\big)^{\gamma_{n}^{ks}}, \quad x_{n,t}^{k} = \kappa_{n}^{k} \Big[\big(r_{n,t}^{k}\big)^{\psi^{k}} \big(w_{n,t}^{k}\big)^{1-\psi^{k}} \Big]^{\gamma_{n}^{k}} \prod_{s=1}^{K} \big(P_{n,t}^{s}\big)^{\gamma_{n}^{ks}},$$

Firms as in Eaton Kortum : firm productivity with Fréchet distribution :

$$z_n^k \sim \mathcal{F}_{n,t}^k(z) = \exp(-Z_{n,t}^k z^{-\theta^k})$$

Climate damage on productivity :

$$Z_{n,t}^{k} = \bar{Z}_{n,t}^{k} \exp\left(g\left(\mathbf{T}_{\mathbf{n},\mathbf{t}};\zeta_{\mathbf{Z}}^{\mathbf{k}}\right)\right)$$

• g and $\zeta_{\mathbf{Z}}$ to be estimated with trade flows

Rudik Lyn Tan Ortiz-Bobea - T. Bourany

Trade

Trade a la Eaton Kortum : ships from country *i* to *n* in industry *k* at iceberg cost $\tau_{ni,t}^k$

$$p_{n,t}^{k}(\xi) = \min_{1 \le i \le N} \left\{ \frac{\tau_{ni,t}^{k} x_{i,t}^{k}}{z_{i,t}^{k}(\xi)} \right\} \qquad \qquad \lambda_{ni,t}^{k} = \frac{X_{ni,t}^{k}}{X_{n,t}^{k}} = \frac{Z_{i,t}^{k} \left(x_{i,t}^{k} \tau_{ni,t}^{k} \right)^{-\theta^{k}}}{\sum_{l} Z_{l,t}^{k} \left(x_{l,t}^{k} \tau_{nl,t}^{k} \right)^{-\theta^{k}}}$$

Closing the model :

- Good and market clearing in each market (n, k)
- Trade imbalances allowed with opposite financial flows from capitalists

- 1

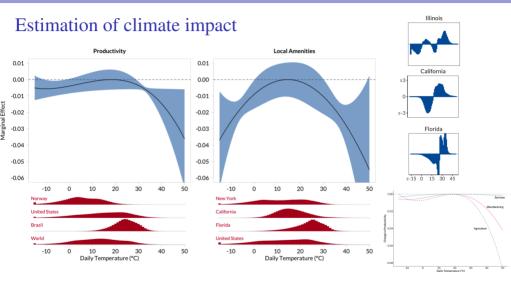
Estimation of climate impact

Trade Flows Identify Effects on Local Productivity

$$\log\left(\frac{X_{ni,t}^{k}}{X_{nn,t}^{k}}\right) = \left[g\left(\mathbf{T}_{i,t};\zeta_{\mathbf{Z}}^{k}\right) - g\left(\mathbf{T}_{n,t};\zeta_{\mathbf{Z}}^{k}\right)\right] - \theta^{k}\log\left(\tau_{ni,t}^{k}\right) + \zeta_{\mathbf{X}}\mathbf{X}_{\mathbf{t}} + \rho_{t}^{k} + \varphi_{ni}^{k} + \varepsilon_{ni,t}^{k}$$

Estimation of climate impact

Trade Flows Identify Effects on Local Productivity

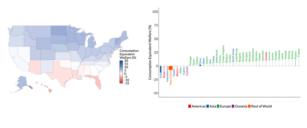

$$\log\left(\frac{X_{ni,t}^{k}}{X_{nn,t}^{k}}\right) = \left[g(\mathbf{T}_{i,t};\zeta_{\mathbf{Z}}^{k}) - g(\mathbf{T}_{n,t};\zeta_{\mathbf{Z}}^{k})\right] - \theta^{k}\log\left(\tau_{ni,t}^{k}\right) + \zeta_{\mathbf{X}}\mathbf{X}_{\mathbf{t}} + \rho_{t}^{k} + \varphi_{ni}^{k} + \varepsilon_{ni,t}^{k}$$

Migration Shares Identify Effects on Local Amenities

$$\log\left(\frac{\pi_{ni,t}^{ks}}{\pi_{nn,t}^{kk}}\right) = \frac{\beta}{\nu} \left[f\left(\mathbf{T}_{i,t+1}; \zeta_{\mathbf{B}}\right) - f\left(\mathbf{T}_{n,t+1}; \zeta_{\mathbf{B}}\right) \right] + \frac{\beta}{\nu} \log\left(\frac{\omega_{i,t+1}^{s}}{\omega_{n,t+1}^{k}}\right) + \beta \log\left(\frac{\pi_{ni,t+1}^{ks}}{\pi_{ii,t+1}^{ss}}\right) + \delta_{t}^{k} + \varphi_{ni}^{k} + \varepsilon_{ni,t}^{ks}$$

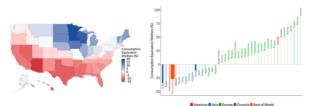
• Both with PPML and parameters calibrated : $\beta = 0.98, \nu = 2.02, \theta^k = \text{c.f. Caliendo Parro (2015)}$

Rudik Lyn Tan Ortiz-Bobea - T. Bourany


Rudik Lyn Tan Ortiz-Bobea - T. Bourany

Climate Change in Dynamic Spatial Equilibrium

Oct 2022 8 / 16


Climate Change in Dynamic Spatial Equilibrium

Welfare

Basic model structure with no market-based adaptation

Full model structure with market-based adaptation

Rudik Lyn Tan Ortiz-Bobea - T. Bourany

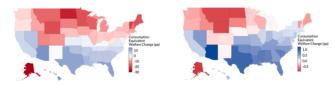
Climate Change in Dynamic Spatial Equilibrium

Results – welfare impact of different channels

	United States		Global	
	Without Market Adaptation	With Market Adaptation	Without Market Adaptation	With Market Adaptation
Basic Structure Welfare	1.9%	2.3%	-4.9%	-5.5%
Add Input-Output Linkages	-0.9pp	-0.9pp	+1.2pp	+0.4pp
Add Amenities	-6.2pp	-6.5pp	-18pp	-17.9pp
Add Forward-Looking US Households	+0pp	+0.2pp	+0pp	+0pp
Add Industry Heterogeneity	-0.9pp	-1.1pp	+2.9pp	+3.2pp
Add Daily Temperature	-4.6pp	-5.3pp	-4.3pp	-4.2pp
Add All	-5.9pp	-5.4pp	-16.2pp	-16.2pp

Table 1: US welfare contribution of model attributes relative to the base model.

Table 2: US welfare contribution of adaptation through trade, migration, and industry switching: 2015–2100.


Full Structure Welfare	Add Trade Adjustments	Add Migration and Industry Switching	Add All
-4.064%	+0.668 pp	+0.004 pp	$+1.004 \mathrm{pp}$

Other results on market adaptation

- Migration / labor outflows from southern states ($\sim 1.5 2\%$)
- Increase in employment in manufacturing and agriculture, because US less negatively affected than the rest of the world.
- Trade affects south negatively
- Migration and industry switching hurts the north because of inflows, depressing wages
- Complementarity Trade, Migration and Labor reallocation

Results – welfare impact of different channels

Figure 7: Welfare value of adaptation mechanisms: 2015–2100. Migration and Industry Switching Trade Equivalent Welfare Change (no) 2.0 20 15 10 05 00 -05 Trade, Migration, and Industry Switching Interaction Effect

Rudik Lvn Tan Ortiz-Bobea - T. Bourany

iquivalent Velfare Change (pp)

10

-10 -20

► Recall the migration share expression :

$$\pi_{ni,t}^{ks} = \frac{\exp\left[\left(\beta V_{i,t+1}^{s} - \mu_{ni}^{ks}\right)/\nu\right]}{\sum_{l=1}^{N} \sum_{h=0}^{K} \exp\left[\left(\beta V_{l,t+1}^{h} - \mu_{nl}^{kh}\right)/\nu\right]}$$

► Recall the migration share expression :

$$\pi_{ni,t}^{ks} = \frac{\exp\left[\left(\beta V_{i,t+1}^{s} - \mu_{ni}^{ks}\right)/\nu\right]}{\sum_{l=1}^{N} \sum_{h=0}^{K} \exp\left[\left(\beta V_{l,t+1}^{h} - \mu_{nl}^{kh}\right)/\nu\right]}$$

► This is the solution of the problem of a representative agent problem :

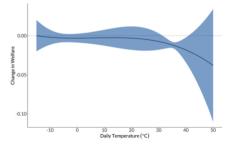
Recall the migration share expression :

$$\pi_{ni,t}^{ks} = \frac{\exp\left[\left(\beta V_{i,t+1}^{s} - \mu_{ni}^{ks}\right)/\nu\right]}{\sum_{l=1}^{N} \sum_{h=0}^{K} \exp\left[\left(\beta V_{l,t+1}^{h} - \mu_{nl}^{kh}\right)/\nu\right]}$$

► This is the solution of the problem of a representative agent problem :

• Taking the Lagrangian and using the Envelope theorem, we obtain :

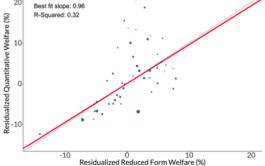
$$\frac{\partial V_{n,t}^{k}}{\partial \mathbf{C}_{n,t+1}} = \underbrace{\sum_{i=1}^{N} \sum_{s=0}^{K} \underbrace{\frac{\partial \mathcal{L}_{n,t}^{k}}{\partial \pi_{ni,t}^{ss}}}_{=0} \frac{\partial \pi_{ni,t}^{ks}}{\partial \mathbf{C}_{n,t+1}} + \underbrace{\sum_{s=0}^{N} \sum_{s=0}^{K} \frac{\partial \mathcal{L}_{n,t}^{k}}{\partial \mathbf{V}_{i,t+1}^{s}} \frac{\partial \partial \mathbf{V}_{i,t+1}^{s}}{\partial \mathbf{T}_{n,t+1}}}_{\text{direct effect}} = \sum_{s=0}^{N} \sum_{s=0}^{K} \pi_{ni,t}^{ks} \beta \frac{\partial V_{i,t+1}^{s}}{\partial \mathbf{T}_{n,t+1}}$$


Rudik Lyn Tan Ortiz-Bobea - T. Bourany

► Rewriting the migration flow

$$\log \pi_{ni,t}^{ks} = \frac{\beta}{\nu} V_{i,t+1}^s - \frac{1}{\nu} \mu_{ni}^{ks}$$
$$-\underbrace{\sum_{l=1}^N \sum_{h=0}^K \exp\left[\left(\beta V_{l,t+1}^h - \mu_{nl}^{kh}\right)/\nu\right]}_{=\widetilde{\delta}_{n,t}^k}$$

▶ yields the estimation equation :


$$\log \pi_{ni,t}^{ks} = rac{eta}{
u} hig(\mathbf{T}_{i,t+1}; \zeta_{\mathbf{D}}ig) + \delta_{n,t}^k + arphi_{ni}^{ks} + arepsilon_{ni,t}^{ks}$$

Estimating Welfare Impacts – Comparison Reduced Form

20 Best fit slope: 0.96 R-Squared: 0.32

Figure 9: Reduced form welfare versus structural welfare.

Conclusion

- Develop two approaches for evaluating the economic impact of climate change
- Main result : market adaptation is significant :
 - Can account for close to 10% of southern states
 - Trade and labor reallocation complementary, otherwise, trade adjustments alone are regressive (South worse off)
- New way of estimating climate damage
 - · Effect on productivity well identified with trade data
 - Effect on utility using migration flows, controlling for wages
- Importance of heterogeneity