The Distributional Effects of Uneven Regional Growth

Brian Greaney

Thomas Bourany

Spatial Reading Group – UChicago

May 2023

Brian Greaney - T. Bourany

Distributional Effects of Uneven Regional Growth

May 2023 1 / 14

- ► Goal : study the world
 - Develop a dynamic quantitative spatial model with rich heterogeneity

- ► Goal : study the world
 - Develop a dynamic quantitative spatial model with rich heterogeneity
- ► Two key mechanisms from economic condition to welfare :
 - Costly Migration choice
 - Homeownership
 - \Rightarrow Distributional consequences

- ► Goal : study the world
 - Develop a dynamic quantitative spatial model with rich heterogeneity
- ► Two key mechanisms from economic condition to welfare :
 - Costly Migration choice
 - Homeownership
 - \Rightarrow Distributional consequences
- Main results :
 - 1% increase in local TFP raises residents' welfare by 0.43%
 - Passthrough vary a lot with age, wealth and homeownership

- ► Goal : study the world
 - Develop a dynamic quantitative spatial model with rich heterogeneity
- ► Two key mechanisms from economic condition to welfare :
 - Costly Migration choice
 - Homeownership
 - \Rightarrow Distributional consequences
- Main results :
 - 1% increase in local TFP raises residents' welfare by 0.43%
 - Passthrough vary a lot with age, wealth and homeownership
- Policy counterfactual
 - Relaxing land-use regulation / Eliminate mortgage interest deduction
 - Both mitigate spatial redistribution, but effects quantitatively small

Household in location *i* and age *j* has preferences over amenities, consumption and housing

$$u(A,c,h) = \ln(Ac^{1-\eta}\mathbf{h}^{\eta})$$

Household in location *i* and age *j* has preferences over amenities, consumption and housing

$$u(A,c,h) = \ln(Ac^{1-\eta}\mathbf{h}^{\eta})$$

- Migration decisions from *i* to i' in a discrete number of periods S
 - Receive (the flow) idiosyncratic shock ε_i ~ T1EV(v) and the (flow) migration cost κ_{ii} (j) for age j

Household in location *i* and age *j* has preferences over amenities, consumption and housing

$$u(A,c,h) = \ln(Ac^{1-\eta}\mathbf{h}^{\eta})$$

• Migration decisions from *i* to i' in a discrete number of periods S

- Receive (the flow) idiosyncratic shock ε_i ~ T1EV(v) and the (flow) migration cost κ_{ii} (j) for age j
- Earnings : as in the usual HA model + age component

$$\ln l_t = \bar{l}(j) + \ell_t \qquad \qquad \ell_t = \theta \ell_{t-\Delta} + \zeta_t \qquad \qquad \zeta_j \sim f_\zeta$$
$$\ln l_t = \omega_t$$

Brian Greaney – T. Bourany

Household in location *i* and age *j* has preferences over amenities, consumption and housing

$$u(A,c,h) = \ln(Ac^{1-\eta}\mathbf{h}^{\eta})$$

• Migration decisions from *i* to i' in a discrete number of periods S

Receive (the flow) idiosyncratic shock ε_i ~ T1EV(v) and the (flow) migration cost κ_{ii} (j) for age j

Earnings : as in the usual HA model + age component

$$\ln l_t = \bar{l}(j) + \ell_t \qquad \qquad \ell_t = \theta \ell_{t-\Delta} + \zeta_t \qquad \qquad \zeta_j \sim f_\zeta$$
$$\ln l_t = \omega_t$$

• Demographics : probability of surviving $\phi(j)$ and no bequest.

Brian Greaney - T. Bourany

Distributional Effects of Uneven Regional Growth

Housing and wealth dynamics

• Housing : either owned of size h or rented h^r

$$\mathbf{h} = h$$
 or $\mathbf{h} = h^r = \chi h$ $\chi > 1$

Housing and wealth dynamics

• Housing : either owned of size h or rented h^r

$$\mathbf{h} = h$$
 or $\mathbf{h} = h^r = \chi h$ $\chi > 1$

Liquid wealth *a*, wealth *x*, and credit constraint on *a*

$$x = a + \phi p_{it}h \qquad \qquad a \ge -\phi p_{it}h$$

Housing and wealth dynamics

• Housing : either owned of size h or rented h^r

$$\mathbf{h} = h$$
 or $\mathbf{h} = h^r = \chi h$ $\chi > 1$

Liquid wealth *a*, wealth *x*, and credit constraint on *a*

$$x = a + \phi p_{it}h$$
 $a \ge -\phi p_{it}h$

• Wealth dynamics :

$$\dot{x} = (1-\tau) \left[ra + \underbrace{w_{it} \exp(\bar{l}(j) + \ell_j)}_{=\text{earnings}} \right] - c - p_{it}^r h^r - \left[\delta p_{it} - \underbrace{(1+\phi)\dot{p}_{it}}_{=\text{user cost of } h} \right]_{=\text{user cost of } h}$$

• Change in housing due to migration

$$x'(h',i') = x + (1 - f_s - \phi)p_{it}h - (1 + f_b - \phi)p_{i't}h'$$

Brian Greaney - T. Bourany

Distributional Effects of Uneven Regional Growth

Dynamic HH decision :

- Joint optimal control problem on c, h and i'
 - HJB-VI equation :

 $\rho V_t(x, h, i, \ell, j, \varepsilon, \kappa) = \max_{c, h'} u(A_i, c, \mathbf{h}) + \varepsilon - \kappa + \partial_x V_t(x, h, i, \ell, j, \varepsilon, \kappa) \dot{x} + \dot{V}_t(x, h, i, \ell, j, \varepsilon, \kappa)$ subject to $h^r = 0$ if h > 0 $\dot{x} \ge 0$ if x = 0 $V_t(x, h, i, \ell, j, \varepsilon, \kappa) \ge \max_{\substack{h': x'(h', i) \ge 0}} V_t(x'(h', i), h', i, \ell, j, \varepsilon, \kappa)$

5/14

Dynamic HH decision :

- Joint optimal control problem on c, h and i'
 - HJB-VI equation :

 $\rho V_t(x,h,i,\ell,j,\varepsilon,\kappa) = \max_{c,h'} u(A_i,c,\mathbf{h}) + \varepsilon - \kappa + \partial_x V_t(x,h,i,\ell,j,\varepsilon,\kappa) \dot{x} + \dot{V}_t(x,h,i,\ell,j,\varepsilon,\kappa)$ subject to $h^r = 0$ if h > 0 $\dot{x} \ge 0$ if x = 0 $V_t(x,h,i,\ell,j,\varepsilon,\kappa) \ge \max_{h':x'(h',i)>0} V_t(x'(h',i),h',i,\ell,j,\varepsilon,\kappa)$

- Result, optimal decisions after migration to i' give
 - Housing choice h'(i') changes $\vec{x'}(i') = x'(h'(i'), i')$ and get value $V_t^m(x, h, i, \ell, j, i') = \max_{\substack{h'(i') \\ h'(i')}} V_t(x'(h'(i'), i'), h'(i'), \ell, j, 0, 0)$
 - Migration affects location choice, which affects homeownership, affecting wealth (and consumption and welfare)

$$m(i,i') = \frac{\exp(V_t^m(x,h,i,\ell,j,i') - \tilde{\kappa}_{ii'})^{1/\tilde{\upsilon}}}{\sum_{ii''} \exp(V_t^m(x,h,i,\ell,j,i'') - \tilde{\kappa}_{ii''})^{1/\tilde{\upsilon}}}$$

Brian Greaney - T. Bourany

Distributional Effects of Uneven Regional Growth

May 2023 5 / 14

Rest of the model :

• Law of motion of the distribution (KFE) and labor N_{it}

$$g(x,h,i,\ell,j)$$
 $N_{it} = \int g(x,h,i,\ell,j) d(x,h,\ell,j)$

• Cobb Douglas production : $Y_{it} = \bar{Z}_{it}L_{it}^{\alpha}K_{it}^{1-\alpha}$

$$w_{it} = Z_{it} = \bar{Z}_{it}^{1/\alpha} R_t^{1-\frac{1}{\alpha}} \tilde{\alpha}$$

• Shock of interest : rise of Z_{it} and hence w_{it}

Housing price and supply housing elasticity ξ_i and no-arbitrage (renting/owning)

$$p_{it}^r = \bar{p}_{it}^r N_{it}^{\xi_i}$$
 $p_{it} = \int e^{-(r+\delta)(s-t)} p_{is}^r ds$

Small open econ : r_t and R_t exogenous

Brian Greaney - T. Bourany

Estimation of parameters

External calibration

- for matching demographics J and $\psi(j)$, earning with θ, f_{ζ} and $\overline{l}(j)$,
- Fixed cost of house markets f_s , f_b and δ and ϕ , and house price elasticities ξ from the literature
- Internal calibration :
 - χ for homeownership rate (72%), ρ for median wealth/income (2.35), housing preference η for housing wealth (78%) from SCF
 - Migration cost $\kappa_{ii'}(j)$ linear in *j* to match migration rate from ACS
 - Migration elasticity v from the IV-regression,

 $\Delta \ln L_i = c + \pi \ln Z_i + \alpha_r + \epsilon_i$

• Long run labor supply effect ≈ 4.03

• Local productivity Z_{it} to match w_{it} , amenities A_{it} for local population and p_{it}^r for house prices p_{it}

Untargeted model – distribution of migration/homeownership

Figure 1: Statistics over the Lifecycle

Brian Greaney - T. Bourany

Distributional Effects of Uneven Regional Growth

Wealth distribution

May 2023

9/14

Results –Dynamic effect of a productivity shock Z_{it}

Brian Greaney - T. Bourany

Distributional Effects of Uneven Regional Growth

Effect of local TFP shock

• Welfare effect : $\omega = c + \beta \Delta \ln Z_{it} + \epsilon$ such that

$$\mathbb{E}\left[\int_{t} e^{-\rho s} \ln([1+\omega]A_{s}c_{s}^{1-\eta}h_{s}^{\eta}) + \varepsilon_{s} - \kappa_{s} ds\right] = V'(x,h,i,\ell,j,\varepsilon,\kappa) \big|_{\Delta \ln Z_{it} = 1\%}$$

Tenure / Age	All Ages	20-29	30-39	40-49	50-64	65+
All Tenures	0.43	0.39	0.52	0.55	0.44	0.32
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Renters	0.27 (0.000)	0.34 (0.000)	0.39 (0.000)	0.40 (0.000)	0.26 (0.000)	-0.09 (0.000)
Owners	0.50 (0.000)	0.61 (0.000)	0.59 (0.000)	0.57 (0.000)	0.45 (0.000)	0.43 (0.000)

Brian Greaney - T. Bourany

Results - welfare impact of different channels

Channels of transmission :

- Full model $\beta \approx 0.4$ with heterogeneity [0.25 0.55]
- Model without wealth/homeownership/earning risk / migration : $\beta = 1$
- Model without wealth/homeownership/earning risk, but free mobility : $\beta = 0$.
- Model with wealth/homeownership/earning risk, but one location : $\beta \approx 0.8$ for young 20 40y.o. and $\beta \approx 0 0.4$ for 50 80y.o and renters 0.1 higher than owners.
- Model without homeownership (absentee landlord) or lump β ≈ 0.16, with β ≈ 0.3 for young 20 40y.o. and β ≈ 0 for 50 80y.o

Policy counterfactuals

- Comparative statics
- 1. Land use regulation
 - Change the housing supply elasticity ξ by the most flexible city (New Orleans), reestimate housing price shifters p_{it}^r to match house prices
 - New welfare coefficient $\beta = 0.42$ (instead of $\beta = 0.43$)
 - With $\xi = 0$ we get $\beta = 0.3$
- 2. Eliminating the Mortgage Interest Deduction
 - Eliminating subsidy to owner-occupied housing (likely mitigate redistribution)
 - Reduce housing investment (homeownership/housing wealth share)
 - New welfare coefficient $\beta = 0.38$ (instead of $\beta = 0.43$)

Conclusion

- Develop a quantitative model with homeownership and migration frictions
- Analysis of redistributive effects through labor market, house prices
 - Methodological contribution : bring HACT into quantitative spatial models
- All channels needed to measure accurately the distributional effects
 Analysis of two policies
 - Link between local growth and welfare remains strong