Positive Long-Run Capital Taxation : Chamley-Judd Revisited

Ludwig Straub and Iván Werning

Thomas Bourany

Macro Reading Group

March 2019

T. Bourany - Straub and Werning

Capital taxation

Classic question : Should we tax capital income?

- Two common rationales :
 - 1. reduce distortionary labor taxes
 - 2. redistribution
- But : potentially large efficiency costs

Capital taxation

Classic question : Should we tax capital income?

- Two common rationales :
 - 1. reduce distortionary labor taxes
 - 2. redistribution
- But : potentially large efficiency costs
- ► Two benchmark models : Chamley (1986) and Judd (1985)
- **Both** : <u>zero</u> tax on capital is optimal on the long-run (steady-state)

Capital taxation

Classic question : Should we tax capital income?

- Two common rationales :
 - 1. reduce distortionary labor taxes
 - 2. redistribution
- But : potentially large efficiency costs
- ► Two benchmark models : Chamley (1986) and Judd (1985)
- **Both** : *zero* tax on capital is optimal on the long-run (steady-state)
 - Framework and assumptions questioned...
 - Still, Chamley-Judd remains an important benchmark...
- ► This paper Straub-Werning revisits their result

... using their own model

Chamley-Judd

- Chamley (1986)
 - Trade-off : lower labor taxes vs efficiency
 - Representative agent
 - Intertemporal government budget
- ► Judd (1985)
 - Trade-off : redistribution vs efficiency
 - Workers and Capitalists
 - Balanced budget

Chamley-Judd

- Chamley (1986)
 - Trade-off : lower labor taxes vs efficiency
 - Representative agent
 - Intertemporal government budget
- ► Judd (1985)
 - Trade-off : redistribution vs efficiency
 - Workers and Capitalists
 - Balanced budget
- Straub-Werning revisits their result ... using their own model
 - Show results / proofs incomplete
 - Preferences : overturn conclusions when IES < 1 !
- Main issues :
 - Related to the convergence (or not) to interior steady-state for quantities and multipliers.

T. Bourany - Straub and Werning

Judd (1985) - Capitalist and workers

- Two class economy without government debt :
 - Capitalist save and consume C_t , utility $U(C_t) = \frac{C_t^{1-\sigma}}{1-\sigma}$
 - Workers work and consume (hand-to-mouth) c_t , utility u(c))

Judd (1985) - Capitalist and workers

- Two class economy without government debt :
 - Capitalist save and consume C_t , utility $U(C_t) = \frac{C_t^{1-\sigma}}{1-\sigma}$
 - Workers work and consume (hand-to-mouth) c_t , utility u(c))
- Capitalists' problem

$$\max_{\{C_t,a_{t+1}\}} \sum_{t=0}^{\infty} \beta^t U(C_t)$$
$$C_t + a_{t+1} = R_t a_t \qquad a_{t+1} \ge 0$$

 $R_t = after tax$ interest on capital, $a_t =$ wealth of capitalists

• First order optimality :

$$U'(C_t) = \beta R_{t+1} U'(C_{t+1})$$

$$\beta^t U'(C_t) k_{t+1} \to 0$$

T. Bourany – Straub and Werning

Resource constraint

$$c_t + C_t + g + k_{t+1} \le f(k_t) + (1 - \delta)k_t$$

- Neoclassical technology :
 - *Before-tax* interest : $R_t^* = f'(k_t) + 1 \delta$
 - Wage : $w_t = f(k_t) f'(k_t)k_t$

Resource constraint

$$c_t + C_t + g + k_{t+1} \le f(k_t) + (1 - \delta)k_t$$

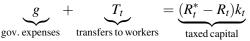
- Neoclassical technology :
 - *Before-tax* interest : $R_t^* = f'(k_t) + 1 \delta$
 - Wage : $w_t = f(k_t) f'(k_t)k_t$
- Government : balanced-budget

- Workers : $c_t = w_t + T_t$
- Market clearing : $a_t = k_t$

Resource constraint

$$c_t + C_t + g + k_{t+1} \le f(k_t) + (1 - \delta)k_t$$

- Neoclassical technology :
 - *Before-tax* interest : $R_t^* = f'(k_t) + 1 \delta$
 - Wage : $w_t = f(k_t) f'(k_t)k_t$
- Government : balanced-budget



- Workers : $c_t = w_t + T_t$
- Market clearing : $a_t = k_t$
- ⇒ First order optimality + market clearing + (capitalist) budget constraint = Implementability constraint

T. Bourany - Straub and Werning

Capital Taxation : Chamley-Judd Revisited Judd (1985) : capitalist and workers Planner's problem

Social planner's problem

- Primal approach : Maximize weighted sum of utilities :
 - *Aim* : redistribution from capitalist to workers : low γ (= 0).

$$\max \sum_{t=0}^{\infty} \beta^t \left\{ u(c_t) + \gamma U(C_t) \right\}$$

$$c_t + C_t + g + k_{t+1} = f(k_t) + (1 - \delta)k_t \tag{1}$$

$$\beta U'(C_t) (C_t + k_{t+1}) = U'(C_{t-1})k_t$$
(2)

$$\beta^t U'(C_t) k_{t+1} \to 0 \tag{3}$$

- λ_t Lagrange multipliers on ressource constraint : eq. (1)
- μ_t Lagrange multipliers on Implementability : eq. (2)

T. Bourany - Straub and Werning

Planner's First-Order conditions

 $\mu_t \text{ on Implementability, } \lambda_t \text{ on ressource, } \kappa_t = k_t / C_{t-1},$ $\upsilon_t = U'(C_t) / u'(c_t)$ $\mu_0 = 0$ $\mu_{t+1} - \mu_t = \left(\frac{\sigma - 1}{\sigma \kappa_{t+1}}\right) \mu_t + \frac{1}{\beta \sigma \kappa_{t+1} \upsilon_t} (1 - \gamma \upsilon_t)$ $\frac{u'(c_{t+1})}{u'(c_t)} (f'(k_{t+1}) + 1 - \delta) = \frac{1}{\beta} + \upsilon_t (\mu_{t+1} - \mu_t)$

Planner's First-Order conditions

 $\mu_{t} \text{ on Implementability, } \lambda_{t} \text{ on ressource, } \kappa_{t} = k_{t}/C_{t-1}, \\ \upsilon_{t} = U'(C_{t})/u'(c_{t}) \\ \mu_{0} = 0 \\ \mu_{t+1} - \mu_{t} = \left(\frac{\sigma - 1}{\sigma\kappa_{t+1}}\right)\mu_{t} + \frac{1}{\beta\sigma\kappa_{t+1}\upsilon_{t}}(1 - \gamma\upsilon_{t}) \\ \frac{u'(c_{t+1})}{u'(c_{t})}(f'(k_{t+1}) + 1 - \delta) = \frac{1}{\beta} + \upsilon_{t}(\mu_{t+1} - \mu_{t})$

Judd (1985) studies interior steady state

- for allocation + multipliers
- $c_t = c > 0, C_t = C > 0, k_t = k > 0, \mu_t = \mu$
- Last FOC $\Rightarrow R^* = 1/\beta$
- Capitalists' Euler $\Rightarrow R = 1/\beta$
- Hence : Zero capital tax!

Planner's First-Order conditions

 $\mu_t \text{ on Implementability, } \lambda_t \text{ on ressource, } \kappa_t = k_t / C_{t-1},$ $\upsilon_t = U'(C_t) / u'(c_t)$ $\mu_0 = 0$ $\mu_{t+1} - \mu_t = \left(\frac{\sigma - 1}{\sigma \kappa_{t+1}}\right) \mu_t + \frac{1}{\beta \sigma \kappa_{t+1} \upsilon_t} (1 - \gamma \upsilon_t)$ $\frac{u'(c_{t+1})}{u'(c_t)} (f'(k_{t+1}) + 1 - \delta) = \frac{1}{\beta} + \upsilon_t (\mu_{t+1} - \mu_t)$

Judd (1985) studies interior steady state

- for allocation + multipliers
- $c_t = c > 0, C_t = C > 0, k_t = k > 0, \mu_t = \mu$
- Last FOC $\Rightarrow R^* = 1/\beta$
- Capitalists' Euler $\Rightarrow R = 1/\beta$
- Hence : Zero capital tax!

Planner's First-Order conditions

 $\mu_t \text{ on Implementability, } \lambda_t \text{ on ressource, } \kappa_t = k_t / C_{t-1},$ $\upsilon_t = U'(C_t) / u'(c_t)$ $\mu_0 = 0$ $\mu_{t+1} - \mu_t = \left(\frac{\sigma - 1}{\sigma \kappa_{t+1}}\right) \mu_t + \frac{1}{\beta \sigma \kappa_{t+1} \upsilon_t} (1 - \gamma \upsilon_t)$ $\frac{u'(c_{t+1})}{u'(c_t)} (f'(k_{t+1}) + 1 - \delta) = \frac{1}{\beta} + \upsilon_t (\mu_{t+1} - \mu_t)$

Judd (1985) studies interior steady state

- for allocation + multipliers
- $c_t = c > 0, C_t = C > 0, k_t = k > 0, \mu_t = \mu$
- Last FOC $\Rightarrow R^* = 1/\beta$
- Capitalists' Euler $\Rightarrow R = 1/\beta$
- Hence : Zero capital tax!

Planner's First-Order conditions

 $\mu_{t} \text{ on Implementability, } \lambda_{t} \text{ on ressource, } \kappa_{t} = k_{t}/C_{t-1}, \\ \upsilon_{t} = U'(C_{t})/u'(c_{t}) \\ \mu_{0} = 0 \\ \mu_{t+1} - \mu_{t} = \left(\frac{\sigma - 1}{\sigma\kappa_{t+1}}\right)\mu_{t} + \frac{1}{\beta\sigma\kappa_{t+1}\upsilon_{t}}(1 - \gamma\upsilon_{t}) \\ \frac{u'(c_{t+1})}{u'(c_{t})}(f'(k_{t+1}) + 1 - \delta) = \frac{1}{\beta} + \upsilon_{t}(\mu_{t+1} - \mu_{t})$

Judd (1985) studies interior steady state

- for allocation + multipliers
- $c_t = c > 0, C_t = C > 0, k_t = k > 0, \mu_t = \mu$
- Last FOC $\Rightarrow R^* = 1/\beta$
- Capitalists' Euler $\Rightarrow R = 1/\beta$
- Hence : Zero capital tax !

... or not?

T. Bourany - Straub and Werning

Taxation results : Judd, 1985 and Lansing, 1999

► *Thm 1 (Judd, 1985)* If quantities and multipliers converge to an <u>interior</u> steady state – i.e. c_t , C_t , k_t converge to positive values and μ_t converge, **then** the tax on capital is <u>zero in the limit</u> : $T_t = 1 - \frac{R_t}{R_t^*} \to 0$

Taxation results : Judd, 1985 and Lansing, 1999

- ► *Thm 1 (Judd, 1985)* If quantities and multipliers converge to an *interior* steady state i.e. c_t , C_t , k_t converge to positive values and μ_t converge, **then** the tax on capital is *zero in the limit* : $\mathcal{T}_t = 1 \frac{R_t}{R_t^*} \to 0$
- Logarithm Utility : Assume $\sigma = 1 : U(C) = \log(C)$
 - \Rightarrow Constant saving rate β .

$$C_t = (1 - \beta)R_t k_t$$
 $k_{t+1} = \beta R_t k_t = \frac{\beta}{1 - \beta}C_t$

• Substitute out C_t , and redistribute $\gamma = 0$, you obtain :

$$\sum_{t=0}^{\infty} \beta^{t} u(c_{t}) \qquad s.t. \quad c_{t} + \frac{1}{\beta} k_{t+1} + g = f(k_{t}) + (1 - \delta) k_{t}$$

 \Rightarrow Neoclassical growth model! (with higher cost $\frac{1}{\beta}$ of capital).

• **Prop 1** : Planner FOC : $R^* = 1/\beta^2$; Euler $R = 1/\beta$, and capital tax $\mathcal{T} = 1 - \beta$

T. Bourany - Straub and Werning

Capital Taxation : Chamley-Judd Revisited Judd (1985) : capitalist and workers New results : revisiting taxation results

- Why positive tax?
 - Multipliers do not converge (Reinhorn, 2002)
 - Extend to $\gamma \neq 0$ (Lansing, 1999),
 - Specific to log?

Capital Taxation : Chamley-Judd Revisited Judd (1985) : capitalist and workers New results : revisiting taxation results

- Why positive tax?
 - Multipliers do not converge (Reinhorn, 2002)
 - Extend to $\gamma \neq 0$ (Lansing, 1999),
 - Specific to log ? No ! ...

Capital Taxation : Chamley-Judd Revisited Judd (1985) : capitalist and workers New results : revisiting taxation results

- Why positive tax ?
 - Multipliers do not converge (Reinhorn, 2002)
 - Extend to $\gamma \neq 0$ (Lansing, 1999),
 - Specific to log ? *No* ! ... for all $\sigma \ge 1$!

- Why positive tax?
 - Multipliers do not converge (Reinhorn, 2002)
 - Extend to $\gamma \neq 0$ (Lansing, 1999),
 - Specific to log ? *No* ! ... for all $\sigma \ge 1$!
- Prop 2 If σ ≥ 1 and γ = 0, then, no solution of the planning problem converge to the zero-tax steady state, or any other interior steady state

- Why positive tax?
 - Multipliers do not converge (Reinhorn, 2002)
 - Extend to $\gamma \neq 0$ (Lansing, 1999),
 - Specific to log ? *No* ! ... for all $\sigma \ge 1$!
- Prop 2 If σ ≥ 1 and γ = 0, then, no solution of the planning problem converge to the zero-tax steady state, or any other interior steady state

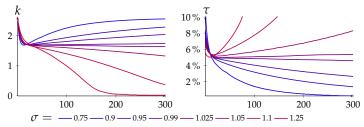
- Why positive tax?
 - Multipliers do not converge (Reinhorn, 2002)
 - Extend to $\gamma \neq 0$ (Lansing, 1999),
 - Specific to log ? *No* ! ... for all $\sigma \ge 1$!
- ▶ **Prop 2** If $\sigma \ge 1$ and $\gamma = 0$, then, **no** solution of the planning problem converge to the zero-tax steady state, or any other interior steady state
- Prop 3 If σ ≥ 1 and γ = 0, then any solution of the planning problem converge to the non-interior steady state : T_t → T_g > 0

- Why positive tax?
 - Multipliers do not converge (Reinhorn, 2002)
 - Extend to $\gamma \neq 0$ (Lansing, 1999),
 - Specific to log ? *No* ! ... for all $\sigma \ge 1$!
- ▶ **Prop 2** If $\sigma \ge 1$ and $\gamma = 0$, then, **no** solution of the planning problem converge to the zero-tax steady state, or any other interior steady state
- Prop 3 If σ ≥ 1 and γ = 0, then any solution of the planning problem converge to the non-interior steady state : T_t → T_g > 0
- Extension : generalize to
 - 1. Ad-hoc saving function $S(R_tk_t, R_{t+1}, ...)$
 - 2. $\gamma \neq 0$ but redistribution toward workers

Capital Taxation : Chamley-Judd Revisited Judd (1985) : capitalist and workers Intuition and numerical example

Intuition and numerical example

- ► Intuition for *increasing slope* of capital tax :
 - · Incentivize capitalists to save
 - Announce forever increasing tax
 - If IES < 1 : capitalist increase saving (income effect > substitution)
- Left graph : capital stock k_t , right graph : wealth tax T_t



• Red : IES < 1 : non-interior steady state, 85% long run tax.

• Blue : IES > 1 : interior steady state, 0% tax (Judd result)

T. Bourany - Straub and Werning

Chamley (1986)

- Model overview
 - Representative agent
 - Optimal tax policy (labor taxes/capital taxes) and government debt
 - Koopmans' recursive utility $\mathcal{V}(U_t, U_{t+1}, \dots) = W(U_t, \mathcal{V}_{t+1}).$
 - Bound on capital tax : non-confiscatory constraint $R_t \ge 1$
- Main results :
 - Chamley : zero capital tax
 - Revisiting : add assumption : *if* "steady state is interior" and "constraint is asymptotically slack"
 - . If non separable, then $\tau_k \rightarrow 0$ and either first best or tax base is zero
 - . Separable utility : If IES < 1 then constraint may bind forever $\tau_k = \bar{\tau}$
 - Moreover : need to look at the transition path !
- ▶ Judd (1999) : Straub-Werning also revisit consumption tax analogy

Conclusion – takeaways

- Revisit Judd-Chamley models
 - If IES > 1 : zero long-run capital taxation
 - If IES < 1 : can have **positive** long-run capital taxation
- Methodological : Think twice before making assumptions on endogenous multipliers