Are Economists Getting Climate Dynamics Right and Does It Matter ?

Simon Dietz, Frederick van der Ploeg, Armon Rezai, Frank Venmans

Macro Reading Group

February 2022

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans [Climate Dynamics : Does It Matter ?](#page-23-0) Feb 2022 1 / 20

Introduction

- \triangleright This paper compares the climate dynamics predictions of two sets of models :
	- IAMs : Nordhaus' DICE-2016, GHKT 2014, FUND, PAGE, etc
	- Climate sciences models : IRF-MIP/CMIP5

Introduction

- \triangleright This paper compares the climate dynamics predictions of two sets of models :
	- IAMs : Nordhaus' DICE-2016, GHKT 2014, FUND, PAGE, etc.
	- Climate sciences models : IRF-MIP/CMIP5
- \triangleright What are the key differences in climate, carbon cycle response and temperature predictions
	- (i) delay between CO2 emissions and warming (too long for IAMs)
	- (ii) positive carbon cycle feedbacks are mostly absent (sink absorbs $CO₂$ too fast in IAMs)

Introduction

- \triangleright This paper compares the climate dynamics predictions of two sets of models :
	- IAMs : Nordhaus' DICE-2016, GHKT 2014, FUND, PAGE, etc.
	- Climate sciences models : IRF-MIP/CMIP5
- \triangleright What are the key differences in climate, carbon cycle response and temperature predictions
	- (i) delay between CO2 emissions and warming (too long for IAMs)
	- (ii) positive carbon cycle feedbacks are mostly absent (sink absorbs $CO₂$ too fast in IAMs)
- \triangleright Are these differences important for policy decisions ?
	- Evaluation with damage function as in Nordhaus' DICE model
	- Implications for carbon price (welfare-maximizing vs. cost-minimizing)
	- Slow temperature response lowers the price of carbon & increases emissions !
	- Matters for the likelihood of staying under 2◦*C*

L[IAMs have slow temperature dynamics](#page-5-0)

Climate dynamics in IAMs : two key differences

- \triangleright Same experiment as last week (Ricke and Caldeira 2014)
	- Impulse of 100 GtC, with $CO₂$ concentration of 389 ppm (2010)
	- Temperature impulse response of 256 reduced forms climate sciences models :
	- CMIP5 ensemble, c.f. Joos et al 2013. (16 models of the carbon cycle) + Geoffroy et al. 2013 (16 models of temperature)
- \triangleright Comparison with Integrated assessment models (IAMs)
	- Nordhaus' DICE (2013, 2016), FUND (Waldhoff et al 2014), PAGE (Hope 2013)
	- Analytical models : Golosov et al. 2014 (GHKT), Lemoine and Rudik 2017 (LR); Gerlagh and Liski 2018 (GL)

 L [IAMs have slow temperature dynamics](#page-5-0)

Climate dynamics in IAMs : two key differences

- \triangleright Same experiment as last week (Ricke and Caldeira 2014)
	- Impulse of 100 GtC, with $CO₂$ concentration of 389 ppm (2010)
	- Temperature impulse response of 256 reduced forms climate sciences models :
	- CMIP5 ensemble, c.f. Joos et al 2013. (16 models of the carbon cycle) + Geoffroy et al. 2013 (16 models of temperature)
- \triangleright Comparison with Integrated assessment models (IAMs)
	- Nordhaus' DICE (2013, 2016), FUND (Waldhoff et al 2014), PAGE (Hope 2013)
	- Analytical models : Golosov et al. 2014 (GHKT), Lemoine and Rudik 2017 (LR); Gerlagh and Liski 2018 (GL)

 \blacktriangleright Results (1):

- Response of temperature is fast : 10 years to reach peak temperature
- Way too slow in IAMs (55-180 years to peak)
- Robust : similar result (shape of IRF) for different sizes and consistent with observational data

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans [Climate Dynamics : Does It Matter ?](#page-0-0) Feb 2022 4 / 20

[Climate Dynamics : Does It Matter ?](#page-0-0)

 $\mathrel{{\sqsubseteq}~}$ [Two key tests :](#page-5-0)

 L [IAMs have slow temperature dynamics](#page-5-0)

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans [Climate Dynamics : Does It Matter ?](#page-0-0) Feb 2022 5 / 20

Climate dynamics in IAMs : two key differences

- \triangleright Same experiment as last week (Ricke and Caldeira 2014)
- Comparison with leading Integrated assessment models (IAMs)
- Experiment (2)
	- For constant emissions, how much $CO₂$ is absorbed by sinks?
	- Comparison with FAIR model (Millar et al 2017), i.e. a CMIP5 model calibrated on IRFs of fig 1.
- \blacktriangleright Results (2):
	- In FAIR/CMIP5 : uptake by carbon sinks decline as atmospheric *CO*² : positive feedback
	- Most IAMs do not include feedback from the carbon cycle

[Climate Dynamics : Does It Matter ?](#page-0-0)

 $\mathbf{L}_{\text{Two key tests}}$:

 $\mathrel{\mathop{\rule{0pt}{.15pt}\hbox{--}}}\mathrel{\mathop{\rule{0pt}{.15pt}\hbox{--}}}\mathrel{\mathop{\rule{0pt}{.15pt}\hbox{14Ms}}$ have carbon sinks too strong

Decomposition of IRF

 \triangleright Decompose temperature response to a $CO₂$ emission impulse in the models into IRF of (i) atmospheric CO_2 concentration M_s and (ii) temperature T_t .

$$
\frac{\Delta T_t}{\Delta E_1} = \sum_{s=1}^t \frac{\Delta T_t}{\Delta F_s} \frac{\Delta F_s}{\Delta M_s} \frac{\Delta M_s}{\Delta E_1}
$$

I First : Carbon cycle [∆]*M^s* ∆*E*¹ ► Second : Radiative forcing and temperature dynamics $\frac{\Delta T_t}{\Delta F_s}$ ∆*F^s* ∆*M^s*

Decomposition of IRF : 1. Carbon cycle

 \triangleright Carbon cycle is modeled with different boxes (atmosphere, biosphere, and upper and lower oceans) as a system of equations :

$$
m_t = Am_{t-1} + bE_t
$$

$$
M_t = d'm_t
$$

- Atmospheric $CO₂$ concentration :
	- sprectral decomposition, with *n* eigenvalues λ_i .
	- ψ_i : contribution to box *i* to M_t
	- $i = 1$ permanent box : 22% of M_t is due to ψ_1
	- Many slowly decaying boxes

$$
\frac{\Delta M_t}{\Delta E_s} = d' A^{t-s} b = \sum_{s=1}^t \sum_{i=1}^n \psi_i \lambda_i^{t-s}
$$

- \triangleright Some IAMs do not have the same decomposition (sometimes half life $log(1/2)/\lambda_i$ too low)
- I DICE do not remove enough $CO₂$ in the long-run

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans [Climate Dynamics : Does It Matter ?](#page-0-0) Feb 2022 9 / 20

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans [Climate Dynamics : Does It Matter ?](#page-0-0) Feb 2022 10 / 20

Decomposition of IRF : 2. Temperature dynamics

- \triangleright Second : Radiative forcing F_s and temperature dynamics T_t
- \triangleright Radiative forcing : simple physical relation :

$$
\frac{\Delta F_s}{\Delta M_s} = \frac{F_{2 \times CO_2}}{\ln(2)} \frac{1}{M_s}
$$

 \blacktriangleright Warming models :

- Impulse of 100 *GtC* / 47 ppm
- Decomposition, with *n* eigenvalues λ_i^T for each box
- ψ_i^T : contribution to box *i* to T_t

$$
\frac{\Delta T_t}{\Delta F_s} = \sum_{s=1}^t \sum_{i=1}^n \psi_i^T \lambda_i^{T-t-s}
$$

\blacktriangleright Results :

- IAM have too sluggish temperature
- Heat up too much in the long-run

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans [Climate Dynamics : Does It Matter ?](#page-0-0) Feb 2022 11 / 20

[Climate Dynamics : Does It Matter ?](#page-0-0)

 $\mathrel{\sqsubseteq}$ [IRF decomposition](#page-10-0)

 $\label{eq:re4} \begin{tabular}{l} \rule{0pt}{2.2ex} \rule{0pt}{$

Economic policies

 \triangleright What are the implications of these different climate models for economics ?

Economic policies

- \triangleright What are the implications of these different climate models for economics ?
- \triangleright Integrate different climate blocks into the standard IAM of Nordhaus DICE 2016 :
	- DICE 2016
	- DICE-GHKT14 (Golosov et al. (2014))
	- Other IAMs : DICE-DICE 2013, DICE-GL18 (Gerlagh Liski (2018)), DICE-LR17 (Lemoine Rudik (2017))
	- DICE-Joos-Geoffroy (Joos et al. (2013) carbon cycle + Geoffroy et al. (2013) warming model)
	- DICE-FAIR-Geoffroy (FAIR carbon cycle + Geoffroy et al. (2013) warming model)
- \blacktriangleright Two types of policies :
	- Welfare maximizing
	- Path to limit warming to 2◦*C* : minimum discounted abatement cost subject to constraint

[Climate Dynamics : Does It Matter ?](#page-0-0) Leconomic policy

- \blacktriangleright Two types of policies :
	- Welfare maximizing
	- Limit warming to 2◦*C*

 \blacktriangleright Paths :

- Carbon Price 2010*US*\$/*tCO*²
- *CO*₂ Emissions *GtCO*²
- Temperature ◦*C*

[Climate Dynamics : Does It Matter ?](#page-0-0) $L_{Economic policy}$ $L_{Economic policy}$ $L_{Economic policy}$

Carbon price

[Climate Dynamics : Does It Matter ?](#page-0-0) $L_{Economic policy}$ $L_{Economic policy}$ $L_{Economic policy}$

*CO*² emissions

Temperature emissions

Policy experiments (Table 4 and 5)

- 1 Excessive delay between $CO₂$ emission impulse and warming :
- \blacktriangleright Experiment :
	- Take DICE-Joos-Geoffroy model (closest to climate CMIP5 model)
	- ... with the same long-run response of temperature
	- ... but slowest short-run impulse as in IAMs : $>$ 56 or 112 instead of 11 years of peak warming
- \blacktriangleright Results :
	- Lower carbon price in both policy scenarios
	- Increase emissions (but ofc slow response of temperature by assumption)
	- More sensitivity on discount rates β (reason behind the Nordhaus vs. Stern debate)

Experiment : positive carbon cycle feedback (Table 4 and 5)

- 2 IAMs do not include weakening of carbon sinks : $CO₂$ is removing/decaying too fast
- \blacktriangleright Experiment :
	- Compare DICE-Joos-Geoffroy model (closest to climate CMIP5 model) but without feedback
	- ... vs. DICE-FAIR-Geoffroy model : includes these feedbacks
- \blacktriangleright Results :
	- Higher carbon price in both policy scenarios with feedbacks (\$2.7, i.e. 10−15% higher in 2020)
	- But have larger effects in the long run when $CO₂$ concentration will be higher (\$83 i.e. 23% by 2100)
	- Reduce emission budget and optimal emissions

Conclusion

\triangleright Standard IAMs are getting the climate wrong :

- Temperature inertia is too long, and rise too much in the long run
- Carbon cycles vary widely in IAMs, in DICE it decays too slowly
- Absence of positive carbon feedbacks : carbon sinks weaken.
- \triangleright Matters for policy prescriptions :
	- Change/increase the price of carbon
	- Pitfalls can be easily fixed :
		- Recalibration of the carbon cycle as in FAIR (Millar et al 2017)
		- Replace the temperature models as in CMIP5 (Geoffroy et al 2013)
		- Or simply specify temperature as a linear function of cumulative emissions (TCRE), c.f. first slide

$$
T_t = 1^\circ C + \int_0^t E_s ds \Big|_{TtC} \times 1.7^\circ C
$$

• Need to talk about uncertainty too...

DICE model 2016

- \blacktriangleright Climate block
	- Emissions :

$$
E_t = \sigma_t (1 - \mu_t) Y_t + E_{\text{land } t}
$$

• Carbon cycle : 3 boxes *j* (Atm., Up Ocean, Low Ocean)

$$
M_{j,t} = \sum_{i} \phi_{i,j} M_{i,t-1} + \phi_{0,j} E_t
$$

$$
M_t = AM_{t-1} + bE_t
$$

• Radiative forcing :

$$
F(t) = \eta \left\{ \log_2 \left[M_{a,t} / M_{a,1750} \right] \right\} + F_{ex}(t).
$$

• Warming temperature : 2 boxes $(a = Atm, l = Low Ocean)$

$$
T_{a,t} = T_{a,t-1} + \xi_1 \{ F_t - \xi_2 T_{a,t-1} - \xi_3 \left[T_{a,t-1} - T_{t,t-1} \right] \}
$$

$$
T_{l,t} = T_{l,t-1} + \xi_4 \left[T_{a,t-1} - T_{l,t-1} \right]
$$

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans [Climate Dynamics : Does It Matter ?](#page-0-0) Feb 2022 1 / 4

DICE model 2016

- \blacktriangleright Economic block
	- Welfare

$$
W = \sum_{t=1}^{T \max} R(t) V[c(t), L(t)] = \sum_{t=1}^{T \max} (\frac{1}{1+\rho})^t U(c_t) L_t
$$

• Output net of damages (*Y^t* Cobb Douglas)

$$
Q_t = \Omega_t (1 - \Lambda_t) Y_t
$$

• Damages :

$$
\Omega_t = \frac{D_t}{1 + D_t} \qquad D_t = \varphi_1 T_{a,t} + \varphi_2 T_{a,t}^2
$$

• Social cost of carbon :

$$
\text{SCC}(t) \equiv \frac{\partial W}{\partial E(t)} / \frac{\partial W}{\partial C(t)} \equiv \partial C(t) / \partial E(t)
$$

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans [Climate Dynamics : Does It Matter ?](#page-0-0) Feb 2022 2 / 4

Welfare-Maximizing Paths with variants of the DICE Model

Table 4. Welfare-Maximizing Paths with Variants of the DICE Model

Note. Comparing DICE-Joos-Geoffroy to Delay 56 and Delay 112 shows that an excessive warming delay results in lower carbon prices, higher CO₂ emissions, but lower temperatures. Comparing DICE-FAIR-Geoffroy (with positive carbon cycle feedbacks) to DICE-Joos-Geoffroy (no feedbacks) shows that positive feedbacks result in higher carbon prices, particularly in the long run, and in lower emissions and temperatures.

Cost-Minimizing Paths with variants of the DICE Model

Table 5. 2°C Cost-Minimizing Paths in Variants of the DICE Model

Note. Comparing DICE-Joos-Geoffroy to Delay 56 and Delay 112 shows that an excessive warming delay results in lower carbon prices and higher emissions in 2020 and 2050, but lower temperatures. Comparing DICE-FAIR-Geoffroy (with positive carbon cycle feedbacks) to DICE-Joos-Geoffroy (no feedbacks) shows that positive feedbacks result in higher carbon prices in 2020 and 2050, and in lower emissions and temperatures.