Are Economists Getting Climate Dynamics Right and Does It Matter?

Simon Dietz, Frederick van der Ploeg, Armon Rezai, Frank Venmans

Macro Reading Group

February 2022

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans

Climate Dynamics : Does It Matter?

Feb 2022 1 / 20

Climate Dynamics : Does It Matter? Introduction

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans

Feb 2022 2/20

Climate Dynamics : Does It Matter?

Introduction

- This paper compares the climate dynamics predictions of two sets of models :
 - IAMs : Nordhaus' DICE-2016, GHKT 2014, FUND, PAGE, etc
 - Climate sciences models : IRF-MIP/CMIP5

Introduction

- This paper compares the climate dynamics predictions of two sets of models :
 - IAMs : Nordhaus' DICE-2016, GHKT 2014, FUND, PAGE, etc
 - Climate sciences models : IRF-MIP/CMIP5
- What are the key differences in climate, carbon cycle response and temperature predictions
 - (i) delay between CO2 emissions and warming (too long for IAMs)
 - (ii) positive carbon cycle feedbacks are mostly absent (sink absorbs CO₂ too fast in IAMs)

Introduction

- This paper compares the climate dynamics predictions of two sets of models :
 - IAMs : Nordhaus' DICE-2016, GHKT 2014, FUND, PAGE, etc
 - Climate sciences models : IRF-MIP/CMIP5
- What are the key differences in climate, carbon cycle response and temperature predictions
 - (i) delay between CO2 emissions and warming (too long for IAMs)
 - (ii) positive carbon cycle feedbacks are mostly absent (sink absorbs CO₂ too fast in IAMs)
- Are these differences important for policy decisions?
 - Evaluation with damage function as in Nordhaus' DICE model
 - Implications for carbon price (welfare-maximizing vs. cost-minimizing)
 - Slow temperature response lowers the price of carbon & increases emissions !
 - Matters for the likelihood of staying under $2^{\circ}C$

Two key tests :

LAMs have slow temperature dynamics

Climate dynamics in IAMs : two key differences

Same experiment as last week (Ricke and Caldeira 2014)

- Impulse of 100 GtC, with CO₂ concentration of 389 ppm (2010)
- Temperature impulse response of 256 reduced forms climate sciences models :
- CMIP5 ensemble, c.f. Joos et al 2013. (16 models of the carbon cycle) + Geoffroy et al. 2013 (16 models of temperature)
- Comparison with Integrated assessment models (IAMs)
 - Nordhaus' DICE (2013, 2016), FUND (Waldhoff et al 2014), PAGE (Hope 2013)
 - Analytical models : Golosov et al. 2014 (GHKT), Lemoine and Rudik 2017 (LR); Gerlagh and Liski 2018 (GL)

Two key tests :

LAMs have slow temperature dynamics

Climate dynamics in IAMs : two key differences

Same experiment as last week (Ricke and Caldeira 2014)

- Impulse of 100 GtC, with CO₂ concentration of 389 ppm (2010)
- Temperature impulse response of 256 reduced forms climate sciences models :
- CMIP5 ensemble, c.f. Joos et al 2013. (16 models of the carbon cycle) + Geoffroy et al. 2013 (16 models of temperature)
- Comparison with Integrated assessment models (IAMs)
 - Nordhaus' DICE (2013, 2016), FUND (Waldhoff et al 2014), PAGE (Hope 2013)
 - Analytical models : Golosov et al. 2014 (GHKT), Lemoine and Rudik 2017 (LR); Gerlagh and Liski 2018 (GL)

Results (1):

- Response of temperature is fast : 10 years to reach peak temperature
- Way too slow in IAMs (55-180 years to peak)
- Robust : similar result (shape of IRF) for different sizes and consistent with observational data

Climate Dynamics : Does It Matter?

Two key tests :

LAMs have slow temperature dynamics

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans

Climate Dynamics : Does It Matter?

Climate dynamics in IAMs : two key differences

- Same experiment as last week (Ricke and Caldeira 2014)
- Comparison with leading Integrated assessment models (IAMs)
 Experiment (2)
- Experiment (2)
 - For constant emissions, how much CO₂ is absorbed by sinks?
 - Comparison with FAIR model (Millar et al 2017), i.e. a CMIP5 model calibrated on IRFs of fig 1.
- ▶ Results (2) :
 - In FAIR/CMIP5 : uptake by carbon sinks decline as atmospheric *CO*₂ : positive feedback
 - Most IAMs do not include feedback from the carbon cycle

Climate Dynamics : Does It Matter?

Two key tests :

LAMs have carbon sinks too strong

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans

Decomposition of IRF

Decompose temperature response to a CO₂ emission impulse in the models into IRF of (i) atmospheric CO₂ concentration M_s and (ii) temperature T_t.

$$\frac{\Delta T_t}{\Delta E_1} = \sum_{s=1}^t \frac{\Delta T_t}{\Delta F_s} \frac{\Delta F_s}{\Delta M_s} \frac{\Delta M_s}{\Delta E_1}$$

First : Carbon cycle ΔM_s/ΔE₁
 Second : Radiative forcing and temperature dynamics ΔT_t ΔF_s/ΔM_s

Decomposition of IRF : 1. Carbon cycle

Carbon cycle is modeled with different boxes (atmosphere, biosphere, and upper and lower oceans) as a system of equations :

$$\boldsymbol{m}_t = A\boldsymbol{m}_{t-1} + b\boldsymbol{E}_t$$
$$\boldsymbol{M}_t = d'\boldsymbol{m}_t$$

- Atmospheric *CO*₂ concentration :
 - sprectral decomposition, with *n* eigenvalues λ_i .
 - ψ_i : contribution to box *i* to M_t
 - i = 1 permanent box : 22% of M_t is due to ψ_1
 - Many slowly decaying boxes

$$\frac{\Delta M_t}{\Delta E_s} = d' A^{t-s} b = \sum_{s=1}^t \sum_{i=1}^n \psi_i \lambda_i^{t-s}$$

- Some IAMs do not have the same decomposition (sometimes half life $log(1/2)/\lambda_i$ too low)
 - DICE do not remove enough CO_2 in the long-run

Carbon cycle

Decomposition of IRF : 2. Temperature dynamics

- Second : Radiative forcing F_s and temperature dynamics T_t
- Radiative forcing : simple physical relation :

$$\frac{\Delta F_s}{\Delta M_s} = \frac{F_{2 \times CO_2}}{\ln(2)} \frac{1}{M_s}$$

Warming models :

- Impulse of 100*GtC* / 47 ppm
- Decomposition, with *n* eigenvalues λ_i^T for each box
- ψ_i^T : contribution to box *i* to T_t

$$\frac{\Delta T_t}{\Delta F_s} = \sum_{s=1}^t \sum_{i=1}^n \psi_i^T \lambda_i^T t^{-s}$$

Results :

- IAM have too sluggish temperature
- Heat up too much in the long-run

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans

Climate Dynamics : Does It Matter?

-IRF decomposition

-Temperature dynamics

Economic policies

What are the implications of these different climate models for economics ?

Economic policies

- What are the implications of these different climate models for economics ?
- Integrate different climate blocks into the standard IAM of Nordhaus DICE 2016 :
 - DICE 2016
 - DICE-GHKT14 (Golosov et al. (2014))
 - Other IAMs : DICE-DICE 2013, DICE-GL18 (Gerlagh Liski (2018)), DICE-LR17 (Lemoine Rudik (2017))
 - DICE-Joos-Geoffroy (Joos et al. (2013) carbon cycle + Geoffroy et al. (2013) warming model)
 - DICE-FAIR-Geoffroy (FAIR carbon cycle + Geoffroy et al. (2013) warming model)
- Two types of policies :
 - Welfare maximizing
 - Path to limit warming to $2^{\circ}C$: minimum discounted abatement cost subject to constraint

Climate Dynamics : Does It Matter? - Economic policy

- Two types of policies :
 - Welfare maximizing
 - Limit warming to $2^{\circ}C$

▶ Paths :

- Carbon Price ۰ 2010US\$/tCO2
- CO₂ Emissions $GtCO_2$
- Temperature $^{\circ}C$

Climate Dynamics : Does It Matter?

Carbon price

Climate Dynamics : Does It Matter?

CO₂ emissions

Temperature emissions

Economics analysis of the two main differences

Policy experiments (Table 4 and 5)

- 1 Excessive delay between CO_2 emission impulse and warming :
- Experiment :
 - Take DICE-Joos-Geoffroy model (closest to climate CMIP5 model)
 - ... with the same long-run response of temperature
 - ... but slowest short-run impulse as in IAMs :
 > 56 or 112 instead of 11 years of peak warming
- Results :
 - Lower carbon price in both policy scenarios
 - Increase emissions (but of slow response of temperature by assumption)
 - More sensitivity on discount rates β (reason behind the Nordhaus vs. Stern debate)

Experiment : positive carbon cycle feedback (Table 4 and 5)

- 2 IAMs do not include weakening of carbon sinks : *CO*₂ is removing/decaying too fast
- Experiment :
 - Compare DICE-Joos-Geoffroy model (closest to climate CMIP5 model) but without feedback
 - ... vs. DICE-FAIR-Geoffroy model : includes these feedbacks
- Results :
 - Higher carbon price in both policy scenarios with feedbacks (\$2.7, i.e. 10–15% higher in 2020)
 - But have larger effects in the long run when *CO*₂ concentration will be higher (\$83 i.e. 23% by 2100)
 - Reduce emission budget and optimal emissions

Conclusion

- Standard IAMs are getting the climate wrong :
 - Temperature inertia is too long, and rise too much in the long run
 - Carbon cycles vary widely in IAMs, in DICE it decays too slowly
 - Absence of positive carbon feedbacks : carbon sinks weaken.
- Matters for policy prescriptions :
 - Change/increase the price of carbon
 - Pitfalls can be easily fixed :
 - Recalibration of the carbon cycle as in FAIR (Millar et al 2017)
 - Replace the temperature models as in CMIP5 (Geoffroy et al 2013)
 - Or simply specify temperature as a linear function of cumulative emissions (TCRE), c.f. first slide

$$T_t = 1^{\circ}C + \int_0^t E_s ds \Big|_{TtC} \times 1.7^{\circ}C$$

• Need to talk about uncertainty too...

DICE model 2016

- Climate block
 - Emissions :

$$E_t = \sigma_t (1 - \mu_t) Y_t + E_{\text{land } t}$$

• Carbon cycle : 3 boxes *j* (Atm., Up Ocean, Low Ocean)

$$M_{j,t} = \sum_{i} \phi_{i,j} M_{i,t-1} + \phi_{0,j} E_t$$
$$M_t = A M_{t-1} + b E_t$$

• Radiative forcing :

$$F(t) = \eta \{ \log_2 \left[M_{a,t} / M_{a,1750} \right] \} + F_{ex}(t).$$

• Warming temperature : 2 boxes (a = Atm, l = Low Ocean)

$$T_{a,t} = T_{a,t-1} + \xi_1 \left\{ F_t - \xi_2 T_{a,t-1} - \xi_3 [T_{a,t-1} - T_{l,t-1}] \right\}$$

$$T_{l,t} = T_{l,t-1} + \xi_4 [T_{a,t-1} - T_{l,t-1}]$$

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans

Climate Dynamics : Does It Matter?

DICE model 2016

- Economic block
 - Welfare

$$W = \sum_{t=1}^{T \max} R(t) V[c(t), L(t)] = \sum_{t=1}^{T \max} \left(\frac{1}{1+\rho}\right)^t U(c_t) L_t$$

• Output net of damages (*Y_t* Cobb Douglas)

$$Q_t = \Omega_t (1 - \Lambda_t) Y_t$$

• Damages :

$$\Omega_t = \frac{D_t}{1 + D_t} \qquad D_t = \varphi_1 T_{a,t} + \varphi_2 T_{a,t}^2$$

• Social cost of carbon :

$$SCC(t) \equiv \frac{\partial W}{\partial E(t)} / \frac{\partial W}{\partial C(t)} \equiv \partial C(t) / \partial E(t)$$

T. Bourany / Dietz-van der Ploeg-Rezai-Venmans

Climate Dynamics : Does It Matter?

Welfare-Maximizing Paths with variants of the DICE Model

Table 4. Welfare-Maximizing Paths with Variants of the DICE Model

	Carbon-Cycle		Carbon Price (USD/tCO ₂)			CO ₂ Emissions (GtCO ₂)			Warming (°C)		
Model	Feedback	Temp. Model	2020	2050	2100	2020	2050	2100	2020	2050	2100
1. DICE-FAIR-Geoffroy	Yes	Short delay	29.68	78.17	242.18	36.37	42.28	17.75	1.22	1.99	2.95
2. DICE-Joos-Geoffroy	No	Short delay	26.97	66.53	197.61	36.76	44.23	25.28	1.25	2.08	3.01
3. Delay 56	No	Long delay	23.02	55.45	159.01	37.35	46.28	32.38	.98	1.81	2.93
4. Delay 112	No	Long delay Long delay +	17.88	42.17	122.98	38.19	48.91	39.68	.92	1.52	2.67
5. DICE 2016	No	too hot later	36.72	91.04	271.34	35.40	40.25	13.07	1.02	2.03	3.48

Note. Comparing DICE-Joos-Geoffroy to Delay 95 and Delay 112 shows that an excessive warming delay results in lower carbon prices, higher CO_2 emissions, but lower temperatures. Comparing DICE-FAIR-Geoffroy (with positive carbon cycle feedbacks) to DICE-Joos-Geoffroy (no feedbacks) shows that positive feedbacks result in higher carbon prices, particularly in the long run, and in lower emissions and temperatures.

Cost-Minimizing Paths with variants of the DICE Model

Table 5. 2°C Cost-Minimizing Paths in Variants of the DICE Model

	Carbon-Cycle		Carbon Price (USD/tCO ₂)			CO ₂ Emissions (GtCO ₂)			Warming (°C)		
Model	Feedback	Temp. Model	2020	2050	2100	2020	2050	2100	2020	2050	2100
1. DICE-FAIR-Geoffroy	Yes	Short delay	47.98	189.91	337.33	34.88	24.38	.00	1.17	1.74	1.79
2. DICE-Joos-Geoffroy	No	Short delay	41.62	167.56	337.34	35.65	27.05	.00	1.20	1.84	1.89
3. Delay 56	No	Long delay	39.41	159.58	318.24	35.93	28.03	2.79	.97	1.66	2.00
4. Delay 112	No	Long delay Long delay +	35.83	140.72	357.64	36.40	30.44	-2.79	.91	1.43	1.96
5. DICE 2016	No	too hot later	142.95	460.68	356.31	26.05	-1.76	-2.71	1.00	1.67	2.00

Note: Comparing DICE-Joos-Geoffroy to Delay 56 and Delay 112 shows that an excessive warming delay results in lower carbon prices and higher emissions in 2020 and 2050, but lower temperatures. Comparing DICE-FAIR-Geoffroy (with positive carbon cycle feedbacks) to DICE-Joos-Geoffroy (no feedbacks) shows that positive feedbacks result in higher carbon prices in 2020 and 2050, and in lower emissions and temperatures.