Consumption and Labor Supply with Partial Insurance : An Analytical Framework

J Heathcote, K Storesletten and G Violante – AER (2014)

Thomas Bourany

Structural metrics reading group

May 2020

- Quantify the degree of risk-sharing achieved by U.S. Household
- ➤ Response of consumption, saving, labor supply to fluctuation in income (insurable or not) and structural

- Quantify the degree of risk-sharing achieved by U.S. Household
- Response of consumption, saving, labor supply to fluctuation in income (insurable or not) and structural
- ► This paper addresses the following questions :
 - 1. Fraction of individual shocks that transmits to consumption:
 - 39 % of perm. wage shock pass-though to conso.

- Quantify the degree of risk-sharing achieved by U.S. Household
- Response of consumption, saving, labor supply to fluctuation in income (insurable or not) and structural
- ► This paper addresses the following questions :
 - 1. Fraction of individual shocks that transmits to consumption:
 - 39 % of perm. wage shock pass-though to conso.
 - 2. Insurability nature of the recent increase in US inequality (1967-2006)
 - increase in risk insurability until the 1980s

- Quantify the degree of risk-sharing achieved by U.S. Household
- Response of consumption, saving, labor supply to fluctuation in income (insurable or not) and structural
- ► This paper addresses the following questions :
 - 1. Fraction of individual shocks that transmits to consumption:
 - 39 % of perm. wage shock pass-though to conso.
 - 2. Insurability nature of the recent increase in US inequality (1967-2006)
 - increase in risk insurability until the 1980s
 - 3. Life-cycle shocks vs. initial conditions determining inequality
 - Preferences heterogeneity important
- Structural model : artificial laboratory for welfare evaluation
- Consistent theory for conso & hours + Data from PSID and CEX

- ► Approach : Structural equilibrium model :
 - Different types of shocks : permanent/transitory + insurability
 - Resist Deaton (1997) critique : Various smoothing mechanisms
- ► Alternative approaches :

- Approach : Structural equilibrium model :
 - Different types of shocks : permanent/transitory + insurability
 - Resist Deaton (1997) critique : Various smoothing mechanisms
- Alternative approaches :
 - Blundell, Pistaferri and Preston (1998), Consumption Inequality and Partial Insurance
 - Show a disjuncture between income & consumption inequality in the 1980s; May be explained by change in persistence of income shocks
 - Less structural approach: directly quantify the degree of risk sharing (to permanent vs. transitory shocks) without taking a stand on how households achieve this

- ► Approach : Structural equilibrium model :
 - Different types of shocks: permanent/transitory + insurability
 - Resist Deaton (1997) critique: Various smoothing mechanisms
- ► Alternative approaches :
 - Blundell, Pistaferri and Preston (1998), Consumption Inequality and Partial Insurance
 - Show a disjuncture between income & consumption inequality in the 1980s; May be explained by change in persistence of income shocks
 - Less structural approach: directly quantify the degree of risk sharing (to permanent vs. transitory shocks) without taking a stand on how households achieve this
 - Arellano, Blundell, Bonhomme (2017) Earnings and Consumption Dynamics: A Nonlinear Panel Data Framework
 - Generalization in a quantile-based panel study
 - More details about the earning process: non-linear persistence + conditional skewness
 - these drive the heterogeneous responses in consumption

Model: economy with partial insurance

Extension of Constantinides and Duffie (1996): incomplete-market model ... but with islands!

Model: economy with partial insurance

- Extension of Constantinides and Duffie (1996): incomplete-market model ... but with islands!
- ► Two types of permanent shocks : (partial insurance)
 - Island level shocks : not insurable
 - Individual/idiosyncratic shocks : insurable
- ► Mechanisms for consumption smoothing :
 - Adjustment in labor supply
 - Borrowing/lending in risk-free bond
 - Government redistribution : progressive taxation
- ▶ Provide closed form solution for $c_t(s^t)$, $h_t(s^t)$, w_t
- Structural estimation via GMM

Model: Household preferences

- \triangleright Perpetual youth model, constant survival probability δ
- Continuum of individuals in a continuum of islands
- ightharpoonup Preferences over consumption c_t and hours h_t

$$\mathbb{E}_b \sum_{t=b}^{\infty} (\beta \delta)^{t-b} u(c_t, h_t; \varphi)$$
$$u(c_t, h_t; \varphi) = \frac{c_t^{1-\gamma} - 1}{1-\gamma} - \exp(\varphi) \frac{h_t^{1+\sigma}}{1+\sigma}$$

Preference shock : cohort born at time t draws $\varphi_t \sim F_{\varphi t}$ with \mathbb{V} ar $= \nu_{\varphi t}$

Productivity is composed of an idiosyncratic and island specific components :

$$\log w_t = \underbrace{\alpha_t}_{\text{island}} + \underbrace{\epsilon_t}_{\text{ind.}}$$

island level follows a random walk (unit root!)

$$\alpha_t = \alpha_{t-1} + \omega_t$$
 with $\omega_t \sim F_{\omega t}$ $\forall \text{ar} = \nu_{\omega t}$

individual component is formed by a random walk and an i.i.d. transitory

$$\epsilon_t = \kappa_t + \theta_t$$
 with $\theta_t \sim F_{\theta t}$ $\forall \text{ar} = \nu_{\theta t}$
 $\kappa_t = \kappa_{t-1} + \eta_t$ with $\eta_t \sim F_{\eta t}$ $\forall \text{ar} = \nu_{\eta t}$

Productivity: agents entering at time t draw α^0 & κ^0 from cohort specific distributions, with \mathbb{V} ar = $\nu_{\alpha^0 t}$ and $\nu_{\kappa^0 t}$

- ► No aggregate uncertainty (due to risk pooling in aggregate)
- ▶ Initial conditions α_0 and φ are drawn before trading starts

- ► No aggregate uncertainty (due to risk pooling in aggregate)
- ► Initial conditions α_0 and φ are drawn before trading starts
- Agents in an island have a sequence of shocks ω^t
- Within island, agents can trade a complete set of insurance contracts at $t \ge b$: amount $B_t(s_{t+1}; s^t)$, over the state:

$$s_{t+1} = (\omega_{t+1}, \eta_{t+1}, \theta_{t+1})$$

- No aggregate uncertainty (due to risk pooling in aggregate)
- Initial conditions α_0 and φ are drawn before trading starts
- Agents in an island have a sequence of shocks ω^t
- Within island, agents can trade a complete set of insurance contracts at $t \ge b$: amount $B_t(s_{t+1}; s^t)$, over the state: $s_{t+1} = (\omega_{t+1}, \eta_{t+1}, \theta_{t+1})$
- ▶ Between island, limited they can trade, at $t \ge b$, over $s_{t+1} = (\eta_{t+1}, \theta_{t+1})$, but can't condition on ω_{t+1}
- ightharpoonup History of shocks : $s^t = s_b, s_{b+1} \dots s_{t+a} \dots s_t \equiv$

$$s_j = \begin{cases} (b, \varphi, \alpha_0, \kappa_0, \theta_b) & \text{for } j = b \\ (\omega_j, \eta_j, \theta_j) & \text{for } j > b \end{cases}$$

Model: Budget and Asset prices

- ► Gross income : $y_t = w_t h_t + \text{CRS production} \Rightarrow \text{agents paid MPL } w_t$
- ➤ Yields to net earnings are given by :

$$\widetilde{y}_t = \lambda(y_t)^{1-\tau}$$

The higher τ , the stronger the redistribution + Approximates well the US tax system

Model: Budget and Asset prices

- ► Gross income : $y_t = w_t h_t + \text{CRS production} \Rightarrow \text{agents paid MPL } w_t$
- ➤ Yields to net earnings are given by :

$$\widetilde{y}_t = \lambda(y_t)^{1-\tau}$$

- The higher τ , the stronger the redistribution + Approximates well the US tax system
- ▶ Budget :

$$\lambda \left[w_{t}(s')h_{t}(s') \right]^{1-\tau} + d_{t}(s') = c_{t}(s') + \int Q_{t}(s_{t+1};s')B_{t}(s_{t+1};s')d\mathbf{s}_{t+1} + \int Q_{t}^{*}(\mathbf{z}_{t+1};s')B_{t}^{*}(\mathbf{z}_{t+1};s')d\mathbf{z}_{t+1}$$

$$d_{t}(s') = \delta^{-1} \left[B_{t-1}(s_{t};s'^{-1}) + B_{t-1}^{*}(\mathbf{z}_{t};s'^{-1}) \right]$$

- Important assumptions :
 - all assets are in 0 net supply
 - at birth agents have 0 financial asset

Model: Result – Prop 1

- Quite standard definition of equilibrium allocation
- Results :
 - (i) Constantinides-Duffie -type of result:
 - \Rightarrow no insurance traded between islands $B_t^*(\mathcal{Z}; \mathbf{s}^t) = 0$

Model: Result – Prop 1

- Quite standard definition of equilibrium allocation
- Results:
 - (i) Constantinides-Duffie -type of result : \Rightarrow no insurance traded between islands $B_t^*(\mathcal{Z}; \mathbf{s}^t) = 0$
 - Where is this no-trade result coming from?
 - Shocks i.i.d. (common $F_{\omega t}$), multiplicative and unit root (permanent)
 - Power law pref. (but extend to others)
 - Initial wealth degenerated at zero, and zero-net supply.
 - Island dichotomy (either full or no-insurance)
 - Wealth is redundant state variable
 - Fair price for inter-island insurance supports this no-trade (make agents indifferent, c.f. next slide)

- Results closed form solutions :
 - (i) CD no-trade result
 - (ii) Consumption and hours are given by closed formulas :

$$\log c_t(\mathbf{s}^t) = -(1 - \tau)\widehat{\varphi} + (1 - \tau)\left(\frac{1 + \widehat{\sigma}}{\widehat{\sigma} + \gamma}\right)\alpha_t + \widetilde{C}_t^a$$
$$\log h_t(\mathbf{s}^t) = -\widehat{\varphi} + \left(\frac{1 - \gamma}{\widehat{\sigma} + \gamma}\right)\alpha_t + \frac{1}{\widehat{\sigma}}\varepsilon_t + \widetilde{H}_t^a$$

with age a=t-b, age/date-specific constants \widetilde{C}^a_t and \widetilde{H}^a_t , taxweighted Frisch elasticity $\frac{1}{\widehat{\sigma}}\equiv\frac{1-\tau}{\sigma+\tau}$, rescaled pref. $\widehat{\varphi}\equiv\frac{\varphi}{\sigma+\gamma+\tau(1-\gamma)}$

(iii) Bond/insurance price:

$$Q_{t}\left(S; s^{t}\right) = Q_{t}(S) = \beta \exp\left(-\gamma \Delta C_{t+1}\right) \int_{S} \exp\left(-\gamma (1-\tau) \frac{1+\widehat{\sigma}}{\widehat{\sigma}+\gamma} \omega_{t+1}\right) dF_{s,t+1}$$

$$Q_{t}^{*}\left(Z; s^{t}\right) = Q_{t}^{*}(Z) = \Pr\left((\eta_{t+1}, \theta_{t+1}) \in Z\right) \times Q_{t}(S)$$

with ΔC_t^a ndependent of $a + F_{st}$ integrates over (ω, η, θ)

Taking the model to the data: Structural estimation

- Modification/Augmentation of the model
 - (i) HH composition/size and (ii) Measurement errors (all terms in μ)
- ▶ Data : repeated cross section
 - Moments: time-t and age-a specific, e.g. α

$$\operatorname{Var}_t^a(\alpha) = v_{\alpha^0, t-a} + \sum_{j=0}^{a-1} v_{\omega, t-j}$$

- Use PSID with fine age groups :
 - moments in level involving hours h_t and wages w_t : Macro-moments
 - same moments in difference : dispersion over life cycle :

$$\Delta \mathbb{V}\mathrm{ar}_t^a(x) = \mathbb{V}\mathrm{ar}_t^a(x) - \mathbb{V}\mathrm{ar}_{t-1}^{a-1}(x)$$

- same moments of differences $\mathbb{V}\operatorname{ar}_t^a(\Delta x)$ and second differences $\mathbb{V}\operatorname{ar}_t^a(\Delta^2 x)$
- Use CEX with fine age groups for
 - moments in level involving consumption c_t (Macro-moments and dispersion over life cycle)

Structural estimation: Macro moments - 1

► Macro moments : (labor)

$$\mathbb{V}\operatorname{ar}_{t}^{a}(\log \hat{w}) = \mathbb{V}\operatorname{ar}_{t}^{a}(\alpha) + \mathbb{V}\operatorname{ar}_{t}^{a}(\varepsilon) + v_{\mu y} + v_{\mu h}$$

$$\mathbb{V}\operatorname{ar}_{t}^{a}(\log \hat{h}) = \mathbb{V}\operatorname{ar}_{t}^{a}(\widehat{\varphi}) + \left(\frac{1-\gamma}{\widehat{\sigma}+\gamma}\right)^{2} \mathbb{V}\operatorname{ar}_{t}^{a}(\alpha) + \frac{1}{\widehat{\sigma}^{2}} \mathbb{V}\operatorname{ar}_{t}^{a}(\varepsilon) + v_{\mu h}$$

$$\mathbb{C}\operatorname{ov}_{t}^{a}(\log \hat{w}, \log \hat{h}) = \left(\frac{1-\gamma}{\widehat{\sigma}+\gamma}\right) \mathbb{V}\operatorname{ar}_{t}^{a}(\alpha) + \frac{1}{\widehat{\sigma}} \mathbb{V}\operatorname{ar}_{t}^{a}(\varepsilon) - v_{\mu h}$$

Macro moments : (consumption)

$$\mathbb{V}\mathrm{ar}_{t}^{a}(\log \hat{c}) = (1-\tau)^{2}\mathbb{V}\mathrm{ar}_{t}^{a}(\widehat{\varphi}) + (1-\tau)^{2}\left(\frac{1+\widehat{\sigma}}{\widehat{\sigma}+\gamma}\right)^{2}\mathbb{V}\mathrm{ar}_{t}^{a}(\alpha) + \nu_{\mu c}$$

$$\mathbb{C}\mathrm{ov}_{t}^{a}(\log \hat{h}, \log \hat{c}) = (1-\tau)\mathbb{V}\mathrm{ar}_{t}^{a}(\widehat{\varphi}) + \frac{(1-\tau)(1+\widehat{\sigma})(1-\gamma)}{(\widehat{\sigma}+\gamma)^{2}}\mathbb{V}\mathrm{ar}_{t}^{a}(\alpha)$$

$$\mathbb{C}\mathrm{ov}_{t}^{a}(\log \hat{w}, \log \hat{c}) = (1-\tau)\left(\frac{1+\widehat{\sigma}}{\widehat{\sigma}+\gamma}\right)\mathbb{V}\mathrm{ar}_{t}^{a}(\alpha)$$

Structural estimation: Life-cycle moments - 2

Life-cycle moments (labor) : get rid of indiv. initial conditions

$$\Delta \mathbb{V} \operatorname{ar}_{t}^{a}(\log \hat{w}) = v_{\omega t} + v_{\eta t} + \Delta v_{\theta t}$$

$$\Delta \mathbb{V} \operatorname{ar}_{t}^{a}(\log \hat{h}) = \left(\frac{1 - \gamma}{\widehat{\sigma} + \gamma}\right)^{2} v_{\omega t} + \frac{1}{\widehat{\sigma}^{2}} \left(v_{\eta t} + \Delta v_{\theta t}\right)$$

$$\Delta \mathbb{C} \operatorname{ov}_{t}^{a}(\log \hat{w}, \log \hat{h}) = \left(\frac{1 - \gamma}{\widehat{\sigma} + \gamma}\right) v_{\omega t} + \frac{1}{\widehat{\sigma}} \left(v_{\eta t} + \Delta v_{\theta t}\right)$$

Life-cycle moments (consumption):

$$\Delta \mathbb{V}\operatorname{ar}_{t}^{a}(\log \hat{c}) = (1 - \tau)^{2} \left(\frac{1 + \widehat{\sigma}}{\widehat{\sigma} + \gamma}\right)^{2} \nu_{\omega t}$$

$$\Delta \mathbb{C}\operatorname{ov}_{t}^{a}(\log \hat{h}, \log \hat{c}) = (1 - \tau) \frac{(1 - \gamma)(1 + \widehat{\sigma})}{(\widehat{\sigma} + \gamma)^{2}} \nu_{\omega t}$$

$$\Delta \mathbb{C}\operatorname{ov}_{t}^{a}(\log \hat{w}, \log \hat{c}) = (1 - \tau) \left(\frac{1 + \widehat{\sigma}}{\widehat{\sigma} + \gamma}\right) \nu_{\omega t}$$

Structural estimation: Micro moments - 3

▶ Micro moment (labor) : link the variance over periods

$$\mathbb{V}\operatorname{ar}_{t}^{a}(\Delta\log\hat{w}) = v_{\omega t} + v_{\eta t} + v_{\theta t} + v_{\theta,t-1} + 2v_{\mu y} + 2v_{\mu h}$$

$$\mathbb{V}\operatorname{ar}_{t}^{a}(\Delta\log\hat{h}) = \left(\frac{1-\gamma}{\hat{\sigma}+\gamma}\right)^{2}v_{\omega t} + \frac{1}{\hat{\sigma}^{2}}\left(v_{\eta t} + v_{\theta t} + v_{\theta,t-1}\right) + 2v_{\mu h}$$

$$\mathbb{C}\operatorname{ov}_{t}^{a}(\Delta\log\hat{w}, \Delta\log\hat{h}) = \left(\frac{1-\gamma}{\hat{\sigma}+\gamma}\right)v_{\omega t} + \frac{1}{\hat{\sigma}}\left(v_{\eta t} + v_{\theta t} + v_{\theta,t-1}\right) - 2v_{\mu h}$$

$$\mathbb{V}\operatorname{ar}_{t}^{a}\left(\Delta^{2}\log\hat{w}\right) = v_{\omega t} + v_{\omega,t-1} + v_{\eta t} + v_{\eta,t-1} + v_{\eta t} + v_{\eta,t-1} + v_{\theta t} + v_{\theta,t-2} + 2v_{\mu h}$$

Structural estimation - in practice

Estimate parameters using minimum distance (11, 532 moments and 164 parameters)

$$\min_{\Lambda}[\widehat{m}-m(\Lambda)]'W[\widehat{m}-m(\Lambda)]$$

- Small sample size : $W \equiv Id$ and conf. interval : (block)-bootstrap
- Proposition 2 and corollaries (and proof): identification
- Experiment where they shut down each channel: show that all the terms matter to match both consumption and labor moments.

Structural estimation - result

Prefer	ence Elas	ticities	Life-Cycle Shocks				
σ	γ		$\overline{v_{\omega}}$	$\overline{v_{\eta}}$	$\overline{v_{ heta}}$		
2.165	2.165 1.713 (0.173) (0.054)		0.0056	0.0044 (0.0012)	0.043 (0.005)		
(0.173)			(0.0008)				
Initia	l Heteroge	eneity	Measurement Error				
$\overline{v_{\alpha^0}}$	$\overline{v_{\kappa^0}}$	$\overline{v_{\widehat{arphi}}}$	$v_{\mu y}$	$v_{\mu h}$	$v_{\mu c}$		
0.102	0.047	0.054	0.000	0.036	0.041		

(0.000)

► Other parameters (external setting) :

(0.016)

- $\delta = 0.996$, $\tau = 0.185$ ($R^2 = 0.92$), and $1/\hat{\sigma} = 0.35$ consistent with literature
- Roughly 45% of permanent shocks appears to be insurable

(0.006)

(0.002)

(0.030)

(0.023)

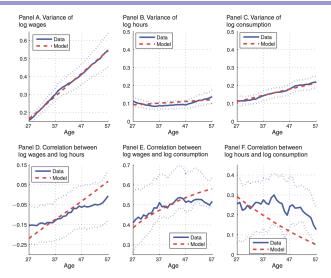


FIGURE 1. DATA AND MODEL FIT FOR MOMENTS IN LEVELS ALONG THE AGE DIMENSION

Structural estimation – Passthrough from income to consumption

▶ Pass-through from permanent wage shocks to consumption :

$$\underbrace{\phi_t^{w,c}}_{0.386} = \underbrace{\frac{\nu_{\omega t}}{\nu_{\omega t} + \nu_{\eta t}}}_{0.560} \cdot \underbrace{\frac{1 + \hat{\sigma}}{\hat{\sigma} + \gamma}}_{0.845} \cdot \underbrace{(1 - \tau)}_{0.815}.$$

- progressive taxation 0.815
- labor supply 0.845
- private insurance 0.63
- \triangleright overall $\varphi_t^{w,c} = 0.386$
- the pass-through $\phi_t^{y,c}$ from pre-tax earnings y = wh is 0.272, very similar to Blundell, Pistaferri and Preston which found 0.225

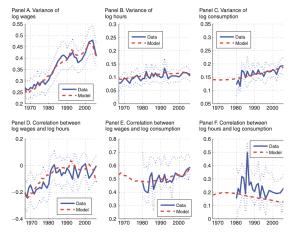


FIGURE 4. DATA AND MODEL FIT FOR MOMENTS IN LEVELS ALONG THE TIME DIMENSION

➤ Sharp rise in the wage-hours-corr. : rise in variance of insurable wage and fall in variance of uninsurable shocks

Decomposition of inequality

► Initial heterogeneity : explains between 40-50 percent

TABLE 3—DECOMPOSITION OF CROSS-SECTIONAL INEQUALITY

		Percent contribution to total variance								
	Total	Initial heterogeneity			Life-cycle shocks		Measurements			
	variance	Preferences	Uninsurable	Insurable	Uninsurable	Insurable	Error			
var(log ŵ)	0.351	0.0	31.5	10.0	17.1	31.3	10.1			
$var(log \hat{h})$	0.107	48.9	2.2	3.2	1.2	9.8	34.7			
var(log ŷ)	0.432	11.7	22.8	12.5	10.4	43.7	0.0			
$var(log \hat{c})$	0.159	20.0	32.6	0.0	17.8	0.0	29.6			

Consumption & Labor with Partial Insurance – AER (2014)

Results

Summary

- ► Tractable framework a la Constantinides and Duffie to study risk-sharing
- ► Powerful structural GMM estimation
- Match key facts and trends about inequality, income risk and variance in consumption over the life-cycle and over time