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Principal Agent models – Dynamic programming

Introduction and motivation

Introduction

I This article recasts the Principal-Agent model with Moral Hazard
in continuous time, using tools from stochastic calculus and
stochastic control

I Follows a large literature in economics and mathematical finance :
Seminal contribution by Holmström and Milgrom

• Agent effort influences the drift of a diffusion process
• Happens ’as if’ agent controlled the mean of a normal distribution
• Optimal contract is linear in output

Mathematical tools developed by (among others) : Cvitanić and
Zhang (book) and other articles by D. Possamai and N. Touzi.

• More advanced tools from stochastic calculus
• Dynamic Programming, BSDE, Stochastic Max. Principle (FBSDE)
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Zhang (book) and other articles by D. Possamai and N. Touzi.

• More advanced tools from stochastic calculus
• Dynamic Programming, BSDE, Stochastic Max. Principle (FBSDE)

Thomas Bourany Principal Agent models – Dynamic programming Soutenance 2 / 33



Principal Agent models – Dynamic programming

Introduction and motivation

Introduction
I This article provides a systematic method to solve any problem of

this kind :
Principal observes fluctuations in output and offers a compensation
scheme at terminal time.
Agent control the drift and the volatility of this output
The framework is general : no Markovian Assumption

I Can solve all the pre-existing models without ad-hoc methods
I How?

Use a Dynamic Programming Approach (DPP)
I Why is it different from the literature :

Agent need to stochastic control problem for an arbitrary
compensation scheme (possibly non-Markovian)
Principal need to optimize the contract for all possible (non-linear)
reaction of the Agent.

• Tools : calculus of variation, stochastic Pontryagin max. principle
(Cvitanić and Zhang)

• Ad-hoc (case-by-case basis) methods (cf. Holmström and Milgrom,
Cvitanić, Possamai, Touzi)Thomas Bourany Principal Agent models – Dynamic programming Soutenance 3 / 33



Principal Agent models – Dynamic programming

Introduction and motivation

Introduction

I Dynamic programming . . . seems simple no?
Inspiration from Sannikov (2008)

I Restrict the family of admissible contracts to a collection that can
be solved using Dynamic Programming

For this family, use standard verification methods
I However, this approach does not suffer from lack of generality

Under mild technical conditions, can express the Principal’s
optimum over this restricted collection as equal to the supremum
over all feasible contracts.

• Technical difficulties when Agent controls the diffusion terms
• Can represen the Agent’s value process as the solution of a BSDE
• Even more : a 2BSDE, actually, as developed in Soner, Touzi, Zhang

2012.
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Principal Agent models – Dynamic programming

Model and formalism

Model and formalism – introduction

I The agent (’he’) controls the evolution of a d−dimensional
diffusion process X, with its effort ν = (α, β)

Through its drift λ(α)
. . . and the volatility (σ(β)) !

I The principal (’she’) does not observe the effort ν, but only the
process X over time.

I She pays a compensation ξ (a contract) contingent onX at terminal
date T

I The agent chooses its effort maximizing its final utility UA(ξ),
subject to some cost ct and discounting kt.

I The principal chooses the contract maximizing its utility
UP(`(X)− ξ).
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Model and formalism

Formalism – control models

I The agent controls the SDE of the state variable (the output
process)

Xt = X0 +

∫ t

0
σs(X·, βt)[λs(X·, αs)ds + dWs]

I The couple M = (P, ν) is a control model if XM is a weak solution
of the controlled state equation.

’Recall’ : A weak solution of a ’path-dependent’ SDE is a tuple
(Ω,F ,P,W,X) such that (Ω,F ,P) is a proba space, (W,X) two
stochastic processes, W a (FW ,P)-Brownian motion and the
equation holds.

I We assume the set of control models isM3M non-empty.
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Model and formalism

Formalism – Agent’s problem
I A r.v. ξ is called a contract if it contingent onX at terminal date T ,

(i.e. ξ is FT -measurable) and with some Lp-moments.
I Let c be cost function, assumed to have some measurability and Lp

regularity for all effort M ∈M
I Let Kt = exp(−

∫ t
0 ks(νs)ds) be a discount factor, with kt bounded

and optional.

I The Agent will aim at maximizing an objective function :

JA(M, ξ) := EP
[
KTξ −

∫ T

0
Ktct(νt)dt

]
I The optimal effort will be to choose the best control model

(P?, ν?) ∈M?(ξ) for a given contract :

VA(ξ) := sup
M∈M

JA(M, ξ)
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Model and formalism

Formalism – Agent’s problem – Remarks
I In the previous slide, the agent was risk-neutral. However, one can

replace ξ by a utility function UA :

JA(M, ξ) := EP
[
KTUA(ξ)−

∫ T

0
Ktct(νt)dt

]
I The utility is separable btw the compensation ξ and the cost ct.

I One could also consider the objective as :

JA(M, ξ) := EP
[

exp
(
− sgn(UA)

∫ T

0
Ktct(νt)

)
KTUA(ξ)

]
In the following, to adapt for such a extension, one will need to
replace ξ in the principal problem by (UA)−1(ξ)

Alternatively, one can think about ξ as compensation in ’utility’.

Recall that VA(ξ) := supM∈M JA(M, ξ) is the ’value function’.
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Model and formalism

Formalism – Principal’s problem
I The principal will choose a contract which is admissible i.e. ξ ∈ Ξ

Ξ := {ξ ∈ C0,M?(ξ) 6= ∅, andVA(ξ) ≥ R}

where R is the reservation utility of the agent.

I Let `(X) be liquidation value, and KP
t = exp(−

∫ t
0 kP

s (νs)ds) be a
discount factor, with kt bounded and optional.

JP(ξ) = sup
(P?,ν?)∈M?

EP [KP
t U(`− ξ)

]
I The value function defines :

VP := sup
ξ∈Ξ

JP(ξ)
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Model and formalism

Formalism – Comments

1. The problems are non-standard : ξ|Ft can be Non-Markovian and
thus the Dynamic Programming Principle (DPP) would not be
valid for both the agent and the principal.

The main goal of this article is to reduce these problems to those
that can be solved using DPP.

2. The weak-formulation of the SDE is standard in continuous-time
Principal Agent models : the agent’s efforts ν affect the output
thought the distribution P. Moreover, Principal’s contract will only
be σ(Xt)−adapted and so will be her information.

This difference highlight the difference in information between the
Principal and the Agent.
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Solution using Dynamic Programming

A restricted class of contract

I The idea being to solve the problem with dynamic programming
(DPP), we now focus on a solution methods ’as if’ it was possible
to use DPP.

I The main theorem of the paper shows that the optimal contracts in
this class indeed reaches the same value as the restricted

I In the following, I describe the family of restricted contracts :
’Recall’ : The ’standard’ approach from stochastic control [the
verification method] consists in solving a HJB
[Hamilton-Jacobi-Bellman] equation, finding the optimal feedback
control and verifying that the underlying stochastic process solves
the SDE.
The heuristic derivation of the HJB is detailed here .
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Solution using Dynamic Programming

Restricted class of contract – The HJB equation
I The Hamiltonian of the problem considered above is the

following :

Ht(x, y, z, γ) = sup
u∈A×B

ht(x, y, z, γ, u)

ht(x, y, z, γ, u) = −ct(x, u)−kt(x, u) y+σt(x, b)λt(x, a)· z + 1/2 Tr(σtσ
T
t γ)

Suppose :
If the coeff λ, σ, c, k are not path dependent, i.e. depend on x only
through the current value xt

The contract ξ depends on x only through the final value xT

I then, by verification theorem, the Agent’s value function is
VA(ξ) = v(0,X0) where v(t, x) is the unique viscosity solution of
the HJB :

−∂tv(t, x)−Ht(x, v,Dv,D2v) = 0, v(T, x) = g(x), ∀(t, x) ∈ [0, T)× Rd
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Solution using Dynamic Programming

Restricted class of contract – The HJB equation
I In the Markovian setting described before, assuming v solution of

the HJB is C1,2 we can introduce the Vt(ξ) = v(t, xt)

I Therefore, by definition of the value function we have
v(T, xT) = g(xT) = ξ(xT)

I The optimal compensation ξ being simply the value function v, we
can obtain the following representation, by the Itô’s formula :

g(XT) = v(0,X0)+

∫ T

0
zt ·dXt +

∫ T

0

1
2 Tr(γt d〈X〉t)−Ht(Vt, zt, γt)dt

with Vt = v(t, xt), zt = Dv(t, xt), γt = D2v(t, xt)

I This formulation for optimal contract is inspired from Sannikov.
I The main idea will thus be to express Vt in term of ξ,

i.e. a BSDE formulation !
Thomas Bourany Principal Agent models – Dynamic programming Soutenance 13 / 33
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Solution using Dynamic Programming

Restricted class of contract – Definition
The collection V of predictable process (Z,Γ) is defined such that :

I The process YZ,Γ and Z have some Lp regularity/integrability :

YZ,Γ := Y0 +

∫ t

0
Zs · dXs +

∫ t

0

1
2 Tr(Γs d〈X〉s)− Hs(Vs,Zs,Γs)ds

This process will be central, as representation of Agent’s value fct
for the Principal.

I There exists a (weak-)solution (PZ,Γ, νZ,Γ) ∈M maximizing the
hamiltonian :

Ht(Xt,Yt,Zt,Γt) = ht(Xt,Yt,Zt,Γt, ν
Z,Γ
t ) PZ,Γ − a.e

It is, in a way, the idea of finding an optimal feedback control in the
verification approach (given v, i.e. Y here).
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Solution using Dynamic Programming

Restricted class of contract – A verification argument

Prop. 3.3 is an important result, used in the proof of the main theorems :
For Y0 ∈ R and (Z,Γ) ∈ V we have :

I YZ,Γ
T ∈ C0

The terminal value Y will be a suitable contract
I Y0 = VA(YZ,Γ

T ) and any couple (PZ,Γ, νZ,Γ) will be an optimal
response to such contract, i.e. (PZ,Γ, νZ,Γ) ∈M?(YZ,Γ

T )

For such type of contracts, agent’s value coincide with YZ,Γ
t .

I (P?, ν?) ∈M?(YZ,Γ
T ) if and only if

Ht(Xt,Yt,Zt,Γt) = ht(Xt,Yt,Zt,Γt, ν
?
t ) P? − a.e

Optimal actions ν? coincide/ are identified with hamiltonian
maximizers (on the support of P?).
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Solution using Dynamic Programming

Restricted class of contract – A verification argument

Prop. 3.3, Ideas of the proof : For Y0 ∈ R and (Z,Γ) ∈ V we have :

I Y0 = VA(YZ,Γ
T ) and any couple (PZ,Γ, νZ,Γ) will be an optimal

response to such contract, i.e. (PZ,Γ, νZ,Γ) ∈M?(YZ,Γ
T )

I (P?, ν?) ∈M?(YZ,Γ
T ) if and only if

Ht(Xt,Yt,Zt,Γt) = ht(Xt,Yt,Zt,Γt, ν
?
t ) P? − a.e
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Solution using Dynamic Programming

Restricted class of contract – Notations

I Since we have identified the optimal effort in such setting, we
denote them u? = (α?, β?) :

Ht(x, y, z, γt) = ht(y, z, γt, ν
?
t )

I The optimal feedback control induces drift and variance :

λ?t (x, y, z, γ) = λt(x, α?t (x, y, z, γ)) and σ?t (x, y, z, γ) = σt(x, β?t (x, y, z, γ))

I The output process rewrites :

Xt = X0+

∫ t

0
σ?t (X,Ys,Zs,Γs)

[
λ?(X,Ys,Zs,Γs)ds + dWs

]
, ∀t ∈ [0,T]

Note that for λ?, σ? given, the SDE is controlled by (z, γ)
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Solution using Dynamic Programming

Restricted class of contract – Principal’s point of view

I The previous verification argument allows to determine the
’agent-optimal’ contract as the value function of the Agent.

I The authors show – and that the main result of the article – that it
correspond to the optimum for the Principal problem

I Informally, it will means to prove that

VP := sup
ξ∈Ξ

JP(ξ) = sup
ξ?≡YZ,Γ

T ,
Y0≥R, (Z,Γ)∈V

V(Y0)

’heuristically’, and where V(Y0) remains to define.

Thomas Bourany Principal Agent models – Dynamic programming Soutenance 18 / 33



Principal Agent models – Dynamic programming

Solution using Dynamic Programming

Restricted class of contract – Principal’s point of view
Prop. 3.4, a direct consequence of prop 3.3.

I The principal’s value function is minored by the maximum over
restricted contract :

I Defining

V(Y0) := sup
(Z,Γ)∈V

sup
(P,ν)∈M?

EP
[
KP

t U(`− YZ,Γ
T )

]
I We have (Prop 3.4) :

VP := sup
ξ∈Ξ

JP(ξ) ≥ sup
Y0≥R

V(Y0)

Intuitively, the RHS implies to choose an optimal contract s.t. :
• (i) initial value Y0 is above reservation utility
• (ii) agent’s value fct will coincide with (YZ,Γ

t )t (resp. cond. of V)
• (iii) the agent will behave optimally to the contract given by YZ,Γ

T

Thomas Bourany Principal Agent models – Dynamic programming Soutenance 19 / 33
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Solution using Dynamic Programming

Restricted class of contract – Main reduction result

Theorem 3.6
I Assume that V 6= ∅
I then we have :

VP = sup
Y0≥R

V(Y0)

I Moreover, the maximizer of LHS optim (Y?0 ,Z
?,Γ?) induces an

optimal contract ξ? := YZ?,Γ?
T .

Since the LHS happens to be the value function of a standard
(DPP-style) stochastic control problem,
The assumption V 6= ∅ is mild (for V 6= −∞).

I Before presenting the sketch of the proof in a specific case, I derive
the solution of Principal’s control pblm

Thomas Bourany Principal Agent models – Dynamic programming Soutenance 20 / 33
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Solution using Dynamic Programming

Restricted class of contract – Solving Principal’s HJB
I AssumingM? 6= ∅

V(Y0) := sup
(Z,Γ)∈V

sup
(P,ν)∈M?

EP
[
KP

t U(`− YZ,Γ
T )

]
I It is a ”standard” problem to solve

It correspond to the controlled SDE :

dYZ,Γ
t =

(
Zt·σ?t λ?t +

1
2

Tr(σ?t σ
? T
t Γt)−H

)
(YZ,Γ

t ,Zt,Γt)dt+Zt·σ?t (YZ,Γ
t ,Zt,Γt)dWM?

t

The (long) Hamiltonian :

G(t, x, y, p,M) := sup
(z,γ)

sup
u?

{
(σ?t λ

?
t ) · px +

(
z · σ?t λ?t + 1

2 Tr(σ?t σ
? T
t γt)− Ht

)
(x, y, z, γ) py

+
1
2

Tr
(
σ?t σ

? T
t (Mxx + zzTMyy)

)
+ σ?t σ

? T
t (x, y, z, γ) z ·Mxy

}
Thomas Bourany Principal Agent models – Dynamic programming Soutenance 21 / 33
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Solution using Dynamic Programming

Stochastic control – Solving Principal’s HJB

I The (long) Hamiltonian of Principal’s problem :

G(t, x, y, p,M) := sup
(z,γ)

sup
u?

{
(σ?t λ

?
t ) · px +

(
z · σ?t λ?t + 1

2 Tr(σ?t σ
? T
t γt)− Ht

)
(x, y, z, γ) py

+
1
2

Tr
(
σ?t σ

? T
t (Mxx + zzT Myy)

)
+ σ?t σ

? T
t (x, y, z, γ) z ·Mxy

}

with M =:

(
Mxx Mxy

Myx Myy

)
∈ Sd+1 and p =:

(
px

py

)
∈ Rd+1 Comments :

The maximizat° of the Hamiltonian is made over (z, γ) ∈ R×Sd(R)
and u? = (α?, β?) implies the drift/diffusion terms λ? and σ?.
Assume the existence of (ẑ, γ̂)(t, x, y, p,M) maximizer of the
Hamiltonian
The value function also depends on y which is the value fct of the
agent.
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Solution using Dynamic Programming

Stochastic control – Solving Principal’s HJB
I Let v ∈ C1,2([0,T),Rn+1) ∩ C0([0,T]× Rd+1) a classical solution

of the HJB :{
(∂tv− kP)(t, x, y) + G(t, x, y,Dv,D2v) = 0 ∀(t, x, y) ∈ [0,T)×Rd×R
v(T, x, y) = U(`(x)− y)

I Assuming that :
v(t,Xt,Yt)t is U.I (uniform integrable) ∀(P, ν) ∈M?, ∀(Z,Γ) ∈ V

The Hamiltonian has maximizers (ẑ, γ̂) s.t.
• The controlled SDE governing Xt andYZ,Γ

t with controls
(Z?,Γ?) = (̂z, γ̂)(·,Dv,D2v)(t,Xt, Yt) has a weak solution (P?, ν?)

• (Z?,Γ?) ∈ V .

I Then V(Y0) = v(0,X0,Y0) and (Z?,Γ?) is an optimal control for
Principal’s problem.
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A particular case

Forking
I A concrete example, from Cvitanić, Wan and Zhang (2009)
I The proof in the special case where the Agent does not control the

volatility of output.
Remember, the idea is to proove that VP := sup

ξ∈Ξ
JP(ξ) = sup

ξ?≡YZ,Γ
T ,

Y0≥R, (Z,Γ)∈V

V(Y0)

But, the class Ξ is only FT -mesurable : not possible to
use controlled SDE (and DPP-style stuffs)
Instead, characterize the process YZ,Γ

t as a (controlled) BSDE
Prove the existence/uniqueness result from the famous results of
Pardoux and Peng 90

I The proof in the general case is similar :
In this case, trouble comes from the 2nd order, diffusion term
Instead, characterize the process YZ,Γ

t as a (controlled)
Second-Order BSDE
Use results from Soner, Touzi and Zhang (2012)
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A particular case

Fixed volatility of output
I Suppose the agent has no action on volatility :

The agent’s hamiltonian reduces to

H(x, y, z, γ) =
1
2

Tr(σtσ
T
t γ) + Ft(x, y, z)

where Ft(x, y, z, a) = sup
a∈A

{
−ct(x, a)−kt(x, a)y+σt(x)λt(x, a)·z

}
I The dynamics of the reduced contract becomes :

YZ
t := Y0 +

∫ t

0
Zs · dXs −

∫ t

0
Ft(X,YZ

s ,Zs)ds

To be able to use the Thm 3.6, we need to represent any contract
ξ ∈ Ξ as a compensation of the form ξ = YZ

T
It reduces the problem to solving a BSDE :

Y0 = ξ +

∫ T

0
Ft(X,YZ

s ,Zs)ds−
∫ T

0
Zs · dXs
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A particular case

Fixed volatility of output

I The process YZ,Γ
t , because it depends on the contract ξ = YZ,Γ

T is a
typical example of Backward Stochastic differential equation.

I Starting from :{
YZ

t = Y0 −
∫ t

0 F(X,YZ
s ,Zs)ds +

∫ t
0 Zs · dXs

YZ
T = ξ

In the following : BSDE - definitions and main results
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A particular case

Fixed volatility of output
I ’Recall’ that the predictable representation property of a semi

martingale X w.r.t./under (F,Q) if any (F,Q)−local-martingale Y
can be written in the form Yt = m +

∫ t
0 ZsdXs where Zt is a

predictable process and m a F0-measurable r.v.
I ’Recall’ the Blumenthal zero-one law : If

F0+ =
⋂
u>0

Fu

then F0+ is trivial in the sense than ∀A ∈ F0+,P(A) = 0 or 1
I According to the authors, the standard theory of BSDE directly

implies that these two conditions, added to the standard
regularity/integrability assumption + generator of the BSDE being
uniform Lipschitz directly implies existence and uniqueness.
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Some results on BSDE
I ’Recall’ : A fundamental result from Pardoux and Peng on BSDE :

A solution of the BSDE . . .{
dYt = −f (Yt,Zt)dt + ZtdWt

YT = ξ ∈ [0,T]× Rd

. . . is a couple (Yt,Zt) satisfying some measurability/integrability
conditions such that

Yt = ξ +

∫ T

t
fs(Ys,Zs)ds−

∫ T

t
ZsdWs

I Pardoux and Peng 90 : Existence and Unicity of solution of
BSDE :

Assuming that f is uniformly Lipschitz in (y, z) and ξ, ft(0, 0) are L2

then there exists a unique solution (Y,Z) to the BSDE.
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The stochastic control problem – the HJB equation
I The aim of the agent is to maximize its objective function :

v(t0,Xt0) = sup
{αt}T

t0

Et0
( ∫ T

t0
L(t,Xt, αt)dt + g(XT)

)
where v is the value function of the agent (at time t0), L and G resp.
the running gain and terminal gain.

I αt the (adapted) control variable and Xt is the state variable,
(unique) solution of SDE :{

dXt = b(t,Xt, αt)dt + σ(t,Xt, αt)dBt

Xt0 = x0 (t0, x0) ∈ [0,T]× Rd

where b is the drift, σ the variance and Bt a Brownian motion
More on this .
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The stochastic control problem – the HJB equation
I Here, Bellman dynamic programming principle holds :

v(t0,Xt0 ) = sup
{αt}T

t0

Et0

( ∫ t1

t0

L(t,Xt, αt)dt + v(t1,Xt1 )
)

I The idea is to study ”infinitesimal” variation in the value function
I Use the Itô formula here to compute the value fct at time t + h :

sup
{αt}

Et0

(∫ t0+h

t0
L(t, x, αt)dt+

∫ t0+h

t0

{
∂t v+∇x v·bt+

1
2

Tr
(
σtσ

T
t D2

xx v
)}

dt+
∫ t0+h

t0
∇x v·σt dBt

)
= 0

I The expectation of stochastic integral is zero E(
∫ t

0 · · · dBs) = B0 = 0 by
martingale property.

I Take h→ 0, the integrand need to be zero for every t :

∂tv(t, x)+sup
a

{
L(t, x, a) +∇xv(t, x) · b(t, x, a) +

1
2

Tr
(
σ(t, x, a)σ(t, x, a)T D2

xxv(t, x)
)}

= 0

I This is the Hamilton Jacobi Bellman (HJB) PDE!
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I Use the Itô formula here to compute the value fct at time t + h :

sup
{αt}

Et0

(∫ t0+h

t0
L(t, x, αt)dt+

∫ t0+h

t0

{
∂t v+∇x v·bt+

1
2

Tr
(
σtσ

T
t D2

xx v
)}

dt+
∫ t0+h

t0
∇x v·σt dBt

)
= 0

I The expectation of stochastic integral is zero E(
∫ t

0 · · · dBs) = B0 = 0 by
martingale property.

I Take h→ 0, the integrand need to be zero for every t :

∂tv(t, x)+sup
a

{
L(t, x, a) +∇xv(t, x) · b(t, x, a) +

1
2

Tr
(
σ(t, x, a)σ(t, x, a)T D2

xxv(t, x)
)}

= 0

I This is the Hamilton Jacobi Bellman (HJB) PDE!

Thomas Bourany Principal Agent models – Dynamic programming Soutenance 30 / 33



Principal Agent models – Dynamic programming

The stochastic control problem – the HJB equation
I Here, Bellman dynamic programming principle holds :

v(t0,Xt0 ) = sup
{αt}T

t0

Et0

( ∫ t1

t0

L(t,Xt, αt)dt + v(t1,Xt1 )
)

I The idea is to study ”infinitesimal” variation in the value function
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The stochastic control problem – the HJB equation

I The Hamilton-Jacobi-Bellman :

∂tv(t, x) + sup
a

{
L(t, x, a) +∇xv(t, x)· b +

1
2

Tr
(
σσT D2

xxv(t, x)
)}

= 0

I Or writing it with ”Hamiltonians”

H(t, x, p,M) = sup
a

{
L(t, x, a) + p · b +

1
2

Tr
(
σσT M

)}
= 0

I the HJB rewrites :
∂tv(t, x) + H(t, x,∇xv,D2

xxv) = 0

I The optimal control can be given in feedback form by the First-Order Conditions
(FOC).
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The stochastic control problem – Solutions

I Verification approach (the ’standard’ approach of stochastic
control) :

Find w(t, x) a solution of the HJB equation.
Find a mesurable fct a(t, x) maximizing the hamiltonian (for this w).
Plug the a(t,Xt) is the dynamics dXt = b(·)dt + σ(·)dWt.
If this SDE has a solution X̂a

t given initial condition (t, x),
I then : the function w is the value function of the stochastic control

problem.
What if the fct v is not smooth? (not C1,2)
→ Viscosity solutions : Crandall and Lions (1989)
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Rappels : Itô’s formula
I For any Xt Itô process :

dXt = bt dt + σt dBt

and any C1,2 scalar function f (t, x) of two real variables t and x, one has :

df (t,Xt) =

(
∂f
∂t

+ bt
∂f
∂x

+
σ2

t

2
∂2f
∂x2

)
dt + σt

∂f
∂x

dBt

I For vector-valued processes Xt = (X1
t ,X

2
t , . . . ,X

n
t )

dXt = bt dt + σt dBt

I The Itô formula rewrites :

df (t,Xt) =
∂f
∂t

(t,Xt) dt +

d∑
i=1

∂f
∂xi

(t,Xt)dXi
t +

1
2

d∑
i,j=1

∂2f
∂xi∂xj

(t,Xt)d〈Xi,Xj〉t

= ∂t f dt +∇xf · dXt +
1
2

Tr
(
σtσ

T
t D2

xxf
)

dt,

=

{
∂t f +∇x f · bt +

1
2

Tr
(
σtσ

T
t D2

xx f
)}

dt +∇x f · σt dBt

Go back
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