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I—Im_roduction and motivation

Introduction

» This article recasts the Principal-Agent model with Moral Hazard
in continuous time, using tools from stochastic calculus and
stochastic control
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Llnlmducti(m and motivation

Introduction

» This article recasts the Principal-Agent model with Moral Hazard

in continuous time, using tools from stochastic calculus and
stochastic control

> Follows a large literature in economics and mathematical finance :

e Seminal contribution by Holmstrém and Milgrom

¢ Agent effort influences the drift of a diffusion process

* Happens ’as if” agent controlled the mean of a normal distribution
* Optimal contract is linear in output
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- Introduction and motivation

Introduction

» This article recasts the Principal-Agent model with Moral Hazard

in continuous time, using tools from stochastic calculus and
stochastic control

> Follows a large literature in economics and mathematical finance :
e Seminal contribution by Holmstrém and Milgrom
¢ Agent effort influences the drift of a diffusion process
* Happens ’as if” agent controlled the mean of a normal distribution
* Optimal contract is linear in output
e Mathematical tools developed by (among others) : Cvitani¢ and
Zhang (book) and other articles by D. Possamai and N. Touzi.
* More advanced tools from stochastic calculus
* Dynamic Programming, BSDE, Stochastic Max. Principle (FBSDE)
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- Introduction and motivation

Introduction

» This article provides a systematic method to solve any problem of
this kind :
e Principal observes fluctuations in output and offers a compensation
scheme at terminal time.
o Agent control the drift and the volatility of this output
o The framework is general : no Markovian Assumption
» Can solve all the pre-existing models without ad-hoc methods
» How?
e Use a Dynamic Programming Approach (DPP)
» Why is it different from the literature :
o Agent need to stochastic control problem for an arbitrary
compensation scheme (possibly non-Markovian)
e Principal need to optimize the contract for all possible (non-linear)
reaction of the Agent.
* Tools : calculus of variation, stochastic Pontryagin max. principle
(Cvitani¢ and Zhang)

* Ad-hoc (case-by-case basis) methods (cf. Holmstrém and Milgrom,
Thomas Bourany Frineipal Azenpmadels = Dynamic programming Soutenance 3/33
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- Introduction and motivation

Introduction

» Dynamic programming ... seems simple no ?
o Inspiration from Sannikov (2008)

» Restrict the family of admissible contracts to a collection that can
be solved using Dynamic Programming

o For this family, use standard verification methods

» However, this approach does not suffer from lack of generality

e Under mild technical conditions, can express the Principal’s
optimum over this restricted collection as equal to the supremum
over all feasible contracts.

¢ Technical difficulties when Agent controls the diffusion terms
* Can represen the Agent’s value process as the solution of a BSDE

* Even more : a 2BSDE, actually, as developed in Soner, Touzi, Zhang
2012.
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Principal Agent models — Dynamic programming
LM()del and formalism

Model and formalism — introduction

» The agent ("he’) controls the evolution of a d—dimensional
diffusion process X, with its effort v = («, 3)

o Through its drift A(«)
o ... and the volatility (o(5))!

» The principal (’she’) does not observe the effort v, but only the
process X over time.

» She pays a compensation ¢ (a contract) contingent onX at terminal
date T

» The agent chooses its effort maximizing its final utility Ux (),
subject to some cost ¢; and discounting k;.

» The principal chooses the contract maximizing its utility

Up(£(X) = §).
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LM()del and formalism

Formalism — control models

» The agent controls the SDE of the state variable (the output
process)

t
X, = Xy + / 03X, BN (X, s )ds + dWy]
0

» The couple M = (PP, v) is a control model if XM is a weak solution
of the controlled state equation.

@ ’Recall’ : A weak solution of a ’path-dependent” SDE is a tuple
(Q, F,P, W, X) such that (Q2, F,P) is a proba space, (W, X) two
stochastic processes, W a (F", IP)-Brownian motion and the
equation holds.

» We assume the set of control models is M > M non-empty.
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LM()del and formalism

Formalism — Agent’s problem

> Arv. £ is called a contract if it contingent onX at terminal date 7',
(i.e. £ is Fp-measurable) and with some [”-moments.

> Let c be cost function, assumed to have some measurability and L
regularity for all effort Ml € M

» Let K, = exp(— fo (vg)ds) be a discount factor, with k, bounded
and optional.

» The Agent will aim at maximizing an objective function :

T
]A(Mvg) = E" [ICTf - / K,c,(u,)dl‘]
0
» The optimal effort will be to choose the best control model
(P*, v*) € M*(€) for a given contract :

VA(E) == sup JH(M,€)
MeM
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LM()del and formalism

Formalism — Agent’s problem — Remarks

» In the previous slide, the agent was risk-neutral. However, one can
replace ¢ by a utility function U4 :

JAM, ) :=E" [’CTUA(O - /OT IC,c,(ut)dt]

» The utility is separable btw the compensation ¢ and the cost ¢;.

» One could also consider the objective as :
T
P0,€) 1= B [enp (— sen(Un) [ Kie)) U (6
0

o In the following, to adapt for such a extension, one will need to
replace £ in the principal problem by (U,)~!(€)

o Alternatively, one can think about ¢ as compensation in "utility’.

o Recall that VA(€) := supyc v JA (M €) is the *value function’.
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LMDdEl and formalism

Formalism — Principal’s problem
» The principal will choose a contract which is admissible i.e. £ € =
= = {¢ € Co, M*(€) # 0,andVA(&) > R}
where R is the reservation utility of the agent.
» Let £(X) be liquidation value, and K = exp(— fo (vs)ds) be a

discount factor, with k; bounded and optional.

JIE = sup  ET[KUEX—E)]

(P*,v*)eM*
» The value function defines :

VP = supJP(¢)
{ee
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LMDdEl and formalism

Formalism — Comments

1. The problems are non-standard : £|F; can be Non-Markovian and
thus the Dynamic Programming Principle (DPP) would not be
valid for both the agent and the principal.

o The main goal of this article is to reduce these problems to those
that can be solved using DPP.
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LM()del and formalism

Formalism — Comments

1. The problems are non-standard : £|F; can be Non-Markovian and
thus the Dynamic Programming Principle (DPP) would not be
valid for both the agent and the principal.

o The main goal of this article is to reduce these problems to those
that can be solved using DPP.

2. The weak-formulation of the SDE is standard in continuous-time
Principal Agent models : the agent’s efforts v affect the output
thought the distribution P. Moreover, Principal’s contract will only
be o (X;)—adapted and so will be her information.

o This difference highlight the difference in information between the
Principal and the Agent.
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L Solution using Dynamic Programming

A restricted class of contract

» The idea being to solve the problem with dynamic programming
(DPP), we now focus on a solution methods ’as if” it was possible
to use DPP.

» The main theorem of the paper shows that the optimal contracts in
this class indeed reaches the same value as the restricted

> In the following, I describe the family of restricted contracts :

@ ’'Recall’ : The ’standard’ approach from stochastic control [the
verification method] consists in solving a HIB
[Hamilton-Jacobi-Bellman] equation, finding the optimal feedback
control and verifying that the underlying stochastic process solves
the SDE.

o The heuristic derivation of the HJB is detailed

Thomas Bourany Principal Agent models — Dynamic programming Soutenance

11/33



Principal Agent models — Dynamic programming

LS()lulion using Dynamic Programming

Restricted class of contract — The HJB equation

» The Hamiltonian of the problem considered above is the
following :
Ht(-xvyvza '7) = Sup hl(-xaya 2,7, I/t)
UEAXB
he(x,y, 2,7, u) = —ci(x, u)—ki(x, u) y+0oi(x, b)Ai(x,a) 2+ 1/2 Tr(UtUtT )
Suppose :
o If the coeff A\, o, ¢, k are not path dependent, i.e. depend on x only
through the current value x;
o The contract £ depends on x only through the final value x7
» then, by verification theorem, the Agent’s value function is
VA(€) = v(0,Xo) where v(t, x) is the unique viscosity solution of
the HJB :

—0p(t,x)—H,(x,v, Dv,D*v) = 0, v(T,x) = g(x), VY(,x)€[0,T) xR

Thomas Bourany Principal Agent models — Dynamic programming Soutenance 12/33



Principal Agent models — Dynamic programming

LS()luli(m using Dynamic Programming

Restricted class of contract — The HJB equation

»

In the Markovian setting described before, assuming v solution of
the HIB is C!? we can introduce the V;(¢) = v(1, x;)

Therefore, by definition of the value function we have

v(T,xr) = g(xr) = {(xr)

The optimal compensation & being simply the value function v, we
can obtain the following representation, by the Itd’s formula :

T T
¢(Xr) = v(0,Xo) + / ZedXo+ / UTr(y d{X)) — Hy(Viy 200t
0 0

with V; = v(t,x;), z, = Dv(t,x;), 7 = D*v(t,x;)
This formulation for optimal contract is inspired from Sannikov.

The main idea will thus be to express V; in term of &,
i.e. a BSDE formulation !

Thomas Bourany Principal Agent models — Dynamic programming Soutenance
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LS()luli(m using Dynamic Programming

Restricted class of contract — Definition
The collection V of predictable process (Z,I") is defined such that :

» The process Y%! and Z have some I regularity/integrability :
t t
YA vy 4 / 7, dX, + / VTe(Ty d(X)s) — Hy(Ve Zy, T )ds
0 0
e This process will be central, as representation of Agent’s value fct

for the Principal.

» There exists a (weak-)solution (P%1, 1%1") € M maximizing the
hamiltonian :

Ht(Xta Y, Z,, Fz) = ht(Xh Y, 72,1, VzZ’F) P4l — e

e Itis, in a way, the idea of finding an optimal feedback control in the
verification approach (given v, i.e. Y here).
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LS()lulion using Dynamic Programming

Restricted class of contract — A verification argument

Prop. 3.3 is an important result, used in the proof of the main theorems :
For Yy € Rand (Z,T) € V we have :

> Y?’F € Cy
e The terminal value Y will be a suitable contract
> Yo = VA(YZ") and any couple (PZT, %) will be an optimal
response to such contract, i.e. (P%1, %1 € M*(Y%’F)
e For such type of contracts, agent’s value coincide with Y,Z T,
» (P, v*) e M*(Y?’F) if and only if
H(X;, 1,2, 1) = (X, Y1, Z, T, vf) P*—ae

e Optimal actions v* coincide/ are identified with hamiltonian
maximizers (on the support of P*).
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LSolution using Dynamic Programming

Restricted class of contract — A verification argument

Prop. 3.3, Ideas of the proof : For Yy € R and (Z,I') € V we have :

> Yo = VA(YZ") and any couple (PZT, %1 will be an optimal
response to such contract, i.e. (PZT, v2T) € M*(Y2h)

» (P, v*) € M*(Y?F) if and only if

Ht(Xt7 Y. 7, Ft) = ht(X17 Y, Z;, Ty, V;*) P* —a.e
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LSolution using Dynamic Programming

Restricted class of contract — Notations

» Since we have identified the optimal effort in such setting, we
denote them u* = (a*, 8*) :

Ht(x7y7 3, ’Yt) = ht(ya 2Vt V:)
> The optimal feedback control induces drift and variance :
)\;((x7y7 <y ’Y) = )\t(-xv a;(xvyv <, ’7)) and O-t*(xvyv <y ’Y) = Ut(x7 ﬂt*(-xvyv <y ’7))
» The output process rewrites :
t
X, = X0+/ o (X, Y, Z, Ts) [/\*(X, Y5, Z, Ts)ds + dWS], vVt € [0,T]
0
o Note that for \*, o* given, the SDE is controlled by (z,)

Thomas Bourany Principal Agent models — Dynamic programming Soutenance 17/33
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LSolution using Dynamic Programming

Restricted class of contract — Principal’s point of view

» The previous verification argument allows to determine the
"agent-optimal’ contract as the value function of the Agent.

» The authors show — and that the main result of the article — that it
correspond to the optimum for the Principal problem

» Informally, it will means to prove that
VPi=supJP(§) = sup  V(Yo)
£es f*EY?’F,
Y02R7 (Z,F)EV

“heuristically’, and where V(Y)) remains to define.

Thomas Bourany Principal Agent models — Dynamic programming Soutenance
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LSolution using Dynamic Programming

Restricted class of contract — Principal’s point of view
Prop. 3.4, a direct consequence of prop 3.3.

» The principal’s value function is minored by the maximum over
restricted contract :

> Defining

V(Yy) := sup sup EF [ICf)U(E - Yf’r)]
(zD)ey (Pr)emr

» We have (Prop 3.4) :

VP = supJP(&) > sup V(Yp)
£e= Yo>R

o Intuitively, the RHS implies to choose an optimal contract s.t. :
* (i) initial value Yy is above reservation utility
* (ii) agent’s value fct will coincide with (Y,Z ’F), (resp. cond. of V)
* (iii) the agent will behave optimally to the contract given by Y?’F

Thomas Bourany Principal Agent models — Dynamic programming Soutenance 19/33
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LS()lulion using Dynamic Programming

Restricted class of contract — Main reduction result

Theorem 3.6
» Assume that }V # ()

then we have :

v

VP = sup V(Y)
Yo>R

» Moreover, the maximizer of LHS optim (Y{, Z*,I"™*) induces an
optimal contract £* := Y?’F*.

o Since the LHS happens to be the value function of a standard
(DPP-style) stochastic control problem,

o The assumption V # () is mild (for V # —o0).

Before presenting the sketch of the proof in a specific case, I derive
the solution of Principal’s control pblm

v

Thomas Bourany Principal Agent models — Dynamic programming Soutenance 20/33
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LSolution using Dynamic Programming

Restricted class of contract — Solving Principal’s HIB
» Assuming M* # ()

V(Yy) := sup sup EF [KfU(E - Yf’r)]
(zIey Pr)em*

» It is a ”standard” problem to solve
e It correspond to the controlled SDE :

1
day?t = (z,.a;,\,*+§Tr(a;a,* T)-H)(Y/", 2, )dt+Z 0 (Y, Z, T)aw™
o The (long) Hamiltonian :

G(t,x,y,p,M):=sup sup 3 (o7 \) - pxe + (2 07 AF + 5Tr(ot o} Ty,) — Hy) (x,7,2,7) py
(z,7) u*

1
—|—§Tr(at*at "My +22"M ))+a,*0,*T(x,y7z77)Z'Mxy}
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LSolution using Dynamic Programming

Stochastic control — Solving Principal’s HIB

» The (long) Hamiltonian of Principal’s problem :

G(t,x,y,p,M):= sup sup {(Gt*/\f) pet (207N + 3Te(ofof ") — H) (x,5,2,7) py
(zy) u*

1
5 Te(ol 0! (Mo + 5T My)) + 0o T (33,7) - M}

. My M p
with M =: x" xy) € Syy1andp =: ( ") € R4t! Comments :
( M, M, Dy

o The maximizat® of the Hamiltonian is made over (z,7y) € RxS;(R)
and u* = («*, 8*) implies the drift/diffusion terms \* and o*.

o Assume the existence of (2,%)(z,x,y, p, M) maximizer of the
Hamiltonian

o The value function also depends on y which is the value fct of the
agent.
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LSolution using Dynamic Programming

Stochastic control — Solving Principal’s HIB

» Letv € C12([0,T), R™1) N CO([0, T] x RY*!) a classical solution
of the HIB :

{ (O — k) (t,x,y) + G(t,x,y,Dv,D*) =0 Y(t,x,y) € [0,T)xR*xR
v(T,x,y) = U(E(x) _y)

» Assuming that :
e v(t,X;, Y:), is U.I (uniform integrable) V(P,v) € M*, V(Z,T) €V

o The Hamiltonian has maximizers (z,%) s.t.
* The controlled SDE governing X, andY/ T with controls
(z*,T*) = (3,7)(-, Dv, D*V)(t, X;, Y:) has a weak solution (P*, v*)
. (z5,T%) e V.
» Then V(Yy) = v(0,Xo, Yo) and (Z*,T'*) is an optimal control for
Principal’s problem.
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LA particular case

Forking

» A concrete example, from Cvitani¢, Wan and Zhang (2009)
» The proof in the special case where the Agent does not control the
volatility of output.
o Remember, the idea is to proove that  V*:= supJ(¢) = sup V(¥))
EE *— Z, T
‘ YUERT();T:F)’EV
e But, the class = is only Fr-mesurable : not possible to
use controlled SDE (and DPP-style stuffs)
o Instead, characterize the process Y,Z Tasa (controlled) BSDE
e Prove the existence/uniqueness result from the famous results of
Pardoux and Peng 90
» The proof in the general case is similar :
o In this case, trouble comes from the 2nd order, diffusion term
o Instead, characterize the process Y,Z Tasa (controlled)
Second-Order BSDE
o Use results from Soner, Touzi and Zhang (2012)
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LA particular case

Fixed volatility of output

» Suppose the agent has no action on volatility :
o The agent’s hamiltonian reduces to
1
H(x,y,2,7) = 3 Tr(0:0/7) + Fi(x,y,2)
where
Ft(xv s 2, a) = sup {_ct(-x7 a)_kt(xa a)y+gt(x))‘l(x7 a)'Z }
acA

» The dynamics of the reduced contract becomes :

t t
Y2 = Y0+/ Zs-dXs—/ Fi(X,Y%,Zy)ds
0 0

e To be able to use the Thm 3.6, we need to represent any contract
¢ € = as a compensation of the form £ = YZ
e It reduces the problem to solving a BSDE :

T T
YO=§+/ F,(X,YSZ,Zs)ds—/ Z, - dX;
0 0

Thomas Bourany Principal Agent models — Dynamic programming Soutenance 25/33



Principal Agent models — Dynamic programming

I—A particular case

Fixed volatility of output

» The process YtZ T because it depends on the contract £ = Y? Tisa
typical example of Backward Stochastic differential equation.

» Starting from :

{ YZ =Yy — [y F(X, Y2, Z))ds + [} Z - dX,
Yi=¢

In the following :
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LA particular case

Fixed volatility of output

» ’Recall’ that the predictable representation property of a semi
martingale X w.r.t./under (F, Q) if any (IF, Q)—local-martingale Y
can be written in the form Y, = m + fot Z.dX, where Z, is a
predictable process and m a Fp-measurable r.v.

» ’Recall’ the Blumenthal zero-one law : If

For = () Fu
u>0
then Fo is trivial in the sense than VA € Fy,P(A) =0or 1

» According to the authors, the standard theory of BSDE directly
implies that these two conditions, added to the standard
regularity/integrability assumption + generator of the BSDE being
uniform Lipschitz directly implies existence and uniqueness.
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Some results on BSDE

> ’Recall’ : A fundamental result from Pardoux and Peng on BSDE :
e A solution of the BSDE . ..

dY, = —f(Y,,Z,)dt + Z,dw,
Yr=¢ € [0,T] x R?

o ... isacouple (Y;,Z) satisfying some measurability/integrability
conditions such that

T T
Yt:§+/ fS(Ys,Zs)ds—/ Z,dW,
t t

» Pardoux and Peng 90 : Existence and Unicity of solution of
BSDE:

o Assuming that f is uniformly Lipschitz in (y, z) and &, (0, 0) are L?
o then there exists a unique solution (Y, Z) to the BSDE.
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The stochastic control problem — the HJB equation

» The aim of the agent is to maximize its objective function :

T
v(19, Xy,) = sup IE,O(/ L(t, Xy, ov)dt + g(X1))
fo

{at}%

where v is the value function of the agent (at time fy), L and G resp.
the running gain and terminal gain.
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The stochastic control problem — the HJB equation

» The aim of the agent is to maximize its objective function :

T
v(19, Xy,) = sup IE,O(/ L(t, Xy, ov)dt + g(X1))
Io

{a,}%

where v is the value function of the agent (at time #y), L and G resp.
the running gain and terminal gain.

> o the (adapted) control variable and X, is the state variable,
(unique) solution of SDE :

dXt — b(t, Xt7 Oét)dt + U(t, Xt’ a,)dB;
Xto = X0 (l‘o,)C()) S [O, T] x R4

where b is the drift, o the variance and B; a Brownian motion

More on this J
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The stochastic control problem — the HJB equation

» Here, Bellman dynamic programming principle holds :

I
v(to, Xsy) = sup Eto(/ L(t,X,,a,)dtJrv(tl,X,l))

T
{O‘I}to fo

Thomas Bourany Principal Agent models — Dynamic programming Soutenance 30/33



Principal Agent models — Dynamic programming

The stochastic control problem — the HJB equation

» Here, Bellman dynamic programming principle holds :

I
v(to, Xsy) = sup Eto(/ L(t,X,,a,)dtJrv(tl,X,l))

T
{al}to fo

» The idea is to study “infinitesimal” variation in the value function
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The stochastic control problem — the HJB equation

» Here, Bellman dynamic programming principle holds :

I
v(to, Xsy) = sup IE,O(/ L(t,X,,a,)dtJrv(tl,X,l))

T
{al}to o

» The idea is to study “infinitesimal” variation in the value function
» Use the It6 formula to compute the value fct at time r + /4 :

to+h to+h 1 to+h
sup g (/ L(t,x, a,)dt—f—/ {8, v+Vi v-bt—i-fTr(ata,TD,zcx v) }dt+/ Viv-or dB,) =0
{ar} [ fo 2 1o
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The stochastic control problem — the HJB equation

» Here, Bellman dynamic programming principle holds :

I
v(to, Xsy) = sup IE,O(/ L(t,X,,a,)dtJrv(tl,X,l))

T
{al}to o

» The idea is to study “infinitesimal” variation in the value function
» Use the It6 formula to compute the value fct at time r + /4 :

to+h to+h 1 to+h
sup g (/ L(t,x, a,)dt—l—/ {8, v+Vi v-b,—i-fTr(ata,TD,zcx v) }dt+/ Viv-or dB,) =0
{ar} [ fo 2 1o

> The expectation of stochastic integral is zero E( fot -+-dBy) = By = 0 by
martingale property.
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The stochastic control problem — the HJB equation

» Here, Bellman dynamic programming principle holds :

I
v(to, Xsy) = sup IE,O(/ L(t,X,,a,)dtJrv(tl,X,l))
fo

{a,}g)

» The idea is to study “infinitesimal” variation in the value function
» Use the It6 formula to compute the value fct at time r + /4 :

to+h to+h 1 to+h
sup g (/ L(t,x, a,)dt—l—/ {8, v+Vi v-b,—i-fTr(ata,TD?cx v) }dt+/ Viv-or dB,) =0
{ar} [ fo 2 1o

> The expectation of stochastic integral is zero E( fot -+-dBy) = By = 0 by
martingale property.

» Take h — 0, the integrand need to be zero for every ¢ :

Av(t, x)+sup {L(t,x, a) + V(t, x) - b(t,x,a) + %Tr(a(t, x,a)o(t,x, a)TDfxv(t, x))} =0
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The stochastic control problem — the HJB equation

» Here, Bellman dynamic programming principle holds :
I
v(to, Xsy) = sup E, (/ L(t, Xy, ou)dt + v(t1, X, ))
{a,}% fo

» The idea is to study “infinitesimal” variation in the value function
» Use the It6 formula to compute the value fct at time r + /4 :

to+h to-+h 1 to+h
sup g (/ L(t,x, a,)dt—l—/ {8, v+Vi v-b,—i-fTr(ata,TD?cx v) }dt+/ Viv-or dB,) =0
{ar} [ fo 2 1o

> The expectation of stochastic integral is zero E( fot -+-dBy) = By = 0 by
martingale property.
» Take h — 0, the integrand need to be zero for every ¢ :

Av(t, x)+sup {L(t,x, a) + V(t, x) - b(t,x,a) + %Tr(a(t, x,a)o(t,x, a)TDfxv(t, x))} =0

» This is the Hamilton Jacobi Bellman (HIB) PDE!
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The stochastic control problem — the HJB equation

v

The Hamilton-Jacobi-Bellman :
Ov(t, x) + sup {L(l,x, a)+ Vw(t,x) b+ %Tr(aaTDixv(t, x))} =0
» Or writing it with "Hamiltonians”

1
H(t,x,p,M) = sup {L(t,x, a)+p-b+ ETI‘(O‘O'TM)} =0

»> the HIB rewrites :
Ov(t,x) + H(t, x, va,Dixv) =0

» The optimal control can be given in feedback form by the First-Order Conditions
(FOC).
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The stochastic control problem — Solutions

» Verification approach (the ’standard’ approach of stochastic
control) :

Find w(z, x) a solution of the HIB equation.

Find a mesurable fct a(z, x) maximizing the hamiltonian (for this w).

Plug the a(t, X;) is the dynamics dX, = b(-)dt + o (-)dW,.

If this SDE has a solution X¢ given initial condition (z, x),

» then : the function w is the value function of the stochastic control
problem.

e What if the fct v is not smooth ? (not C'+?)
— Viscosity solutions : Crandall and Lions (1989)
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Rappels : 1t6’s formula
» For any X, It6 process :
dX, = b;dt + 0, dB,
and any C" scalar function f(t, x) of two real variables 7 and x, one has :

0 0, & 0
df(t7Xt) = (8]: + taj; + %871;) dt+0t5£d3t

> For vector-valued processes X, = (X!, X?,...,X")
dXt = btdt + UtdBt

» The It6 formula rewrites :
d

2
(tx,)_ tX, dt+Z—(tX;dX’+ Zafg (1, X))d(X', X7},
iOXj

= 8fdi+ Vof - dX, + 5Tr (cf,at Xxf)
1
- {8,f+fo-b,+ ST (G,U,Dz f) }dt—i—fo-a,dB,
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