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Aggregation, Liquidity, and Asset Prices with Incomplete Markets

Introduction

Introduction

I Propose a theory of asset pricing and consumption based in liquidity frictions matching
standard facts :

1. Household consumption not well described by Euler equation,
High MPC, c.f. Kaplan Violante (2014)

2. Aggregate consumption follows a simple Euler eq. with the zero-beta rate – cond. expected
return on a zero-beta equity portfolio, c.f. Di Tella et (2023))

3. Aggregate consumption doesn’t follow a simple Euler eq. with the safe rate
4. Security market line is flat : return on zero beta portfolio close to market return.

I This paper :
I Liquidity-based theory of consumption and asset prices
I Aggregation and analytical characterization of asset prices in a two-assets Het. Agent

model with idiosyncratic income risk, borrowing constraint and aggregate risk
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Aggregation, Liquidity, and Asset Prices with Incomplete Markets

Introduction

Werning (2015)
I Aggregation result of HANK models

• Generalized Euler relation
U′(Ct) = βtRtU′(Ct+1)

• Rely on vanishing liquidity (no borrowing and no outside asset) and household income
proportional to aggregate income

• Incomplete market still matters ! change βt

Assumptions on Response of aggregate
Income Risk Liquidity consumption to interest rates

countercyclical procyclical → higher sensitivity
acyclical acyclical → ’As if’ representative agent

procyclical countercyclical → lower sensitivity

I Di Tella, Hebert, Kurlat (2024) :
similar result with Two-Assets HA model matching asset pricing facts.
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Aggregation, Liquidity, and Asset Prices with Incomplete Markets

Model – Log

Log economy
I Household two assets problem :

max
Cit,Dit

U (Ci) = max
Cit,Dit

E
[∫ ∞

0
e−ρt log (Cit) dt

]
dAit = DitdNit︸ ︷︷ ︸

deposit
from liquid

+ ratAitdt + Aitσat · dMt︸ ︷︷ ︸
return / agg. risk of illiquid asset

dBit =
(

e0
it(1−α)Yt︸ ︷︷ ︸
labor income

shocks

−Cit

)
dt + rbtBitdt + Bitσbt · dMt︸ ︷︷ ︸

return / agg. risk of liquid asset

− (Dit + κIDit 6=0Bt) dNit

I Exogenous aggregate income, long-run risk (σg > 0)

dYt

Yt
= gtdt + σY (Yt, gt) · dMt,

dgt = µg (gt,Yt) dt + σg (gt,Yt) · dMt
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Aggregation, Liquidity, and Asset Prices with Incomplete Markets

Model – Log

Household problem - HJB / KFE
I Defining asset price : At = E[

∫
s e−

∫
u ra,udu(1−θ)αYsds] and price-dividend ratio :

Pat = At/
(
(1−θ)αYt

)
• Normalizing : ait = Ait/At, bit = Bit/Bt, dit = Dit/Bt, cit = Cit/Yt
• Decision : cit = (a, b, e; Pat,Pbt) = c(·) depends on the path(s) of Mt through prices.
• Generator for (a, b, e)

Labe(ct, dt; Pat,Pbt) = Lef (·) +
a

Pat︸︷︷︸
da|dN=0

fa(·) +
1

αθPb,t

(
αθb + e0(1−α)− ct(·)

)
︸ ︷︷ ︸

db|dN=0

fb(·)

+ χ
(

f
(
a +

θPbt

(1−θ)Pat
dt(·), b− dt(·)− κIdt 6=0, e

)
− f (a, b, e)

)

• KFE : dµt(·) = L?(ct, dt; Pat,Pbt)µtdt
– Note, in theory dMt should affect µt, but not the case because of normalization

• Steady state : Yt=1, gt=σY=µg=σg=0, (rat,Pat) = (r̄a, P̄a) and P̄a = 1/r̄a

ρV̄(a, b, e) = max
c≥0

d∈[−a 1−θ
θ P̄a/P̄b,b]

ln c + Labe(c, d; P̄a, P̄b)
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Aggregation, Liquidity, and Asset Prices with Incomplete Markets

Model – Log

Markovian equilibrium with aggregate shocks
• Aggregate shocks : Assume σY(Y, g) = 0, Generator for (Y, g)

LYg f (·) = fY(·)gY + fg(·)µg(Y, g) +
1
2

fgg(·)σg(Y, g)2

I Conjecture equilibrium is Markovian with stationary price/dividend ratio P?a = P̄a
• Guess and verify : V(a, b, e; Y, g) = V̄(a, b, e) + φ(Y, g)

ρV̄(a, b, e) + ρφ(Y, g) = max
c≥0

d∈[−a 1−θ
θ P̂a/P̄b,b]

ln(Y) + ln c + Labe (c, d; P̄a, P̄b) V̄(a, b, e) + LYg(Y, g)φ(Y, g)

• φ(Y, g) = E
[ ∫∞

t e−ρ(s−t) ln(Ys)ds
∣∣Yt = Y, gt = g

]
• Proposition 2 : If σY = 0, the equilibrium is s.t.

σat = σbt = 0 rat = r̄a + gt rbt = r̄b + gt (Euler eq.)
c? = c̄(·) d? = d̄(·) P̄at = P̄a P̄bt = P̄b µ?t = µ̄
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Model – Log

Log economy – Aggregation

I Aggregation results : No redistributive effect of the aggregate shocks
– Constant shares (L/K, α, Liq./Illiq. θ)
– Invariance of Le to (Yt, gt), same as Werning (2015)

I Limitations :
1. Spread between liquid and illiquid r̄a − r̄b constant

– reflects the convenience of liquid assets for consumption
– cst because supply of liquid assets ∝ liquidity needs from idiosyncratic income shocks e and

trading opportunities χ
– Fact 3 : Euler equation doesn’t hold for safe assets

2. Estimate of Intertemporal Elasticity of Substitution < 1
– Fact 2 : Euler equation for zero-beta not matched quantitatively

3. Price dividend ratios P̄a, P̄b constant
– Fact : very volatile procyclical price-dividend ratio
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Aggregation, Liquidity, and Asset Prices with Incomplete Markets

Model – CRRA

CRRA economy
I Utility u(C) =

C1−γ
it

1−γ
I Aggregate state of the economy summarized by xt : claim to agg. conso.
∼ Price-dividend ratio of RA economy / Wealth-consumption ratio

xt = x(Yt, gt) = ρ
[ ∫ ∞

t
e−ρ(s−t)

(Ys

Yt

)−γ
︸ ︷︷ ︸
=SDF

Ys

Yt
ds
∣∣∣Yt, gt

]
– Countercyclical xt : low growth gt ⇒ high xt

• Adjust all the generators Labe(·, xt) with Le/xt and χ/xt,
• Conjecture Markov eq. with P?at = P̄a/xt + Guess-verify V(·) = x(Y, g)Y1−γ V̄(a, b, e)

• Proposition 3 : If σY = 0, the equilibrium is s.t.

σat = σbt =
σx(Yt, gt)

x(Yt, gt)
rjt = ρ+ γgt −

ρ− r̄j

xt
j = a, b (Euler eq.)

c? = c̄(·) d? = d̄(·) P̄at = xtP̄a P̄bt = xtP̄b µ?t = µ̄

– Interest rjt falls more than 1-1 with gt. Spread st = (r̄a − r̄b)/xt, low gt high xt low spread st

Scaling by xt prevents redistribution from frontloaded income agents to backloaded ones.
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Model – Aggregate volatility

Adding aggregate volatility
I Until now σY(·) = 0, we had Yt = Ct locally deterministic.

With σY(·) 6= 0, can study risk premia + match fact 2.
• Proposition 4 : If σY > 0, the equilibrium is s.t.

σat = σbt =
σx(Yt, gt)

x(Yt, gt)
+ σY(Yt, gt) rjt = ρ+ γgt −

ρ− r̄j

xt
− (γ−1)

γ

2
σ2

Yt + γ
σxt

xt
σYt j = a, b

c? = c̄(·) d? = d̄(·) P̄at = xtP̄a P̄bt = xtP̄b µ?t = µ̄

– Step 1 : Same logic as before + modify generator LYg

– Step 2 : Completing markets, add zero-net supply derivative (no trade in equilib.) with return

πj(Y, g) = γσY(Yt, gt) price of risk

– Remove the risk from return to get zero-beta r0
jt = rjt − πj(Y, g)

(σx(Yt,gt)
x(Yt,gt)

+ σY(Yt, gt)
)

• Proposition 5 Consumption CAPM, with zero-beta rates r0
j , j = a, b

r0
jt = ρ+ γgt − (γ+1)

γ

2
σ2

Yt︸ ︷︷ ︸
=RA Euler eq.

−
ρ− r̄j

xt

– Last term : benefit from insurance against idiosyncratic risk (6= Constantinides, Duffie (1996))
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Quantitative implications

Quantitative evaluation

I How does this model perform vis-a-vis the asset pricing facts ?
• Works with Price/Divident ratio xt directly instead of fully specifying the process (Yt, gt)

ρ̃︸︷︷︸
=8.5%

= ρ+ γ︸︷︷︸
=1/0.2

E
[
gt
]︸ ︷︷ ︸

=1.5%

−(γ + 1)
γ

2
σ2

Y

r0
jt = E[r0

jt] + γ
(
gt − E[gt]

)
−
(
ρ̃− E

[
r0

jt

])
×
( x−1

t

E
[
x−1

t
] − 1

)
(EE)

• Illiquid asset, E[r0
at] = 8.5% Perfect fit (fact 2) by construction

• Liquid asset, E[r0
bt] = −1.5%. To match fact 3, we need this Euler eq. fails (fact 3)

– Project x−1
t on growth gt : x−1

t

E[x−1
t ]

= 1 + β
(
gt − Et[gt]

)
+ εt, E[εt] = E[εtgt] = 0

– Plug this in (EE) : r0
bt − E[r0

bt] =
(
γ − βE[st]

)
×

(
gt − E[gt]

)
− E[st]εt

– Need εt to be large ! R2 of that reg. is 28%, match volatility of dividend/price ratio x−1
t
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Quantitative implications

Asset pricing puzzles

I Equity premium puzzle
• Calibration match E[r0

at] and E[r0
bt]

• To match rat − rbt, it requires a small risk premium : E[rat − r0
at] = πa(σx/x + σY)

• Because liquidity premium already large !
⇒ no puzzle, consistent with both CAPM and large equity premium

I Equity volatility puzzle
• Volatility of illiquid asset 11.3% = (σx/x + σY) > σY vol. of consumption growth. the gap

comes from dividend/price ratio
I Risk-free rate puzzle

• With large liquidity premium, easy to match E[r0
bt] and std(rbt) = 2.8% (data = 2%)

I Return predictability
• predictability through valuation ratio x−1

t : r0
at − r0

bt =
(
E[r0

at]− E[r0
bt]
) x−1

t

E[x−1
t ]
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