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Numerical methods for HJB equations and MFG systems

Introduction – Motivation
I Nowadays, heterogeneous agents models are ubiquitous is

economic theory
• Started in the 1990s with Bewley-Huggett-Aiyagari framework for

household inequality and Hopenhayn for entry and exit of firms
• Became increasingly used : match micro-data using macro models

I Why Mean-Field Games?
• When formalized in continuous time, these models take the form of

systems of PDE, called MFG system
• Recent (2007-) development by J. M. Lasry and P. L. Lions and

Caines, Huang and Malhamé⇒ now a large applied math literature
I What are we talking about ?

� A Hamilton-Jacobi-Bellman : backward in time
How the agent value/decisions change when distribution is given

� A Kolmogorov-Forward (Fokker-Planck) : forward in time
How the distribution changes, when agents control is given

� These two relations are coupled :
e.g. due to equilibrium prices (rt/wt)⇒ need to look for a fixed point
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Numerical methods for HJB equations and MFG systems

Introduction – recent progress and open questions

I Recent progress :
• Very fast to compute the stationary equilibrium
• Recent methods that rely on linearity of the model (more on this

later)
I However, plenty of open questions

• No ideal methods with transition path.
• Simulation with aggregate shocks/common noise still impossible
• Understanding the gain and losses induced by simplification :

– See other set of slides about methods with aggregate shocks

I Today : numerical methods for
1. “Standard” HJB, extensions to MFG ⇒ ex. w/ Aiyagari (1994)
2. Impulse control and HJB-VI and MFG ⇒ ex. w/ Hopenhayn (1992)
3. Introduction to common noise : MIT shocks and Jacobian methods

T. Bourany Numerical methods for HJB equations and MFG systems March 2020 3 / 31
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Numerical methods for HJB equations and MFG systems

Baseline model

Baseline model – Aiyagari model

I Let us recap the Aiyagari framework :
• Will use it thoroughly as an example for the different algorithms
• Continuous time version of the stationary case :

• Household :
– States variables : wealth a and labor prod. z ; control : consumption c
– Idiosyncratic fluctuations in z (Pure jump/Jump-drift process)
– State constraint (no borrowing) a ≥ a
– Maximization :

max
{ct}

Et0

∫ ∞
t0

e−ρtu(ct)dt dat = (ztwt + rt at − ct︸ ︷︷ ︸
=s?(t,a,z)

)dt a|t0 = a0 z|t0 = z0

• Neoclassical firms : Yt=ZtKαt z1−α
av

– Interest rate : rt = α ZtKα−1
t z1−α

av − δ & wage wt = (1−α) ZtKαz−αav

– Capital demand Kt(r) :=
(
αZt

rt+δ

) 1
1−α zav

• Discrete time version here
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Baseline model

MFG system - Aiyagari model - 1
I Original Aiyagari model :

• Idiosyncratic noise on zj is a Markov jump-process, 1 ≤ j ≤ nz,

intensity λj and z ∼L φ(·) conditional on jumping
• dat = (ztwt + rt at − ct︸ ︷︷ ︸

=s(t,a,z,rt(g),ct)=s?(t,a,z)

)dt and state space : (a,zj)∈[a,∞)×{z1,...,znz}=:X

− ∂tv(t,a,zj) + ρv(t,a,zj) = max
c

u(c) + ∂av(t,a,zj) s(t,a,zj)

∀ (t,a,z)∈[0,T)×X + λj

∑
−j

φ(z−j)(v(t,a,z−j)−v(t,a,zj))

∀(t,a,zj)∈[0,T)×X ∂tg(t,a,zj) = −∂a
[
s(t,a,zj) g(t,a,zj)

]
− λjg(t,a,zj) +φ(zj)

∑
−j

λ−jg(t,a,z−j)

St(rt) :=
∑

zj

∫ ∞
a

a g(t, da, zj) = Kt(rt)

v(T,a,z) = v∞(a,z) g(t0,a,z) = g0(a,z) ∀ (a,zj)∈X

T. Bourany Numerical methods for HJB equations and MFG systems March 2020 5 / 31
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Baseline model

MFG system - Aiyagari model - 2

I Diffusion-version of Aiyagari model :
• Idiosyncratic noise z is now a diffusion process dz = µ(z)dt +σ2dBt.
• dat = (ztwt + rt at − ct︸ ︷︷ ︸

=s(t,a,z,rt(g),ct)=s?(t,a,z)

)dt and state space : (a,z)∈[a,∞)×[z,z]=:X

− ∂tv(t,a,zj) + ρv(t,a,zj) = max
c

u(c) + ∂av(t,a,z) s(t,a,z)

∀ (t,a,z)∈[0,T)×X + µ(z)∂zv(t,a,z) + σ2

2 ∂
2
zzv(t,a,z)

∀(t,a,z)∈[0,T)×X ∂tg(t,a,zj) = −∂a
[
s(t,a,z) g(t,a,zj)

]
− ∂z

[
µ(z) g(t,a,z)

]
+ σ2

2 ∂
2
zzg(t,a,z)

St(rt) :=
∑

zj

∫ ∞
a

a g(t, da, zj) = Kt(rt)

v(T,a,z) = v∞(a,z) g(t0,a,z) = g0(a,z) ∀ (a,zj)∈X
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The algorithm

The algorithm : an overview
I Aim : find the stationary equilibria : i.e. the functions v and g, over

[0,T] and the interest rate path r.
I General structure :

1. Guess interest rate path r`, compute capital demand K(r`) & wages
w(K)

2. Solve the HJB using finite differences (semi-implicit method) :
obtain s`(a,zj) and then v`(a,zj), by a system of sort :
ρ v = u(v) + A(v; r)v

3. Using AT , solve the FP equation (finite diff. system :
A(v; r)Tg = 0), and obtain g(a,zj)

4. Compute the capital supply S(g, r) =
∑

j

∫∞
a a g(a,zj)da

5. If S(r) > K(r), decrease r`+1 (update using bisection method), and
conversely, and come back to step 2.

6. Stop if S(r) ≈ K(r)

T. Bourany Numerical methods for HJB equations and MFG systems March 2020 7 / 31
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The algorithm

The algorithm, advantages relative to discrete time :
1. Borrowing constraint only appears in the boundary conditions

• FOCs u′(c(a)) = ∂avj(a) and HJB eq. always holds with equality
• No need to split the Bellman equation (constrained vs.

unconstrained agents)

2. In continuous time there is no future (i.e. t + 1) only present t !
• Only involve contemporaneous variables (FOC are ’static’)
• No need to use costly root-finding to obtain optimal c(a, z).

3. The discretized system is easy to solve :
• ’Simply’ a matrix inversion (due to finite differences).
• Matrices are sparse (tridiagonal)
• Continuous space : one step left or one step right

4. HJB and FP are coupled
• The matrix to solve FP is the transpose of the one of HJB.
• Why? Operator in FP is simply the ’adjoint’ of the operator in HJB :

’Two birds one stone’
• Specificity of MFG!

T. Bourany Numerical methods for HJB equations and MFG systems March 2020 8 / 31
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Numerical methods for HJB equations and MFG systems

The algorithm

The algorithm : transition dynamics
I The algorithm for transition dynamics :

• Discretization : vn
i,j and gn

i,j stacked into vn and gn

• Somehow, it is more specific to Mean Field Games :

I Take advantage of the backward-forward structure of the MFG
• Make a guess r`t (t = 1, . . . ,N) on the path interest rates.
• Solve the HJB (implicit scheme), given terminal condition ;

−vn+1 − vn

∆t
+ ρvn+1 = un + A(vn+1; rn) vn+1

vN = v∞ (terminal condition = steady state)

• Solve the FP forward, given the initial condition

gn+1 − gn

∆t
= A(vn; rn)Tgn+1

g1 = g0 (initial condition)

• Update the interest rates path

T. Bourany Numerical methods for HJB equations and MFG systems March 2020 9 / 31
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• Make a guess r`t (t = 1, . . . ,N) on the path interest rates.
• Solve the HJB (implicit scheme), given terminal condition ;

−vn+1 − vn

∆t
+ ρvn+1 = un + A(vn+1; rn) vn+1

vN = v∞ (terminal condition = steady state)

• Solve the FP forward, given the initial condition

gn+1 − gn

∆t
= A(vn; rn)Tgn+1

g1 = g0 (initial condition)

• Update the interest rates path
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Numerical method for Hamilton-Jacobi-Bellman equation

The algorithm for HJB : Finite difference
I Finite difference scheme :

• Discretize the state-space ai for i = 1, . . . na and zj for j = 1, . . . , nz,
and time t = 1, . . . ,N

∂av(ai,zj) ≈
vi+1,j − vi,j

∆a
≡ v′i,j,F ∂av(ai,zj) ≈

vi−1,j − vi,j

∆a
≡ v′i,j,B

∂2
zzv(ai,zj) ≈

vi+1,j − 2vi,j + vi−1,j

∆a
∂tv(t,ai,zj) ≈

vn+1
i,j − vn

i,j

∆t

I Looking for vn+1 as a function vn. Implicit method
• Inversion of time : HJB runs backward – from T ≡ 1 to t0 ≡ N

−vn+1 − vn

∆t
+ ρvn+1 = un + A(vn; rn) vn+1

I Main issue for HJB : controls depend on vn+1 through the max :
• We rely on semi-implicit methods for control c : use cn

i,j instead of
cn+1

i,j for the fully-implicit

cn
i,j = (u′)−1(vn ′

i,j ) instead of vn+1 ′
i,j
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Numerical methods for HJB equations and MFG systems

Numerical method for Hamilton-Jacobi-Bellman equation

The algorithm for HJB : Finite difference
I Optimality condition in the maximization of the HJB

• Hamiltonian and FOC : p ≡ ∂av

H(g, p) := max
c

u(c) + s(r(g), c)p ⇒ u′(c) = p

c? = (u′)−1(p) s?(t, a, z) = ∂pH(g, ∂av(t,a,z))

I Upwind scheme :
• Choose direction of difference as fct of the sign of drift :

• If s?(t, a, z) > 0 choose
p ≡ ∂av = v′i,j,F

• If s?(t, a, z) < 0 choose
p ≡ ∂av = v′i,j,B

T. Bourany Numerical methods for HJB equations and MFG systems March 2020 11 / 31
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Numerical methods for HJB equations and MFG systems

Numerical method for Hamilton-Jacobi-Bellman equation

The algorithm for HJB : Finite difference scheme
I Boundary conditions :

• State constraint in a
a ≥ a s(t, a, z) ≥ 0 ⇒ ct = rta + wtz

v′1,j,B = ∂av(t,a,z) = u′(ct)

• Boundaries in z : implied by the reflecting barrier
∂zv(t,a,z) = ∂zv(t,a,z) = 0 ⇒ v′i,j,F = v′i,j,B = 0

I All this determines the operator in HJB

• The matrix A(vn; rn) is sparse
• Fast to invert

I Solving the (now) linear system for the HJB

−vn+1 − vn

∆t
+ ρvn+1 = un + A(vn; rn) vn+1
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Numerical method for Hamilton-Jacobi-Bellman equation

The algorithm for HJB : theoretical result

I Barles and Souganidis (1991) : Convergence of approximation schemes for
fully nonlinear second order equations, Asymptotic Anal. 4
• Generalization of Souganidis (1985) Approximation Schemes for

Viscosity Solutions of Hamilton-Jacobi Equations, J. Differential Equations
• Result much more general than most econ application

I This numerical solution vρ converges uniformly (ρ→ 0) to the
unique (viscosity) solution v of the HJB, under some conditions :

1. Monotonicity (Aw ≥ Au if w ≤ u)
2. Consistent (lim supξ→0,ρ→0 A(v + ξ) = A(v))
3. Stability (vρ is bounded uniformly in ρ)

I The matrix is monotonous :
• The upwind scheme insures the convergence of the algorithm
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Numerical methods for HJB equations and MFG systems

The algorithm : generalization to MFGs

The algorithm : generalization to MFGs
I Fokker Planck solved immediately

gn+1 − gn

∆t
= A(vn; rn)Tgn+1

• The finite difference scheme is analogous, except that the upwind
scheme is reversed

• Additional gain : Property that the operator in FP A∗/A(vn; rn)T is
the adjoint of A/A(vn; rn) in HJB

I Mean Field Games system : (vt, gt, rt)
• Idea analogous to Schauder fixed point used in the proofs :

1. Start from a guess {gt}t∈[0,T] and {rt(gt)}t

2. Solve for {vt}t in the HJB
3. Solve for {g̃t}t in the FP
4. If ||g̃t − gt||∞ > ε, update
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The algorithm : generalization to MFGs

The algorithm : generalization to MFGs

I Finding an equilibrium path {rt}t
• Such that HJB, FP and market clearing

S(t, rt) :=
∫
X ag(t,a,z) = K(rt) =: Kt hold

I Question : how do you update?
• No systematic answer !
• In practice, update path of rt or Kt, for example, at step ` :

r`+1
t = r`t + θ`e−αt Ŝt

with Ŝt := Kt − St or Ŝt = ∂t(Kt − St)

I Performance of the algorithm :
• Very fast : Stationary equilibrium in less than 0.3 sec
• Fast for partial-equilibrium solution {vt, gt} given path rt
• But may be super slow for finding a fixed point (i.e. in rt)
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Convergence theorems

Convergence theorems

I Achdou and Capuzzo-Dolcetta (2010) Mean field games : numerical
methods. SIAM J. Numer. Anal., 48(3) :1136-1162
• Stationary case

I Achdou and Porretta (2016) Convergence of a finite difference scheme to
weak solutions of the system of partial differential equations arising in mean field
games. SIAM Journal on Numerical Analysis, 54(1), 161-186.
• Time varying case, implicit in time n = 1, . . .N

I Results for typical second order MFG
• Diffusion : ν∆v, Separable Hamiltonian

H(x,m, p) = H̃(x, p)− f (m) , periodic sets T
I Plenty of other numerical methods for variational MFG :

• MFG system as optimality condition of a control problem
• Can solve directly the optimal planning/optimal transport problem
• Rely on calculus of variation and convex duality
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Convergence theorems

Convergence theorem
I Finite difference scheme : h, v ≈ Vh,∆t and g ≡ Mh,∆t

(DtV)n − ν
(
∆hVn)

i,j + g(xi,j, [DhVn]i,j) = Vh[Mn+1]

(DtM)n − ν
(
∆hM

)
i,j + Bi,j(V,M) = 0

VN
i = φ(MN

i ) M0
i = m0(xi)

• Assumption on Hamiltonian g(·) :
– Monotonicity : ∀x, g(x, [p+, p−]) non decreasing in p+ and non

increasing in p−

– Consistency : ∀x, g(x, [p, p]) = H(x, p)
– Differentiability H is a class C1

– Convexity of g(x, [p+, p−]) in p
– Growth condition :

gq(x, q) · q− g(x, q) ≥ c1|gq(x, q)|2 − c2 |gq(x, q)| ≤ c3|q|+ c4

I Theorem 3 : Convergence in norm Lp to the solution : Vh,∆t → v
and Mh,∆t → v, where (v, g) is a weak solution of the MFG system
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Impulse control problem

Introduction to Impulse control and MFG
I Many economic problem feature impulse control (with Mean Field

interaction !) :
• Not considered as such since all the variables ”jump” in discrete time
• Fixed cost / non-convex cost of controls / Stopping time problem
• Create “inaction regions” when agents don’t exert control and

thresholds where they pay the cost and jump

I Applications to :
• Entry and Exit of Firms : Hopenhayn (1992), application to

international trade : Melitz (2003)
• Pricing models à la Golosov and Lucas Jr (2007) and Calvo+ (c.f.

Alvarez and Lippi (2014), Alvarez et al. (2016))
• Heterogeneous firms with lumpy investnt, e.g. Khan and Thomas

(2008), Winberry (2016a)
� Book : “Economics of Inaction : Stochastic Control models with fixed

costs” Stokey (2009)
I I’ll cover the framework of Hopenhayn since it’s the most simple

and can be easily generalized.
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Impulse control problem

Baseline model – Hopenhayn model
I Let us introduce a simplified version of Hopenhayn :

• Time varying case (while stationary in the original article)
• Endogenous exit but exogenous entry : mass of agents stay constant

• Firm :
– States variables : production z ; control : employment n and exit time τ
– Idiosyncratic fluctuations in z (Jump-drift process / Diffusion :

Brownian with reflecting barriers [z, z]
– Maximization :

v(zt0 ) = max
{nt}

Et0

∫ τ

t0

e−ρtπ(zt, nt)dt + e−ρτv?

π(zt, nt) = ptf (zt, nt)− wtnt − cf dz = µ(z)dt + σ2dBt z|t0 = z0

• Mean field interaction through price p and wage w
– Wage : w = W(N) where n?(z) optimal employment and aggregate

employment N =
∫ z

z n?(z)g(z)dz
– Price of good : p = D(Q) where q?(z) := f (z, n(z)) and aggregate

good supply Q =
∫ z

z q?(z)g(z)dz
• Plenty of extension : endogenous entry, multiple state variables
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Impulse control problem

MFG system - Hopenhayn model - 1

I Hopenhaym model :
• Profit π(zt, nt) = ptf (zt, nt)− wtnt − cf and

Coupling pt = P(gt) and w =W(g)
• Inaction region : Z ⊂ [z, z]

− ∂tv(t,z) + ρv(t,z) = max
n

π(z, n) + ∂zv(t,z)µ(t,z) + σ2(z)
2 ∂2

zzv(t,z)

∀ (t,z)∈[0,T)×Z when v(z) ≥ v?

∀ (t,z)∈[0,T)×[z,z]\Z v(z) = v? when −∂tv+ρv≥maxn π(z,n)+∂zv·µ(z)+
σ2(z)

2 ∂2
zzv

∀(t,z)∈[0,T)×[z,z] ∂tg(t,z) = −∂z
[
µ(z) g(t,z)

]
+ 1

2∂
2
zz[σ

2(z)g(t,z)] + mtψ(z)

v(T,z) = v∞(z) g(t0,z) = g0(z) ∀ z∈[z,z]
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Impulse control problem

MFG system - Hopenhayn model - 2, HJB-VI
I Hopenhayn model, reformulation with variational inequality :

• Optimal choice of labor n(z) =
(

p∂nf (z,·)
)−1

(w) & π?(z)= π(z, n(z))
• Operator : (Atv)(t, z) = ∂zv(t,z)µ(t,z) + σ2(z)

2 ∂2
zzv(t,z)

• Exit : Integrating the FP, we obtain mass of firm exit :
mt = −

∫
Z A

∗g(t,x)dx over Inaction region Z
• Adjoint : (A∗t g)(t, z) = −∂z

[
g(t,z)µ(t,z)

]
+ ∂2

zz

[σ2(z)
2 g(t,z)

]
• Reformulate as a Variational inequality :

∀ (t,z)∈[0,T)×[z,z] min

{
− ∂tv(t,z) + ρv(t,zj)− π?(z)−Av(t,z); v(z)− v?

}
= 0

∀(t,z)∈[0,T)×Z ∂tg(t,z) = A∗g(t,z) + mtψ(z)

∀ z∈[z,z]

v(T,z) = v∞(z) g(t0,z) = g0(z)
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Impulse control problem

Numerical methods for HJB-VI
I Solving the QVI-HJB with Implicit scheme finite difference

methods :
• Splitting the problem :
• In the inaction region Z the problem is the same as above and we

obtain :
−vn+1 − vn

∆t
+ ρvn+1 = πn + A(vn; pn,wn) vn+1

• Action vn+1 = v∗
I Can be reformulated as a Linear Complementarity problem (LCP)

of the form :
(v− v∗)T(

=B︷ ︸︸ ︷
[ρ− 1

∆t − A] v− π + vo

∆t ) = 0

v− v∗ ≥ 0

B v− π + vo

∆t ≥ 0
I Some solvers exists to handle this LCP problems
I Other iterative methods exist like PSOR (Projected Successive

Over Relaxation) or semi smooth Newton Methods
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Aggregate uncertainty : problems and potential solutions

Adding aggregate uncertainty – Common noise

I What are the problems with aggregate risk?
• Aggregate shocks will affects the shape of the distribution
• Agents needs to forecast its motion (of gt(·)) to make expectations

about future prices (rt . . . ) and value vt

– Only in case of strategic complementarity – coupling of HJB with FP.

• The distribution g(t, a, zj), which is an infinite-dimensional object,
becomes a state variable for each agent.

• This changes for each path/history of aggregate shocks Zt

I Examples :
• AR(1)-change in agg. TFP Zt : dZt = θ(Z̄ − Zt)dt + σdBt
• Could also consider :

– Shock to credit constraint a or to asset supply (govnt bond issuance)
– Demand shocks/patience shock ρ
– Change in idiosyncratic volatility σz ≡ Var(z) or transition probas λ
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MIT shocks

MIT shocks : unexpected shocks

I MIT shocks are unexpected shocks : zero-probability events

• Zt is subject to a one-time shock on dBt, i.e. normal N (0, σ)

• Then Zt follows the OU-(AR(1)) drift process dZt = θ(Z̄ − Zt)dt

I Main idea :
• Agents do no anticipate this and hence do not draw expectations

– v0 does not include the potentiality of such shocks
– Once the shock is ”revealed” there is no more uncertainty

on the path of Zt

⇒ Certainty equivalence (CE) :
– No influence of variance σ : only size of the shock matters
– CE typically holds in Linear-Quadratic model with (additive) shocks :

quadratic utility/objective fct. and linear transition/policy functions
– (good approximation for more general models ?)
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MIT shocks

MIT shocks : unexpected shocks

I MIT shocks are unexpected shocks : zero-probability events
• Zt : One-time shock on dBt then follows OU/AR(1) deterministically

I Solution method :
� Almost no difference compared to deterministic case (cf. above)

1. Solve the HJB using backward induction : start from steady state vT

where T large (close to stationary)
2. Solve the KF forward : start from the “before-shock” steady state g0

3. Find the equilibrium fixed-point, by iterating on the entire path of
prices {rt}t∈[0,T]

I Method most commonly used as a starting point
• Certainty equivalence and no anticipation
• Often implies small GE effects (little price effects)
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MIT shocks and sequence space methods

Combining Linearization and MIT shocks : BKM

I Boppart, Krusell and Mitman (2018)
– Exploiting MIT shocks in heterogeneous-agent economies : the impulse

response as a numerical derivative, JEDC
– Recent generalization by Auclert et al. (2019) and recent work by

Kaplan-Moll-Violante

I Main idea :
• Combining non-linearity of responses to MIT shocks
• With linearity assumption to combine multiple shocks
• IRF of an MIT shock is a derivative of the system :

⇒ we ”just” need to “compute” it once !
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MIT shocks and sequence space methods

Combining Linearization and MIT shocks : BKM
I More details on BKM

• Sequential representation of heterogeneous agents models :
• Express aggregate variables Kt (or Ct) as a fct of past shocks on Zt

– Sequence form :

dKt = K({dZs}s≤t) ≈ K(dZt, dZt−1, . . . )

– vs. Recursive form : Kt = K̃(Θt) with Θt states var. (vt, gt, rt)

I Linearity assumption of the system :

dKt =

∫ t

0
∂dZsK(0)dZs

≈ K(ε, 0, 0, . . . )︸ ︷︷ ︸
IRFto a 1-time

ε−sized MIT shock
≡KdZ(0)

dZt +K(0, ε, 0, . . . )dZt−1 + . . .
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MIT shocks and sequence space methods

Combining Linearization and MIT shocks : BKM

I Solution method in practice :
1. Simulate the IRF to a small (sized ε) MIT shocks :

– Shock at date s gives IRF : dKs
t = K(0, . . . , ε, 0, . . . )

– Such path represent the non-linear derivative ∂dZsK(0) of the system
to a shock

2. Simulate a sequence of shocks ({dZs}s≤t

3. Sum the IRF for different shock, rescaling by the size of the shock :

dKt =

∫ t

0
∂dZsK(0)dZs ≈

t∑
s

1
εdKs

t dZs

– Possibility of testing the linearity assumption by changing the
size/sign of ε
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MIT shocks and sequence space methods

Linearization & MIT shocks – Extensions : SHADE
I Auclert, Bardóczy, Rognlie and Straub (2019)’s SHADE :

• Equilibrium relations as the system :

H(Kt,Zt) = 0

• Linearizing :

HK(K,Z)dKt + HZ(K,Z)dZt = 0

• Path of capital as function of past shocks :

dKt = −[HK ]−1HZ︸ ︷︷ ︸
≡KdZ(0)

dZt

I HK and HZ called “sequence space Jacobians”
• Need to be computed once
• Sufficient statistics : all we need, to know the agg. system response
• Fast : used in estimation (of shock process dZs)
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MIT shocks and sequence space methods

Linearization & MIT shocks – Extensions : SHADE
I These “sequence space Jacobians” :

• Are the sufficient statistics :
– HK , HZ and KdZ ≡ −[HK ]−1HZ as a T×T matrix
– IRF for a path {dZt}t : ≈ derivative of system in response to shocks
– “News” of different horizons s shocks : s-th columns of KdZ

– Include “under the hood” the underlying heterogeneity

• Methods to compute it :
– Direct methods (finite difference)
– Fake news algorithm : linearize the underlying heterogeneous agents

model and avoid recomputing several of the matrices
I Substantial speed gains :

• Linearization and no need to recompute the Jacobian
• Lots of clever methods :

– Directed acyclic graph to exploit the sparsity of system : dimension
reduction by composition of Jacobians along the blocks of this DAG

– Likelihood-based estimation : feasible now for even large models
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MIT shocks and sequence space methods

Conclusion

I Challenging problem and many different methods

I Stationary equilibria well understood
I No perfect solution for common noise – unfortunately

• Every algorithm with its own way of bypassing difficulties
• e.g. trade-off : Linearity/simplification for “speed”

vs. Role for uncertainty/shape of distribution for “accuracy”

I Still lack of theoretical results on the strength of various methods
• Global methods vs. Local perturbation/MIT shocks
• Could compare them for various (closed-form) models

I THANK YOU FOR YOUR ATTENTION !
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Références

Algan, Yann, Olivier Allais, Wouter J Den Haan and Pontus Rendahl (2014), ‘Solving and
simulating models with heterogeneous agents and aggregate uncertainty’, 3, 277–324.

Alvarez, Fernando and Francesco Lippi (2014), ‘Price setting with menu cost for multiproduct
firms’, Econometrica 82(1), 89–135.

Alvarez, Fernando, Herve Le Bihan and Francesco Lippi (2016), ‘The real effects of monetary
shocks in sticky price models : a sufficient statistic approach’, American Economic Review
106(10), 2817–51.
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Aiyagari model in discrete time

Aiyagari model without aggregate risk – discrete time

I Household :
• Two states : wealth a and labor prod. z ; control consumption : c
• Idiosyncratic fluctuation in z (Markov chain/AR(1) process)
• State constraint (no borrowing) at ≥ a
• Maximization :

max
ct

E0

∞∑
t=0

βtu(ct) ct + at+1 = ztwt + rt (1 + at)

I Neoclassical firms : Yt=ZtKαt z1−α
av

• Interest rate : rt = α ZtKα−1
t z1−α

av − δ & wage wt = (1−α)ZtKαz−αav

• Capital demand Kt(r) :=
(
αZt

rt+δ

) 1
1−α zav
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Aiyagari model in discrete time

Aiyagari model without aggregate risk – discrete time
I Equilibrium (recursive) relations :

� A Bellman equation : backward in time
How the agent value/decisions change when distribution is given

� A Law of Motion of the distribution : forward in time
How the distribution changes, when agents control is given

� These two relations are coupled :
Through firm pricing (rt & wt)⇒ need to look for an eq. fixed point

vt(a, z) = max
c,a′

u(c) + βE
[
vt+1(a′, z′)

∣∣σ(z)
]

s.t. c+a′=zwt+rt (1+a) a′≥a ⇒ a′? = A (a, z)

∀ Ã ⊂ [a,∞) gt+1(Ã, z′) =
∑

z

πz′|z

∫
1{A (a,z)∈Ã}gt(da, z)

St(r) :=
∑

z

∫ ∞
a

a gt(da, zj) = Kt(r)

Back
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∀ Ã ⊂ [a,∞) gt+1(Ã, z′) =
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