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Lecture: Stochastic processes

Content

I In this lecture, we will cover probability theory, stochastic
processes and Markov chains.

I Some mathematical concepts may be abstract, but we will try to
link as much as possible the definitions to economic concepts
and applications.

I These definitions are for your culture, they allow us to be
consistent and rigorous in the use of models.

I This aims at improving your understanding of some mathematical
tools that you may encounter in articles and seminars.

I Do not hesitate to ask questions!
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Probability theory – Introduction

I Let (Ω,F ,P) be a probability space, and (S,P(S)) – or (R,BR) a
measurable space.

• The set of all possible outcomes, or sample space Ω is attached to
a collection F of sets (parts of Ω). This collection includes all the
potential events.

• F is a σ-algebra, it is intuitively the set of all information available.
If an event/outcome A is not in F , this means it can not happen.

• The rules defining a σ-algebra are the following: (i) Ω ∈ F ,
(ii) A ∈ F ⇒ Ac ∈ F , and (iii) An ∈ F , ∀n⇒ ∪n≥1An ∈ F

• All these events have a probability P, (i.e. you can ”measure” how
frequent the outcome will be).

• The rules of σ-algebra imply that if you can measure P(A) or P(An),
you can also measure P(Ac) = 1− P(A) or P(∪nAn) (≤ ΣnP(An))
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Probability theory – Introduction
I A random variable X : Ω→ S is a measurable function from the

set of possible outcomes Ω to a set S.
• ”Measurable function”, intuitively, means that each value of the

function X (in S) corresponds to an event included in F .
• Example: A dice maps the hazard to a set {1, . . . , 6}. A financial

asset maps the hazard to the set R (positive or negative return).
• In practice, we do not focus so much on Ω.

I We call law (or distribution) of a random variable X the measure
PX given by PX(A) = P(X ∈ A) = P(ω ∈ Ω s.t. X(ω) ∈ A)

• The measure PX is the ”image measure” of P via the application X

I From this law, if the random variable is real (maps into R), we
can compute the usual things:

• Expected value: E(X) =
∫

Ω
X(ω)P(dω) =

∫
R x PX(dx) =

∫
R x f (x) dx

(the last equality holding only if the r.v. X has a p.d.f.)
• Moments: E(X2),E(X3), . . . , and Var(X) = E(X2)− E(X)2
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Conditional expectation
I Given (Ω,F ,P), and G ⊂ F a sub-σ-algebra, we can define the

conditional expectation of X with respect to G , denoted E(X|G )

I Careful!! Conditional expectation is a mathematical object that tends to
be greatly misunderstood by economists (and students in mathematics).

I We define it as any variable Y checking the two following
conditions:

• (i) Y is G -measurable
• (ii) ∀A ∈ G , E(X 1A) = E(Y 1A)

I Therefore E(X|G ) is a random variable ! It is not a number !
• The two defining properties can be intuitively translated as follow:
• (i) For all the different values of Y (and thus E(X|G )), there exists a

corresponding event in G (if there is not such event, then Y is not
G -measurable)

• (ii) Along each of the events A in the information set G , the value of
Y (and thus E(X|G )) is the same as the averaged value of X.
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Conditional expectation - Important properties
I If Z is G -measurable, then E(Z|G ) = Z

• Z is a G -measurable random variable, (that implies that Z cannot
have more information than G ), therefore it implies that the
information contained in Z is redundant with the information of G
and Z averaged on all events of G equal Z.

I If Z is independent of G , then E(Z|G ) = E(Z)

• Independence is here the opposite of measurability: no info
contained in G can inform us on the value of W, therefore
averaging W on each event of G ends up as the same thing as
averaging over the whole space, i.e. E(Z) (which is the only value
of the random variable E(Z|G )).

I (Law of iterated expectations), H ⊂ G (both sub-σ-algebra)
⇒ E(E(Z|G )|H ) = E(Z|H )

• If the info in H is smaller than the info in G (which is smaller than
the info in F ), then averaging w.r.t. H ends up taking only the
smaller set of info available (and it doesn’t change anything if you
have a more (or less) refined variable inside the sign E(·|H )
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Great theorems of convergence - Intro

I If (Xn)n≤0 is a sequence of random variables, we need to analyze
the convergence toward a limit. The question of the nature of
convergence is at the heart of statistics (to attest the quality of
estimators and C.I.).

I There exists 4 main modes of convergences:
• Convergence ”Almost-surely” (”the proba of converging is one”)
• Convergence in mean (or Lp) (”the difference fades out in norm

Lp/moment of order p”)
• Convergence in probability (”the proba of diverging tends towards

zero”)
• Convergence in distribution (”the law/c.d.f. tends towards another

law/c.d.f.)

Thomas Bourany Lecture: Stochastic processes Macro 3 – Fall Semester – 2017 7 / 36



Lecture: Stochastic processes

Great theorems of convergence - I
I A sequence of random variables (Xn)n≥0 converges

”Almost-surely” toward X if there exists an event A with proba
one (P(A) = 1) where, ∀ω ∈ A, limn→∞ Xn(ω) = X(ω)

Said differently,

P
(
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

)
= 1

After some fluctuations of the sequence,
we are (almost-) sure that Xn won’t fall too
far from X

Example: convergence a.s. of
Xn ∼ E (λ = n)
Xn →p.s. X = 0
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Great theorems of convergence - II
I A sequence of random variables (Xn)n≥0 converges ”in

probability” toward X if, for all ε > 0

lim
n→∞

P
(
ω ∈ Ω : |Xn(ω)− X(ω)| > ε

)
= 0

The proba that the sequence Xn falls far
away from X is decreasing in n (but it can
potentially be strictly positive)

Example: convergence in probability of
Xn ∼ E (λ = log(n))
and Xn →P X = 0 and Xn 9p.s. 0
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Great theorems of convergence - III
I A sequence of random variables (Xn)n≥0 converges ”in mean p”

or in Lp(Ω,F ,P) toward X if

lim
n→∞

E
(
|Xn − X|p

)
= 0

I A sequence of random variables (Xn)n≥0 converges ”in law or in
distribution toward X if, for all continuous and bounded functions f

lim
n→∞

E
(
f (Xn)

)
= E

(
f (X)

)

Careful! At the contrary of the three previous theorems (focusing on
the convergence of random variables), here it is about the
convergence of a sequence of laws! (i.e. PX1 ,PX2 · · · → PX). This is
much weaker!
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Great theorems of convergence - IV
I Law of Large Numbers: If E(|X|) <∞, and if E(X) = µ, then:

lim
n→∞

X1 + · · ·+ Xn

n
= µ

This convergence is almost sure (strong law of large numbers) and in
probability (weak law of large numbers).

I Central Limit Theorem: Let (Xn)n≥1 a sequence of real random
variables, i.i.d., with moments of second order E(X2) <∞, and
noting Sn =

∑n
i=1 Xi and σ2 = Var(X), then:

lim
n→∞

√
n
(Sn

n
− µ

) ∼= N (0, σ2)

This convergence is in law, and that intuitively implies that any sum of
r.v. falls ”normally” around its mean µ, with a variance σ2 and at a speed
of convergence

√
n.
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Two important theorems for optimization

I Jensen inequality
Let X : (Ω,F ,P)→ R be a real random variable and φ be a real
convex function. Suppose X and ϕ(X) are integrable (i.e.
E(|X|) <∞ and E(|φ(X)|) <∞). Then:

φ(E(X)) ≤ E(φ(X))

This holds also for conditional expectations, for any G ⊂ F

sub-σ-algebra:
φ(E(X|G )) ≤ E(φ(X|G ))
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Two important theorems for optimization

I Interchanging differentation and expectation:
On (Ω,F ,P), and I an interval inR, let define ϕ : I × Ω→ R be a
measurable function. If it satisfies:

1. For every x ∈ I, the random variable ϕ(x, ·) is integrable,
2. ∂ϕ(x,ω)

∂x exists at every x ∈ I
3. There exists Y an integrable random variable such that,
∀x ∈ I :

∣∣∣ ∂ϕ(x,ω)
∂x

∣∣∣ ≤ Y(ω)

Then, the function Φ(x) = E(ϕ(x, ·)) is well defined and
differentiable at every x ∈ I, with:

Φ′(x) = E
(
∂ϕ(x, ·)
∂x

)

Thomas Bourany Lecture: Stochastic processes Macro 3 – Fall Semester – 2017 13 / 36



Lecture: Stochastic processes

Stochastic process – definition

I A stochastic process is a sequence of random variables Xt
indexed (and ordered) by their time t ∈ T.

• t is a index of time: it can be countable (t ∈ N) and the time is
discrete, or it can be uncountable (t ∈ R) and the time is
continuous. With the use of stochastic calculus, most models in
finance are in continous-time.

I Given a probability space (Ω,F ,P), we define a filtration
(Ft)t≥0 as a increasing sequence of sub-σ-algebras.
F0 ⊂ Ft1 ⊂ Ft2 ⊂ · · · ⊂ F

• In econ or finance, we often call (Ft)t≥0 the information set, as the
knowledge of what can happen (i.e. the set of events that can be
measured) grows over time.
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Stochastic process – definition
I A sequence of random variables (Xt)t≥0 is a stochastic process

• We can pose (Ft)t≥0 ≡ σ(Xs : 0 ≤ s ≤ t), which is a filtration
generated by the stochastic process (or canonical filtration).

I A stochastic process is adapted w.r.t. (Ft)t≥0, if ∀t, Xt is
Ft-measurable.

• If Xt is Ft−1-measurable, then the knowledge of Xt can be predicted
by the information in Ft−1

• If Xt is not Ft-measurable, it often means that Xt contains more (or
different) information than Ft

• It implies that if (Xt)t is adapted, the knowledge of Xt does not give
you more information than the information set Ft (in particular you
can’t predict the future).

• A stochastic process is always adapted to its canonical filtration.
I A stochastic process is said to be predicable, if ∀t ∈ N, Xt is

Ft−1-measurable.
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Stochastic process – Examples
I A sequence of deterministic variables (constant accross Ω), such

as Xt = t is a stochastic process, but quite boring.
I A sequence of random variables (Xt)t≥0 which are all following

the same law (for example Xt ∼ N (0, 1)) is also a stochastic
process, but not some much interesting neither.

I Researchers in probability are looking for processes that ”behave
well”, whose law may vary over time or have constant properties
over time and that are simple to study.

I Two ”simple” processes are i) martingales, and
ii) Markov process

• The former are used in mathematical finance (to model the
behavior of an asset price, a portfolio or a derivative) and the latter
are used in macro models (with heterogenous agents, especially in
the context of the Bellman algorithm) and in biology (multiplication
of cells, growth of tumors, evolution of population of species)
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Stochastic processes and conditional expectation
I In economics, the conditional expectation w.r.t. a σ-algebra from

a filtration (Ft)t≥0 is a crucial tool. It is denoted compactly by the
operator Et

Et(X) ≡ E(X|Ft)

Note: Et(X) is not a number, but rather a function of the different
shocks present in Ft (in economics: TFP shocks – aggregate or
idiosyncratic – or policy shocks)

I Law of iterated expectations rewrites :

Ft ⊂ Ft+1(both sub-σ-algebra)⇒ E(E(X|Ft+1)|Ft) = E(X|Ft)

or in short: Et(Et+1(X)) = Et(X)

I For a stochastic processes evolving over time:
• If Xt is adapted, then Et(Xt) = Xt

• If εt is idiosyncratic, i.i.d., mean zero and not predictable, then
Et(εt+1) = E(εt+1) = 0.

• If Xt is adapted, but not Yt, Et(Xt Yt) = Xt Et(Yt)
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Martingales

I In discrete-time, we define Mt as a martingale (resp.
super-martingale, sub-martingale), w.r.t. a filtration (Ft)t≥0, a
stochastic process verifying:

1. (Mt)t is adapted
2. ∀t,E

(
|Mt|

)
<∞

3. ∀t,E(Mt+1|Ft) = Mt

(resp. E(Mt+1|Ft) ≤ Mt and E(Mt+1|Ft) ≥ Mt)

I Intuitively, the mean of a martingale Mt is constant over time,
while decreasing for a supermartingale and increasing for a
submartingale.
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Martingales examples: Random walks
Xt+1 = Xt + εt

= X0 +

t∑
i=0

εi ∀t ≥ 0

I where εt are i.i.d. random variable s.t. εt ∼P (any distribution,
with probability mass function (if countable set) or p.d.f. (if
uncoutable set) ψ.

I A random walk is called simple or isotropic if ψ(1) = ψ(−1) = 1/2
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Martingales examples: Random walks

Xt+1 = Xt + εt

= X0 +

t∑
i=0

εi ∀t ≥ 0

I where εt are i.i.d. random variable s.t. εt ∼P (any distribution,
with probability mass function (if countable set) or p.d.f. (if
uncoutable set) ψ.

I A random walk is called simple or isotropic if ψ(1) = ψ(−1) = 1/2

I If the mean of P is null (i.e. E(εt) = 0), then the random walk is a
martingale. (resp. if E(εt) ≥ 0, then Xt is a sub-martingale, or
E(εt) ≤ 0, then Xt is a super-martingale)
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Martingales examples: Brownian motion
I This is the ”continuous-time” stochastic process which is the

closest of a random-walk.
I We define as a Brownian motion the continuous process Wt

valued in R such that:
1. The function t 7→ Wt(ω) is continuous on R+

2. For all 0 ≤ s < t, the increment Wt −Ws is independent of
σ(Wu, u ≤ s)

3. For all t ≥ s ≥ 0, Wt −Ws follows the normal distribution N (0, σ2)

I The brownian motion is ”standard” if W0 = 0 and σ = 1.
I Here, the Brownian motion is a martingale
I It is used to model any ”small” shock in a continuous-time

finance/macro models.
I By a theorem (Donsker theorem), it is possible to show that a

”normal-shock”-random-walk converges in law toward a brownian
motion, when time increment tends to zero.
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Martingales examples: Brownian motion
I We define as a Brownian motion the continuous process Wt

valued in R such that:
1. The function t 7→ Wt(ω) is continuous on R+

2. For all 0 ≤ s < t, the increment Wt −Ws is independent of
σ(Wu, u ≤ s)

3. For all t ≥ s ≥ 0, Wt −Ws follows the normal distribution N (0, σ2)
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Finite Markov Chains – Introduction
We will now consider Markov chains – a simple example of
stochastic process – which are finite – i.e. that happen on a finite
number of ”states”.

I S, the state space is a finite space, with n elements {x1, . . . , xn}
• S can be a real value (consumption level, growth rate) or anything

else (high or low ”states of the world”: h, l ∈ S).

I The Transition function, or transition matrix we can denote
Q ≡ p(x, y), is a function Q : S× S→ [0, 1] such that

(i) Each element of Q(·, ·) is non-negative
(ii)
∑

y∈E p(x, y) = 1,∀x ∈ E
This means the rows of the matrix some to one.

I It is easy to see that if Q is a transition matrix, then it k-th power
Q̃ = Qk is also a transition matrix.
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I A Markov chain Xt is a sequence of S-valued random variables,
with transition matrix Q, if, for all t ≥ 0, and for all y ∈ S we have:

P(Xt+1 = y |X0,X1, . . . ,Xt) = p(Xn, y)

I Therefore, it satisfies the Markov property :

P(Xt+1 = y |X0,X1, . . . ,Xt) = P(Xt+1 = y |Xt)

• In other words, to forecast the distribution of Xt+1 on S, the only
information need is the current state Xt.
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Examples

I The simplest example: A worker can be either (i) unemployed or
(ii) employed

• When unemployed, he finds a job at rate α
• When employed, he loses its job with probability β

I Therefore, the transition matrix writes:

Q =

(
1− α α
β 1− β

)
I Question (exercises?)

• What is the average duration of unemployment?
• Over the long-run, what fraction of time does a worker find herself

unemployed?
• Conditional on employment, what is the probability of becoming

unemployed at least once over the next 12 months?
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I Another example: Hamilton (2005) used the US employment
data, and determined the frequency of:
(i) Normal growth
(ii) Mild recession
(iii) Severe recession.

I The stochastic matrix is estimated such as:

Q =

 0.971 0.029 0
0.145 0.778 0.077

0 0.508 0.492


• It says that, when US are in a severe recession, there is a 50.8

probability to face a mild recession next month, and no chance at
all to come back to normal growth.
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I Another common example: Random walk:

Xt+1 = Xt + εt

= X0 +

t∑
i=0

εi ∀t ≥ 0

• where εt are i.i.d. random walk s.t. εt ∼P (any distribution) with
probability mass function ψ – recall that S is finite and thus
countable.

I What would be the transition matrix?

I It can be shown (exercise?) that this matrix is such that:

p(xt, xt+1) = ψ(xt+1 − xt) ∀ xt, xt+1 ∈ S
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Recursive formulation of stochastic processes

I Recall that P(Xt+1 = xt+1 |Xt = xt) = p(xt, xt+1)

I Therefore, knowing the initial state, one can iterate over the
transition matrix:

P(Xt = xt |X0 = x0) = [Qt](x0, xt)

• In other words, the initial condition and the transition matrix are the
only determinant of the path of Xt

Thomas Bourany Lecture: Stochastic processes Macro 3 – Fall Semester – 2017 28 / 36



Lecture: Stochastic processes

Marginal distribution:
I Knowing the distribution at time Xt ∼P (with p.m.f. ψ) and the

transition matrix Q ≡ p(xt, xt+1), what can we say about the
probability of Xt+1?

I The solution lies in the law of total probabilities:

P(Xt+1 = xt+1) =
∑
x∈S

P(Xt+1 = xt+1 |Xt = x) · P(Xt = x)

I Rewriting, we get:

ψt+1(y) =
∑
x∈S

p(x, y)ψt(x)

I If you express the p.m.f. ψ as a n-values rows vector (of probas),
the n equations become matrices as:

ψt+1 = ψt Q
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Multi-step transition probabilities:

I Similarly, if ψt+1 = ψt Q, therefore, we can generalize it:

ψt = ψ0 Qt

ψt+m = ψt Qm

I Exercise: Using the transition matrix on recessions seen before,
and considering the today’s state as unknown, (you only know
the distribution-vector ψt), what is the probability to be in a mild
or severe recession in 6 months?

I Answer:

P(recession) = ψt+6 ·

 0
1
1

 = ψt · Q 6 ·

 0
1
1



Thomas Bourany Lecture: Stochastic processes Macro 3 – Fall Semester – 2017 30 / 36



Lecture: Stochastic processes

Irreducibility:

I Two states xa and xb are said to communicate with each other if
there exist positive integers m and n such that:

Q m (xa, xb) > 0 and Q n (xb, xa) > 0

I The stochastic/transition matrix is said irreducible if all states
communicate, i.e. xa and xb in S× S can communicate.

I Question: is the ”recession matrix” irreducible?
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Aperiodicity:

I The period of a state xo is the greatest common divisor of the set
of integers defined by:

D(xo) ≡ {j ≥ 1 : Q j (xo, xo) > 0}

I Example: if D(x) = {3, 6, 9, . . . }, the period is 3

I A stochastic matrix is said aperiodic if the period of every state
is 1, or periodic otherwise.
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Stationary distribution:

I Some distributions are invariant under the transition matrix. We
call these distribution stationary, if the distribution ψ? on S is
such that:

ψ? = ψ? Q

I Obviously, an immediate consequence is : ψ? = ψ? Qt ∀t
I Therefore if the random variable X0 has a stationary distribution,

then Xt also have this same distribution.
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Stationary distribution:

I Theorem:
Every stochastic matrix Q has at least one stationary distribution.

• ∀Q, ∃ψ?, s.t. ψ? = ψ? Q

• Here, the assumption that S is a finite set is a key one.

I The proof of this theorem lie in the Brouwer fixed point theorem

I Note: If Q is the identity matrix, then all distributions are
stationary

I Is this stationary distribution unique?
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Stationary distribution:

I Theorem: If the stochastic matrix Q is irreducible and
aperiodic, then :

1. Q has exactly one stationary distribution ψ?

2. For any initial distribution ψ0, we have
‖ψ0 Qt − ψ?‖ → 0 when t→∞

I A stochastic matrix satisfying the conditions of the theorem is
sometimes called uniformly ergodic

• Note that part 1 of the theorem requires only irreducibility, whereas
part 2 requires both irreducibility and aperiodicity

• One easy sufficient condition for aperiodicity and irreducibility is
that every element of Q is strictly positive (Exercise?)
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Ergodicity:

I Theorem: Under irreducibility, another important result:

1
n

n∑
t=1

1{Xt = x} →n→∞ ψ?(x)

• The convergence is Almost sure
• The result does not depend on the initial distribution of X0.

I The result tells us that the fraction of time the chain spends at
state x converges to ψ?(x) as time goes to infinity

I This convergence theorem is a special case of a Law of large
numbers result for Markov chains
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