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Abstract

The standard economic framework with "heterogeneous agents" – the Aiyagari-Bewley model –
has recently been reformulated as an example of Mean Field Game (MFG), by Achdou, Han, Lasry,
Lions, and Moll (2017). One of the key question in such model is to understand the transmission of
aggregate shocks – on macroeconomic dynamics or the shape of the wealth distribution. With aggregate
risk, this framework can thus be understood as a MFG with "common noise". However, the resolution
of such model is notoriously difficult, due to the "curse of dimensionality" arising when common noise
interact with both the behavior and the distribution of agents. Economists usually simplify the model
considering a finite set of moments of the measure (bounded-rationality à la Krusell-Smith) or using
Projection and Perturbation methods (à la Reiter). In contrast, we use new methods to keep the
full dimensionality and simulate the model using a discretization procedure for the common noise.
Considering a tree structure or (optimal) quantization to represent the trajectories of the common noise
with a finite number of shocks, we solve the MFG system using specific finite-differences methods for
the two PDEs.

We apply this method to the standard framework, and two extensions (i) with Endogenous Labor
Supply (ii) One Asset HANK model and we provide intuitions for (iii) the two Assets H.A. model (à
la Kaplan-Moll-Violante). We show that such method might be relevant to analyze the transmission of
large shocks on the economy.

∗I would like to thank my supervisor Yves Achdou for his guidance and helpful comments all throughout this
work. My gratitude goes also to Pierre Cardaliaguet and Xavier Ragot for their respective lectures on Mean
Field Games and Heterogeneous agents models that introduced me to this field at the frontier between the two
disciplines. I would also like to thank my classmates and the PhD students of LJLL and LPSM at Paris-Diderot
and (UPMC)-Sorbonne University and at Sciences Po Paris. In particular, I thank Thibaut Montes for his
introduction to optimal quantization and Julien Pascal and Ziad Kobeissi for interesting discussions about Mean
Field Games.
All errors are mine.
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1 Introduction
One of the recent development of macroeconomics has been to integrate agent hetero-

geneity in credible fashion to study the income and wealth distributions of households. Since

the contribution of Bewley (1986) and Aiyagari (1994), this "heterogenous agents" literature

could provide relevant answers to numerous economic questions: the causes and dynamics of

inequality, the implication of market frictions to generate skewed wealth distributions or the

distributional consequences of monetary or fiscal policies1. One aspect of this literature inves-

tigates the implication of aggregate shocks for income and wealth distribution. The present

master thesis follows this tradition by providing new methods to solve such type of model using

tools from the Mean Field Games literature.

If the first treatment of this topic goes back to Krusell and Smith (1998), some aspects

are still subject to a lack of understanding. The main result of Krusell-Smith was to show that,

in incomplete market with both uninsurable idiosyncratic risk and aggregate risk, the model

features "approximate aggregation" in the behavior of agents: the macroeconomic aggregates

can be almost perfectly described using only the mean of the wealth distribution, and the control

of agent is almost independent of its state. Therefore, one is naturally inclined to wonder

whether agent heterogeneity substantially changes the results at stake in "representative agent"

models. This paper investigate these different questions.

In this project, we explore the implication of aggregate uncertainty – or "common noise"

– in a standard Aiyagari-Bewley framework, as in Krusell-Smith model. As most heterogeneous

agents model in economics, this framework is an interesting example of Mean Field Games

(MFG)2. Developed simultaneously by Lasry and Lions (2007) and Huang, Malhamé, and Caines

(2006), interested readers can find a very pedagogical and comprehensive treatment in the

lecture notes Cardaliaguet (2018). A Mean-Field Game can be described a game with a large

number of "small" symmetric players: the interaction between them is only reflected by the

interaction between each agent and the "distribution" – i.e. the measure mt – of the other

agents:

sup
α

E
[∫ ∞

0
e−ρtf(t,Xt,mt, αt)dt

]
dXt = b(t,Xt,mt, αt)dt+ σ(t,Xt,mt)dBt + σ0(t,Xt,mt)dW

0
t

where Wt and B0
t refers respectively to the idiosyncratic noise and the common noise.

1One could mention for instance Gabaix, Lasry, Lions, and Moll (2016) for dynamics of inequality, Kaplan and
Violante (2014) for consumption and redistributive effects of fiscal stimulus, Heathcote, Storesletten, and Violante
(2014) for the influence of incomplete insurance on risk-sharing, consumption and labor supply, Benhabib, Bisin,
and Zhu (2011) on how both labor and capital idiosyncratic risk can generated Pareto wealth distribution and
Bhandari, Evans, Golosov, and Sargent (2017) on optimal monetary and fiscal policy in incomplete markets

2A summary on how to obtain the standard MFG system is recalled in section A of appendix
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This stochastic control problem boils down to a system of coupled partial differential equations:

• First, a Hamilton-Jacobi-Bellman (HJB) equation – where the agents make their choices

α? taking the measure mt of agents as given

• Second, a Fokker-Plank (FP, or Kolmogorov Forward) equation – where the measure mt

evolves, given optimal choices and the controlled process Xα? .

The standard Aiyagari-Bewley model has recently been reformulated as an example of

Mean Field Game (MFG), by Achdou, Han, Lasry, Lions, and Moll (2017). Economically,

the problem is the following: households solve a typical control problem – consumption-saving

problem – and are subject to idiosyncratic risk on their income. In an incomplete market and

unable to hedge this risk, the agents use the only asset at their disposal – saving in capital – to

self-insure. This capital stock is also used as an input factor by firms and ’priced’ competitively

at an interest rate. However, there is a limited amount households can borrow, and this ’credit

constraint’ forces the agents to (over)- self-insure: that what we call "precautionary saving".

This model can be simulated by solving numerically this system of two equations, using a

finite-difference scheme we will describe thoroughly in the following. The two main particulari-

ties of the model are (i) a credit constraint that acts as a ’state-constraint’, imposing a specific

treatment of the PDE on the boundaries and (ii) the mean-field interaction through the interest

rate acting as a coupling between the two PDEs that requires the search for an equilibrium

fixed point.

When introducing aggregate uncertainty, this model is known as a Mean Field Game with

"common noise", i.e. common source of random shocks that applies to the MFG system as the

whole3. The treatment of such common noise is as old as the Krusell and Smith (1998) article

but impose challenging difficulties in mathematics.

When common noise interacts with both the behavior and the distribution of agents,

solving the model suffers from what is sometimes called "curse of dimensionality" by economists

of the field. As explained in the latest book by Carmona and Delarue (2018): "In order to

account for the dependence of the equilibria upon the realization of the common noise, it is

necessary to enlarge the space in which the fixed point has to be sought." The control problem

become infinite-dimensional and solving this model has appeared to be notoriously difficult.

The present master thesis offers a new numerical method to deal with such issue and to

simulate the MFG system with common noise. The main idea is the discretize the aggregate

shocks. Following the approach of Y. Achdou4, we approximate the common noise – that can

3Here we will use indifferently the term "common noise" and "aggregate risk/shocks/uncertainty"
4This method has originally been used for models of crowd motion with congestion in movie theater
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be a two-state jump process or a Brownian motion – as a finite number of shocks using a tree

structure. Between each shock – i.e. on each branch of the tree – the MFG will be a standard

deterministic system of two evolution PDEs, the HJB and the FP coupled by the interest rate.

The main challenge will be to link the behavior of the MFG in function of the anticipation of

future aggregate shocks and in function of the evolution of past state variables (i.e. saving). A

way to include this is to (i) change the terminal condition for the HJB: the final value function

will now be the expectation of the future value functions over the different paths of the common

noise and (ii) define the initial condition of the FP with the past wealth distribution before the

realization of the common noise. With these two methods, we can compute the evolution of the

MFG for different trajectories of aggregate productivity – i.e. the common noise in our setting.

This new method has several comparative advantages, even if the treatment of problem

of MFG with common noise has a long history discussed in two separate literatures.

First, the literature of computational economics have searched to reduce to dimensionality

of the problem: Originally, Krusell and Smith (1998) approximated the wealth distribution

using finite number of moments and solving the control problem using this finite/bounded-

rational view of the economy. Later, Reiter (2010) used projection methods to approximate the

measure of agents by simpler objects and implemented linearization and perturbation methods

to simulate the economy for (necessarily small) aggregate shocks. With advances by Algan,

Allais, and Den Haan (2008) and Winberry (2016) who use parametric families to approximate

the measure, the combinaison of these methods have been relatively successful since the recent

article by Ahn, Kaplan, Moll, Winberry, and Wolf (2018). One need to note that truncation

methods have also been developed in economics, in particular by X. Ragot. These methods offer

parsimonious and intuitive views of these complex models, and can be simulated using Dynare.

See for example Challe, Matheron, Ragot, and Rubio-Ramirez (2016) or the recent handbook

chapter Ragot (2018).

On a different world, in mathematics, the goal has rather been to reformulate the problem

in infinite-dimension. A first approach using the master equation was introduced by P. L. Lions

in his lectures at the Collège de France. This amounts to define a PDE on the state-space

times the space of probability measures on the state and relying on differential calculus on the

Wasserstein space. As such, it allows to deal with problem without or with common noise by

treating the master equation of first or second order. This method, developed extensively in

Cardaliaguet, Delarue, Lasry, and Lions (2017) proves to be very powerful.

Another approach by Carmona, Delarue, and Lacker (2016) would be to discretize the

common noise in order to treat the problem with a finite space. The idea, building around

the notion of weak MFG solution can be summarized as follow: First of all, without common
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noise, the standard fixed-point procedure used in MFG consists in (i) fixing a measure mt, (ii)

solving the optimal control problem α?t , (iii) finding the corresponding probability law of the

controlled process Xα?
t , (iv) iterating to find a fixed point mt = L(Xt). With the introduction

of the common noise, the measure considered is now a measure conditional on the common noise

L(Xt|B0
t ). However, conditioning introduces a major technical difficulty in the procedure above,

and the discretization is a way to bypass such complication. When refining the discretization,

the authors can recover the solution at the limit only in the weak sense: the solution of the weak

MFG mt may not be adapted to the common noise and the fixed point condition need to be

weaken. However, under the assumption of pathwise uniqueness, existence of strong solution can

be recovered. In section 3.1, we explain the details of these approaches, and a brief introduction

to the master equation, with a tentative to adapt these results to the Krusell-Smith model.

This project and the numerical scheme associated follows this last approach, discretizing

the common noise and refining the discretization to approximate the solution in the weak sense.

This method has the first and main advantage to preserve the non-linearity of the system. This

bypasses the traditional use of linearization techniques when one uses perturbation methods.

Moreover, the second strength of our procedure is to be unambiguous on the anticipations of

agents. With our discretization of the common noise, we compute effectively the different trajec-

tories of aggregate risk and measure how agents expect and react to these future shocks. Even

with a rough discretization, we can have a precise view of how agents would hedge aggregate

risk and can proved relevant in future research in mathematical finance.

However, one of the main challenge of this approach is when the discretization procedure

is made finer to approximate the Brownian motion/Jump process of the common noise. The

number of trajectories will grow exponentially and thus the computation time. A goal for

further research will be to develop novel techniques to be able to reach a greater accuracy of

the MFG with common noise. We offer novel ideas, combining recent techniques of optimal

quantization and the resolution of the Forward-Backward system or using the treatment of the

Master equation with projection methods. Even though these methods are not yet implemented,

the procedures are explained in the section 3.3 and deserves further research.

To prove how this method can be relevant for MFG and heterogeneous agents models

(H.A.) in economics, we first describe our algorithm in section 3.2 and apply this method to the

main frameworks of the recent economics literature in section 4. First, I apply this model to the

standard setting of Krusell-Smith. In this model, developed in detail in section 4.1, the agents

simply choose consumption & saving in presence of credit constraint and both idiosyncratic

and aggregate risk. When solving the model, we study the importance of aggregate shocks on

the shape of the wealth distribution and how precautionary saving can change the reaction of
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households and the dynamics of aggregate variables.

We provide a natural extension when labor supply in endogenous as discussed in sec-

tion 4.2. This model can be the analogous H.A. model of the Real Business Cycle framework –

one of the traditional building block of macroeconomics – and we study how labor supply with

precautionary saving can change business cycle dynamics.

We cover a last model in section 4.3, where we consider a version of the one-asset HANK

model – i.e. Heterogeneous agents New Keynesian model– as discussed in B. Moll’s lecture

notes and in the PHACT project. The interesting feature of this model is that – in absence of

capital – precautionary motives interacts with rigid prices, creating an amplification channel of

productivity shocks.

We end this paper by providing some insights for the two-assets model as developed in

Kaplan and Violante (2014) and Kaplan, Moll, and Violante (2018). Moreover, to explain how

the prediction of these models differ quantitatively from the "representative agent" counterpart,

we provide in section 4 a comparison with these standard macro model, namely the Brock-

Mirman model, the RBC model and the standard New Keynesian model.

Before developing the mathematical setting in section 3.1, we now introduce and describe

insection 2 how the four Heterogeneous Agents models are good example of Mean Field Games.
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2 Heterogeneous agents models: examples of MFGs

2.1 The Aiyagari-Bewley model

In one of its simplest formulation, the model shows the economy, composed of a continuum

of households. They face idiosyncratic and uninsurable income shocks, and are subject to a

credit (borrowing) constraint. They thus solve the following stochastic control problem:

sup
ct

E0

∫ ∞
0

e−ρtu(ct)dt

subject to : dat = (ztwt + rtat − ct)dt (Budget constraint)

and at ≥ a (Credit constraint)

where a is wealth – the state variable we’ll focus on – ct consumption, ρ rate of time preference,

u(·) a utility function, supposed increasing and concave (u′ > 0, u′′ < 0). For the simulation,

the utility will be chosen to adopt a specific functional form : Constant Relative Risk Aversion

(CRRA) utility, i.e. u(c) = c1−γ

1−γ .

The income is composed of a wage wt and productivity factor zt. The wage wt, and interest

rate rt, will adjust in general equilibrium, considering the firm’s side (cf. next subsection). The

productivity zt is subject to shocks that are (i) idiosyncratic (i.e. its law is drawn i.i.d.5) and

(ii) uninsurable, (agents can not hedge/cover against this risk). z intuitively represents the state

of the agent, for instance, employment zhigh = z2 and unemployment zlow = z1 = 1
2z2. In this

presentation, it is modeled simply as a jump processes with two states {z1, z2} (with intensities

λ1, λ2, the higher the intensity, the higher the proba to jump). However, one can generalize it

any stochastic process: e.g. diffusion dzt = b(zt)dt+ σ(zt)dBt, Poisson or Levy processes. The

only numerical constraint is that it has a bounded domain6.

One of the specificities of this problem is the credit constraint, which is a state constraints:

at ≥ a. State constraint is a complicated problem for control theory. In our situation, intuitively,

the optimal strategy of the agent might be (and will be) to move on the constraint (∂Ω) and

stay there (poverty trap). Mathematically, it is not possible to find a PDE and a boundary

condition on ∂Ω even in the sense of distribution.

According to Soner (1986), the mapping from the state to the set of admissible controls

a 7→ Aa(and c ∈ Aa) ’will have a complicated structure’, and its regularity may not be insured

in general. In our situation it will be the case, but it will implicitly impose a constraint on the

derivative of the value function at the boundary.

5But the etymology implies that agents might react in their own way to a similar shock
6In case of diffusion, it will be reflected after a limit
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This will result on both (i) a Dirac mass on the boundary and (ii) an explosion near

the boundary. Economically, there is a lower bound on the value of this borrowing limit:

a ≥ −z1wt/rt. The latter term represents the natural borrowing limit – the credit that an

agent could repay if it would fall permanently in the low income state (and repaying its debt

at rate rt.

2.1.1 The supply side – a neoclassical firm

The supply side is driven by a representative firm, produce goods following a production

function of aggregate productivity, capital and labor F (A,K,L), supposed to be concave in the

two last variables. Given δ the depreciation of capital and A productivity level, the firm is

producing in a perfectly competitive environment, and thus maximize its profit:

Π(Kt, Lt) = sup
K,L

F (At,Kt, Lt)− (rt + δ)Kt − wtLt

The price of demanded input factors – i.e. rt interest rate, wt wage – will be determined by the

First-Order-Condition of this optimization problem:

rt = ∂KF (At,Kt, Lt)− δ wt = ∂LF (At,Kt, Lt)

In this article, we suppose that (i) production function is simply given by the Cobb-Douglas

production function: F (At,K, L) = AtK
α
t L

1−α
t , and (ii) the effective labor supply is fixed and

equal to the average productivity of households: zav = z1λ2+z2λ1
λ1+λ2

.

The optimality relation described above reduce to :

K(r) : =
( αA

r + δ

) 1
1−α

zav Capital demand

w = (1− α)AKαz−αav Wage

r = αAKα−1z1−α
av − δ Interest rate

Wage and interest rate are indeed constant when productivity A and all parameters are

constant. Let us look at the Mean Field Game formulation7 of the problem.

2.1.2 A mean field game formulation

The stochastic control problem boils down to a system of two partial differential equation:

(i) a Hamilton-Jacobi-Bellman (HJB) equation and (ii) a Fokker-Plank (or Kolmogorov Forward

7Cf. appendix for a general setting
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– FP). When parameters are constant, the stationary equilibrium system is described by the

equations:

ρvj(a) = max
c
u(c) + ∂avj(a)(zjw + ra− c) + λj(v−j(a)− vj(a)) [HJB]

0 =
d

da
[sj(a) gj(a)] + λjgj(a)− λ−jg−j(a) [FP]

S(r) :=

∫ ∞
a

a g1(a)da+

∫ ∞
a

a g2(a)da = K(r) [Market clearing]

where j indicate the z-state of the agent and −j the opposite state.

However, when the system is subject to shocks – under either (i) perfect foresight/deterministic

transitions, (ii) MIT shocks i.e. unanticipated (zero probability) shocks or (iii) anticipated com-

mon noises – the system dynamics is described by the two following PDEs:

ρ vj(t, a) = ∂tvj(t, a) + max
c
u(c) + ∂avj(t, a) sj(t, a) + λj(v−j(t, a)− vj(t, a)) [HJB]

0 = ∂tgj(t, a) +
d

da
[sj(t, a) gj(t, a)] + λjgj(t, a)− λ−jg−j(t, a) [FP]

S(t, r) :=

∫ ∞
a
a g1(t, a)da+

∫ ∞
a
a g2(t, a)da = K(t, r) [Market clearing]

sj(t, a) = zjwt + rt a− cj(t, a) cj(t, a) = (u′)−1(∂avj(t, a)) [FOC]

vj(T, ·) = v∞ gj(0, ·) = g0 ∂avj(a) ≥ u′(zjw + ra) [Boundary conditions]

In the two cases, the third equations describe the market clearing, i.e. the Walrasian adjustment

of prices (i.e. interest rate) to equalize supply of saving S(r) and demand for capital K(r). The

last equation represents the optimality condition of the control variable c. The HJB actually

features an optimization problem, and, since the objective u(c)−pc is concave in c, the optimum

is reached for: u′(c?) = p and thus c? = (u′)−1(p).

Here the state-constraint does not show up in the HJB (as could be the case in discrete

time) but it appears in the boundary condition. It comes from the optimality of the maxi-

mization in the HJB – holding everywhere, and in particular at a – and the FOC is given by

u′(cj(a)) = ∂av
j(a), and the state-constraint affecting the control: sj(a) = zjtw+r a−cj(a) ≥ 0.

Since u is concave, its derivative is decreasing, yielding the boundary condition:

u′(zjw + ra)) ≤ u′(cj(a)) = ∂av
j(a).

10



2.2 A preview of the extensions

2.2.1 H.A. – Endogenous labor supply (RBC)

We now explore a natural extension of the standard Aiyagari-Bewley model with endoge-

nous labor supply. In the 80’s, researchers like Kydland and Prescott (and many others) built

on the Brock-Mirman neoclassical growth model to initiate the Real-Business Cycle (RBC)

model. This model was particularly successful to reproduce the main features of macroeco-

nomic fluctuations. In the same spirit, the consumption/labor choice with heterogenous agents

may imply interesting aggregate dynamics and that is what we explore in this first extension.

When adapted to the MFG problem, the control problem is the following:

max
{ct}∞t0 ,{`t}

∞
t0

E0

∫ ∞
0

e−ρtu(ct, `t)dt

subject to : dat = (ztwt`t + rtat − ct)dt (Budget constraint)

and at ≥ a (Credit constraint)

with ` is the labor supplied by household to firms. u(c, `), the utility function, is supposed

increasing and concave (u′ > 0, u′′ < 0) in c and decreasing and concave in `. The specific func-

tional form is chosen to be Constant Relative Risk Aversion (CRRA, γ) utility in consumption

and separable in labor, with a constant Frisch elasticity (φ) of labor supply:

u(c, `) =
c1−γ

1− γ
− `

1+ 1
φ

1 + 1
φ

The rest of the model, in particular the firm side remains mostly similar. The main

difference lies in the presence of labor in the production function. The pricing of interest rate

and wages operates in terms of the Capital/Labor ratio Kt/Lt

Yt = AtK
α
t L

1−α
t Production fct

Kt

Lt
(r) : =

( αAt
rt + δ

) 1
1−α

=
((1− α)At

wt

)− 1
α Capital /Labor ratio

wt = (1− α)At (Kt/Lt)
α rt = αAt (Kt/Lt)

α−1 − δ Wage/Interest

The interaction of endogenous labor supply and credit constraint will have unattended

effects for aggregate fluctuation as we will observe in section 4.
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2.2.2 H.A. – New Keynesian Model (One Asset HANK)

If the RBC was the most successful macroeconomic model of the 80’s-early 90’s, the New

Keynesian (NK) model soon took over in the late 90’s and 2000’s. This framework stemmed from

menu costs and imperfect competition models developed earlier. As a synthesis of Neoclassical

and Keynesian thought, it kept a similar Household side as the RBC model. The main changes

concentrated on firm behavior: firms choose their price level in a staggered manner – known as

the Calvo-Yun price setting, where not all firms can choose to update their price. A reason for

its success was that monetary policy was not neutral anymore and change in the path of interest

rate could have an impact on household and firms dynamics. A general equilibrium summary

can be found in Woodford (2003) or Galí (2015). When introducing heterogenous agents, the

MFG model is the following:

max
{ct}∞t0 ,{`t}

∞
t0

E0

∫ ∞
0

e−ρtu(ct, `t)dt

subject to : dbt =
(
(1− τ)ztwt`t + rbtbt + Tt + Πt − ct

)
dt (Budget constraint)

and bt ≥ b (Credit constraint)

Most of the variables are identical as the previous models. Here we choose to include government:

Tt is a lump-sum government transfer to all households redistributed from tax τ on labor. Firms

are owned by households such that firms profits Πt are transferred to households, proportional

to their income level z. The asset of household side is closer to the Huggett model: there is

no capital in the simplest form of the NK, but the bond supply Bg is fixed, and (here) can be

changed by the issuance of government debt.

We chose to provide a detailed description of the New Keynesian model in the following8.

The production side features a continuum of firms and each of them is producing a variety/type

of intermediate input. Each of them will choose how to price these inputs but will be subject

to ’imperfect competition’: a final good producer will aggregate these good with the CES9

technology:

Y =

( ∫ 1

0
y
ε−1
ε

j dj

) ε
ε−1

8This description of the New Keynesian model in continuous time is inspired from B. Moll’s PhD lecture 2
9CES: Constant elasticity of substitution, here the parameter ε is the degree at which a consumer will be

willing to substitute a good for another
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The demand (from the final good producer) for a particular good is given by10

yj(pj) =
(pj
P

)−ε
and P =

(∫ 1

0
p1−ε
j dj

) 1
1−ε

The intermediate goods producers have a linear production11 and and thus solves the following

maximization problem :

yj,t = AtNj,t ⇒ max
pj

pjyj(pj)− wtNj,t = max
p
p

(
p

Pt

)−ε
Yt − wt

1

At

(
p

Pt

)−ε
Yt

pj,t = Pt =
ε

ε− 1

wt
At

∀j

Let us introduce sticky prices, where firms now faces a quadratic adjustment cost Θt(
ṗ
p) (where

θ is the degree of price stickiness). They now solve a (deterministic) control problem for the

choice of ṗ:

Πt(p) = p

(
p

Pt

)−ε
Yt − wt

1

At

(
p

Pt

)−ε
Yt Θt

(
ṗ

p

)
=
θ

2

(
ṗ

p

)2

PtYt

vf (p0) = max
(pt)t≥0

∫ ∞
0
e−

∫ t
0 isds

[
Πt(pt)−Θt

(
ṗt
pt

)]
dt

To derive the optimal price setting, one can state the Hamiltonian H(p, ṗ, η) and use the Pon-

tryagin Maximum Principle:

H(pt, ṗt, ηt) = Πt(pt)−Θt

(
ṗt
pt

)
+ ηtṗt

ṗ?t ∈ argmin
ṗt

H(pt, ṗt, ηt) ⇒ ηt = θ
1

pt

(
ṗ?t
pt

)
PtYt

η̇t = −∂H(pt, ṗt, ηt)

∂pt
= itηt −

[
(1− ε)

(
p

Pt

)−ε
Yt + ε

wt
At

1

pt

(
p

Pt

)−ε
Yt +

θ

pt

(
ṗt
pt

)2

PtYt

]
Since the control problem is identical for all firms (thanks to CRS), we use the fact that pt = Pt

and thus, defining inflation πt = Ṗt
Pt
, we obtain:

θ πtYt = ηt ⇒ η̇t = θ (π̇tYt + πtẎt)

η̇t = itηt −
[
(1− ε)Yt + ε

wt
PtAt

Yt + θπ2
t Yt

]
And rearranging – defining marginal cost mt = wt

PtAt
and m̄ = ε−1

ε – we obtain the New

10 The final good producer is behaving competitively and thus solves a maximization problem of the form :
max(yj)j∈[0,1]

Y −
∫ 1

0
yjpjdj

11With the two assets model, one could have a production similar to the Neoclassical model Y = AKαL1−α.
Here, there is no capital, the important thing for NK model is to have constant return to scale to make sure
price setting is homogenous for all producers.
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Keynesian Phillips Curve, determining the inflation dynamics:

(
it − πt −

Ẏt
Yt

)
πt =

ε

θ

(
mt − m̄

)
+ π̇t

To close the model, it remains to determine the policy variables12, i.e. the evolution of

interest rate by monetary authorities and public debt dynamics/taxes by fiscal policy.

The central bank determines the path of nominal interest rate it, affecting the real return

rt of asset at (which corresponds to government bonds here). One can choose the conventional

policy rule:
rt := it − πt (Fisher relation)

it = ρ+ φππt (Taylor rule), with φπ > 1

The government is subject to a budget constraint yield bond (public debt) dynamics:

Ḃg
t +Gt + Tt = τtwtLt + rtB

g
t

Again, the debt choice Ḃg or government spending Gt could be given by a policy rule. For

simplicity, we choose the policy Ḃg
t , Gt = 0 and the lump-sum transfers to households Tt to

adjust with the dynamics of interest rate and labor.

With these features concerning firms/central bank/government, added to similar market

clearing on bond Bg
t +Bh

t = 0 with Bh
t =

∑
j

∫
agjda and Nt(w) = Lt :=

∑
j

∫
`jgjda

2.2.3 HANK – Two-assets model

Another extension, developed by Kaplan and Violante (2014) and Kaplan, Moll, and

Violante (2018) consists in a control problem with two assets: one liquid asset bt (bond/deposit)

and one illiquid asset at(housing/equity). It has been particularly successful in explaining wealth

distribution. Our version of the rest of the problem is similar to the RBC model.

The two-assets H.A. New Keynesian version is an extension developed by Kaplan, Moll,

and Violante (2018) but not described here.

12Even though one of the main objectives in macroeconomics would be to determine the optimal policy –
by posing a control problem on top of the MFG – a frequent short cut is to use ad-hoc policy rules that can
approximate optimal policies in ’representative agent’ setting
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max
{ct}∞t0 ,{`t}

∞
t0
,{dt}∞t0

E0

∫ ∞
0

e−(ρ+ζ)tu(ct, `t)dt

subject to : dbt =
(
(1− τ)ztwt`t + (rbt (b) + ζ)bt + T − dt − χ(dt, at)− ct

)
dt (Budget – Liquid)

dat = ((rat + ζ)at) + dt)dt (Budget – Illiquid)

bt ≥ b (Credit constraint – Liquid)

and at ≥ a = 0 (Credit constraint – Illiquid asset)

rbt (b) = rbt + 1{b<0}κ (Discrimination – lending/borrowing)

with ρ rate of time preference and ζ the exogenous rate of death (and birth) of new agents,

and u(c, `) the same utility as above. Note that rbt (b) introduces a "soft" borrowing constraint

at zero since borrowing rate is higher than saving rate. Moreover, the main difference between

liquid and illiquid assets lies in the higher return of illiquid asset13. However, this gain is

counterbalanced by the transaction cost χ(d, a) one has to pay to convert liquid wealth into

illiquid wealth. This cost is always positive and strictly convex, and its expression have strong

economic justifications14

χ(d, a) = χ0|d|+
χ1

1 + χ2

∣∣∣∣da
∣∣∣∣1+χ2

|a|

The rest of the model is similar to the RBC-endogenous labor supply.

13Illiquid asset – representing equity – allows to gain the firms-profits in the New Keynesian version of this
two-assets model

14As explained in Kaplan, Moll, and Violante (2018): This transaction cost has two components: The
linear component generates an inaction region in households’ optimal deposit policies because for some
households the marginal gain from depositing or withdrawing the first dollar is smaller than the marginal
cost of transacting χ0 > 0. The convex component (χ1 > 0, χ2 > 0) ensures that deposit rates are finite,
and hence household’s holdings of assets never jump. Finally, scaling the convex term by illiquid assets
a delivers the desirable property that marginal costs χ(d, a) are homogeneous of degree zero in the deposit
rate d/a so that the marginal cost of transacting depends on the fraction of illiquid assets transacted,
rather than the raw size of the transaction.
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3 Introducing common noise / aggregate shocks

We now consider the same framework, when introducing the common noise – or aggregate

shock to use to economics idiom. This is of particular interest for economists to understand

how the economy ’reacts’ to exogenous shocks affecting the system as a whole. In the Krusell-

Smith model and its extensions, we consider the level of productivity At (TFP: total factor

productivity) to be subject to random fluctuations. This affects firms in their production

process, and thus prices of the factors (interest rate and wages) and in turn the behavior of

households.

What stochastic process will follow the aggregate productivity? The form of the process

will matter a lot for the anticipations of agents (who are perfectly forward looking and thus draw

expectations about the future of the economy). The simplest way would be to consider a simple

Brownian motion dBt starting at a initial level Ā0 and stopped at a deterministic stopping time

T (assuming to be the stationary equilibrium). This will be the situation considered in the

following mathematical analysis and the first simulation.

However, we also simulate the model using a Jump process with two states, meant to

represent the state of economic "booms" (growth) or "busts" (recession). This process was

indeed the option in the original article by Krusell-Smith, where both idiosyncratic and aggre-

gate risks were modeled by Markov Chains. Moreover, to study the transmission mechanisms

after a transitory shock, economists often consider stationary processes as AR(1) processes

(Xt+1 = µ + ϕXt + σεt). The closest process in continuous time would be the Ornstein-

Uhlenbeck diffusion process, that mean-reverts to the value µ: dXt = −θ(Xt−µ)dt+ σdBt, or

the "Jump-Drift Process". dXt = −θ(Xt − µ)dt+ εdNt where dNt is a jump process (dN = 1

with intensity λ) and ε ∼ N (0, σ2). This latest is the one we consider for the plot of the Impulse

Response Functions (IRF) in the results in section 4.

3.1 General mathematical framework

We restate the MFG problem with common noise. To provide the general framework,

we can consider the case where the idiosyncratic state zt and common state At are diffusion

processes. We denote mt the measure of the states (at, zt, At) and 〈mt, a〉 the first moment of

the measure w.r.t the states at.
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sup
ct

E0

∫ ∞
0

e−ρtu(ct)dt (1)

s.t. dat =
(
zt (At κw 〈mt, a〉α︸ ︷︷ ︸

≡wt

) + (At κr〈mt, a〉α−1− δ︸ ︷︷ ︸
≡rt

) at − ct
)
dt & at ≥ a (wealth)

dzt = bidio(zt)dt+
√

2σidiodBt (labor productivity)

dAt = bcom(At)dt+
√

2σcomdW 0
t (aggreg. productivity)

where we normalized labor supply 〈mt, z〉 to a constant zav and defined the constant κw =

(1− α)z−αav and κr = αz1−α
av to alleviate a bit the notations. The consumption ct is the control

of this representative agent.

We can rewrite our framework, using the standard notations from stochastic control/MFG:

Xt ≡ (at, zt, At) is now a state on R3, the optimal control α?(t, x,m, p) ≡ c?t and we use the

vector formulation:

b(Xt,mt, α
?
t ) ≡


ztAt κw 〈mt, a〉α + (At κr〈mt, a〉α−1− δ) at − c?t
bidio(zt)

bcom(At)

 ,
σ̃idio = (0,

√
2σidio, 0)T

σ̃com = (0, 0,
√

2σcom)T

Therefore, the dynamics of the state is the following:

dXt = b(Xt,mt, α
?
t )dt+ σ̃idiodBt + σ̃comdW 0

t

dXt = −DpH
(
t,Xt,mt, Dxvt(Xt)

)
dt+ σ̃idiodBt + σ̃comdW 0

t (2)

where vt is the value function of the control problem and H the hamiltonian given below and

Bt and W 0
t respectively the idiosyncratic and common noise – both are 1-dimensional Wiener

processes (Brownian motion), due to the value of σ̃idio and σ̃com. This formalism is closer to

the usual notation of the MFG literature.

By posing the Hamiltonian H(t, x,m, p) = maxα
(
u(α) + b(x,m, α) · p

)
we see that we

are in a "strongly coupled" Mean Field Game problem: the coupling between the agents states

and the measure of the other players depend on their strategies. Indeed, the prices (interest

rate and wages) will depend on the measure and will affect the optimal choice. For results on

strongly coupled MFG, see Bertucci et al. (2018).

Finite vs. infinite-horizon. In economics, models are often formalized in infinite horizon,

and the cost is subject to the discount factor ρ, i.e. the lower ρ, the more patient/forward-

looking the agents. However, for various reasons, economists are inclined to consider a stationary
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equilibrium – a "steady-state" – and analyze the transmission effects of a one-time shock – an

"unexpected and transitory deviation from steady state" – in a given number of periods (in

discrete time). In the following, we adopt an intermediary setting: for a finite time period

[0, T ], the system is subject to aggregate shocks, and thereafter, when t > T , the MFG system

returns to a situation without aggregate uncertainty – the common noise is "switched off".

The main difference compared to usual economic models is to consider multiple trajectories

of common noise: there are thus many different "steady-states". The advantage is also to

consider the MFG with common noise in finite-time horizon, a setting more familiar for applied

mathematicians.

Therefore, the MFG without common noise, when σ̃com = 0, is characterized by the

usual15 system of PDE:
−∂tv(t, x) + ρ v(t, x) = H

(
t, x,m,Dxv

)
+ σidio∂ 2

x2
v(t, x) on [0, T ]×X

∂tm(t, x)− div
[
DpH

(
t, x,m,Dxv

)
m(t, x)

]
− σidio∂ 2

x2
m(t, x) = 0 on [0, T ]×X

v(T, ·) = v∞ m(0, ·) = m0 on X
(3)

where X := [a,∞)×R×[0,∞), and v∞ is the value function for the stationary control problem.

The Hamiltonian is given above by H(t, x,m, p) = maxα
(
u(α) + b(x,m, α) · p

)
. Note that

we adopt this notation since, in our special setting, σidio∂2
x2
v(t, x) = 1

2 tr
(
σ̃σ̃′idioD2

xv(t, x)
)

and σidio∂2
x2
m(t, x) = 1

2D
2
x

(
σ̃σ̃′idiom(t, x)

)
. We emphasize the fact that the MFG equilibria is

deterministic is this context. Let us figure out what would be the setting when a transitory –

finite-horizon – aggregate shock occurs.

3.1.1 MFG system with common noise – Stochastic PDEs

When σ̃com > 0 the effect of the common noise is to randomize the MFG system. Therefore,

the measure mt becomes a random flow of measures, and can be now considered as a flow of

conditional marginal measures of (Xt)t≥0 given the realization of the common noise W 0
t , i.e.

formally mt = L(Xt|W 0) . We formalize the MFG system with common noise as follow (using

the notation of stochastic processes with time subscript). The reference for the derivation of

such system is Cardaliaguet, Delarue, Lasry, and Lions (2017) and Carmona and Delarue (2014).

15The standard MFG system is recalled in appendix section A
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The forward Fokker-Planck Stochastic PDE describing the dynamics of the conditional

laws of the state – given the common noise – is the following :

dmt(x) = div
[
DpH

(
t, x,m,Dxv

)
mt(x)

]
dt− div

[
σ̃com dW 0

t mt(x)
]

+ 1
2D

2
x

(
σ̃σ̃′idiomt(x)

)
+ 1

2D
2
x

(
σ̃σ̃′commt(x)

)
dt

= div
[
DpH

(
t, x,m,Dxv

)
mt(x)

]
dt −

√
2σcom∂x3mt(x) dW 0

t +
(
σidio∂ 2

x2
mt(x) + σcom∂ 2

x3
mt(x)

)
dt

m0(·) = m0 (4)

where the passage from the first to the second line applies in our special setting (and own

notations). Compared to the previous framework, the common noise creates two novel terms:

(i) a first order term
√

2σcom∂x3mt dW
0
t representing the direct effect of the common noise on

the state of each agent (and hence on the measure) and (ii) a diffusion term σcom∂ 2
x3
mt coming

from the correlation between the state x3 of all the agents – and issued from the bracket term

in the Itô formula.

Given the forward dynamics of the state eq. (2), the solution of the Mean Field Game

usually consists in four steps:

1. Fix an arbitrary measuremt, that should now be a stochastic process (over P(X)) adapted

to the filtration F0 generated by the common noise W 0.

2. Solve the standard stochastic control problem eq. (1) with random coefficient, subject to

the dynamics eq. (2)

3. When an optimal control exists in feedback form α?(t, x,m), plug it into the Fokker Planck

above eq. (4) to obtain the evolution of m′t.

4. Find a fixed point where this solution m′ is precisely the m we started from. It reduces

to a search for a flow of random measure such that mt = L(Xt |F0)

In presence of common noise, the difficulty is twofold. First, the fixed point problem is performed

in an infinite dimensional space [C([0, T ],P(X))]Ω where Ω denotes the underlying probability

space carrying the common noise. This space being too large, the use of compactness arguments

may fail, preventing the proof of existence by mean of Schauder’s Theorem – which is the

standard method to solve the case without common noise. Second, the control problem should

be solved in the space of stochastic processes, i.e. adapted to F0. Let us see now how to deal

with such issue.

When the flow of (random) measure mt is fixed we look for an admissible control such

that, for each (t, x), the controlled state (Xt,x,α)t is solution of the SDE starting from Xt = x:

dXs = b(Xs,ms, αs)ds+ σ̃idiodBs + σ̃comdW 0
s
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The conditional cost and the value function being:

Jm(t,x)((αs)
T
t ) = E

[∫ ∞
t

e−ρsu(αs)ds
∣∣∣F0

t

]
vm(t, x) = sup

{αs}Tt
Jm(t,x)((αs)

T
t )

Under the suitable regularity assumption, for x ∈ X, one can show that vm(t, x) is a

(F0
s )t≤s≤T –semi-martingale and one can use the Itô formula and invoke a generalization of the

Dynamic Programming Principle in this random environment.

We define the random operator:

L(t, x,m, p,M, q0) = sup
α

[u(α) + b(x, µ, α) · p ] + 1
2 tr

(
σ̃σ̃′idioM

)
+ 1

2 tr
(
σ̃σ̃′comM

)
+ σ̃com · q0

= H
(
t, x,m,Dxv

)
+ σidioM2,2 + σcomM3,3 +

√
2σcom q0

3

where H is again the same hamiltonian (since the diffusion term is uncontrolled). We introduces

an additional term Z0,m, where the couple (vm, Z0,m) is solution of the Backward SDE –

parametrized by m – of the following form:

vmt (x) = v∞(x) +

∫ T

t
L
(
t, x,m,Dxv

m(s, x), D2
xv
m
s (x), DxZ

0,m
s (x)

)
ds+

∫ T

t
Z0,m
s (x)dW 0

s

As usual in the theory of Backward Stochastic Differential Equation, "−L" is the gener-

ator of the BSDE, v∞(x), the terminal condition – i.e. the value function of the MFG without

common noise here – and Z0,m that allows the solution to be adapted the the filtration (F0
s )s.

Written differently, the dynamics of the value function vm(t, x) – with the notation for stochastic

processes – yields the following Stochastic Hamilton-Jacobi-Bellman :

dvmt = ρ vmt dt− L
(
t, x,m,Dxv

m(t, x), D2
xv
m
t (x), DxZ

0,m
t (x)

)
dt+ Z0,m

t (x)dW 0
t

=
[
ρvmt −H

(
t, x,m,Dxv

m
)
− σidio∂ 2

x2
vmt − σcom∂ 2

x3
vmt −

√
2σcom∂x3Z

0,m
t

]
dt+ Z0,m

t dW 0
t on X & t ∈ [0, T ]

vmT = v∞ on X

where the random field Z0,m is a 1-dimensional process, just like W 0, but is a function of the

state x. Note that the (random) infinitesimal generator L(·)dt + Z0,mdW 0
t is also the adjoint

operator of the generator driving the Stochastic Fokker Planck eq. (4).

By verification arguments, one could find the optimal strategy in feedback form when

looking for the supremum of the Hamiltonian16.

16We also precise that the optimal control α? realizing the supremum of the hamiltonian is only a function
of (t, x,m,Dxv) since the volatility terms of both the idiosyncratic and common noises are uncontrolled. If it
would be the case, the optimal strategy would then depend on D2

xv
m and Z0,m.
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Let us provide an alternative interpretation for the random vector field Z0
t (·) and describe

the two new terms – compared to the HJB without common noise. The term Z0
t dW

0
t is remi-

niscent of the theory of Backward SDE, since the HJB runs backward : it guarantees that the

solution (vt)
T
0 is adapted to the filtration generated by the common noise W 0, since in presence

of aggregate uncertainty the agents can not foresee the future of the economy. The second term

−
√

2σcom∂x3Z
0
t could be understood as a first-order effect of this additional noise taken at the

value x. It could well be understood as the "effect of common uncertainty" – a diffusion here –

which here transmit to the value function only through the state x3. Mathematically, this extra

term can be explained by the Itô-Wentzell for random field. This formula17 allows to perform

the chain rule for random fields applied to random processes. When doing so, the derivative of

the diffusion term of the random field – i.e. the value effect of uncertainty – interact its effect

on the state, i.e. ∂x3Zt and
√

2σcom respectively here. This term is thus cancelled out by the

term −
√

2σcom∂x3Z
0
t in the dynamics of the value function. For further reference, see chapter

4 and appendix of Cardaliaguet, Delarue, Lasry, and Lions (2017).

Dropping the m superscript when the fixed point is found, we rewrite the system of

Forward-Backward SDE or Stochastic PDE :


dvt =

[
ρ vt −H

(
t, x,m,Dxvt

)
− σidio∂ 2

x2
vt − σcom∂ 2

x3
vt −

√
2σcom∂x3Z

0
t

]
dt+ Z0

t dW
0
t on X & t ∈ [0, T ]

dmt =
[

div
(
DpH

(
t, x,m,Dxv

)
mt

)
+ σidio∂ 2

x2
mt + σcom∂ 2

x3
mt

]
dt−

√
2σcom ∂x3mt dW

0
t on X & t ∈ [0, T ]

vT = v∞ m0 = m0 on X
(5)

17 Briefly, take a random vector field Ψt, function of a state x, expanded under an Itô form:
dΨt(x) = ft(x)dt + gt(x)dW 0

t . When considering an Itô process : dXt = btdt + σidBt + σcdW 0
t , one

would like to know the Itô decomposition of Ψt(Xt). Under suitable assumption, and when the Brownians are
1-d, the Itô-Wentzell formula provides this expansion:

dΨt(Xt) =
[
DΨt(Xt) · bt + 1

2
tr
(
D2Ψt(Xt)(σ

iσ′i + σcσ′c)
)

+ ft(Xt) +Dg(Xt) · σc
]
dt+DΨt(Xt)(σ

idBt+σ
cdW 0

t )+gt(Xt)dW
0
t
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3.1.2 Master equation

We now discuss how the recent literature of Mean Field Game would handle the problem

with common noise. This approach consists in describing the Nash equilibrium of the continuum

of players as a single equation, known as the master equation. This equation is the limiting

form of the Nash-system of a N−players stochastic differential game – that would take the form

of N quasilinear parabolic PDE. When the limit is drawn, the resulting master equation is set

over the state-space X times the space of probability measure P(X). The Mean Field Game

problem is thus reformulated in a single equation in infinite-dimension, that integrates both the

control of the players and the evolution of their distribution. This formulation was introduced

by P. L. Lions in his lectures at the Collège de France, and is studied in details in Cardaliaguet,

Delarue, Lasry, and Lions (2017). This novel description proves to be very flexible and powerful

to integrate the complexity of the system. It allows to tackle the convergence problem of

N -players Nash equilibria toward the MFG system – an difficult question that has remained

opened until recently – or games with both major and minor players – a setting that could have

many different applications in economics. Moreover, this formulation is the right setting to

understand MFG with common noise, and we try to provide informal intuitions in this section.

Master equation for MFG without common noise

To provide an introduction, the master equation of the deterministic MFG system found

in eq. (3) would be :
−∂tU(t, x,m) + ρU(t, x,m)−H(t, x,m,DxU)− σidio∂ 2

x2
U(t, x,m)−

∫
X
σidio∂y2 [DmU(t, x,m; y)]m(dy)

+

∫
X
DmU(t, x,m; y) ·DpH

(
t, y,m,DxU(t, y,m)

)
m(dy) = 0 in [0, T ]×X×P(X)

U(t, x,m) = v∞(x,m) in X×P(X)

(6)
There are several interpretations for the solution U : [0, T ]×X×P(X) 7→ R :

• This represents the value function of the representative player i in a N−players differential

game, when N → ∞. In this Nash-system, the value function would depend on the N − 1

others states {x1, . . . , xi−1, xi+1 . . . , xN} ≡ mN,i
x when the states vector is embedded in the

space P(X) and be represented by the empirical distribution mN,i
x = 1

N

∑
j 6=i δxj .

• This value, as solution of the master equation, will be constructed via the methods of char-

acteristics: Starting from (t0,m(0)) one define U(t0, x,m(0)) := v(t0, x)∀x ∈ X where (v,m)

is solution of the MFG system eq. (3). We can define U(t, x,mt) all along the characteristic

(v,m). When assuming that U is smooth enough – while it is actually difficult to prove –

one can show that U will be solution of the master equation, as we will explain in the case

with common noise – following the method of Cardaliaguet et al. (2017).
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• This function on the Wasserstein space can also be viewed as the decoupling field of the MFG

system. This approach, particularly relevant in the case of Forward Backward SDE (FBSDE)

is well treated in the 2nd volume of Carmona and Delarue (2018). If we will provide intuitions

in the case of common noise, one can already emphasize that this function will allow to express

the backward component of the system as a deterministic function of the first. Indeed, some

form of Markov property holds on the enlarged space X×P(X). This intuition holds both in

the case with or without common noise, where – in the latest – the system of SPDEs (vmt ,mt)

as seen in eq. (5) can in fact be viewed a FBSDE. The decoupling field vmt (x) = U(t, x,mt)

and U can be shown – using Itô in random environment – to solve the master equation.

Let us also do some remarks on the first order master equation:

• If the usual time and space derivative are taken for U(·, ·,m), we now require differential

calculus in the space of probability measure to understand the formalism behind the mapping

X 3 y 7→ DmU(t, x,m; y). We will try to provide intuitions below and the interested readers

can find very good introductions in Cardaliaguet (2018) and in Vol. 1, Chap 4. of Carmona

and Delarue (2018).

• Therefore, note that this equation consists in two parts: the four first terms involve the

local terms (t, x) and are the same as the one which appear in the Hamilton-Jacobi-Bellman

equation: they correspond to the local control problem. Let us recall that the Hamiltonian

in our problem is given by H(t, x,m, p) = supα u(α) + b(x,m, α) · p .

• The two last terms, however, are non-local terms and are defined as integrals over the whole

space and integrate the coupling between the agents. The derivatives with respect to the

measure correspond to the flows of the agents as could be seen in the Fokker Planck equation.

Aggregation: Master equation simplified

In the case without common noise, to provide further intuitions, we could now suppose

that one can aggregate the economy. The measure of agent would be represented by some

moments of the distribution 〈h,m〉, for example the first moment Kt = mt = 〈a,mt〉.

The aggregation phenomenon is well-known is economics, under some specific conditions.

One typical example is when there is no credit constraint : the state space is given by X̃ =

R×R×[0,∞) (instead of X = [a,∞)×R×[0,∞) with a state-constraint).

In such case, the economy with idiosyncratic risk but without state-constraint is isomor-

phic to the representative agent model (with and without aggregate shocks). The "average"

households will accumulate or diminish freely their asset/capital stock in function of sequence

of shocks they faces. This evolution will be "priced" and the interest rate will reflect the excess
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or shortage of capital. Therefore, the control problem reduces to a finite-dimensional problem

– as we will show thereafter.

The probabilistic treatment of such phenomenon – using FBSDE and Stochastic Pontrya-

gin Principle – is covered in Carmona and Delarue (2018), in section 3.6. of Vol 1. There18, the

Backward SDE for the adjoint (co-state) variable – representing in a sense marginal utility – is

in fact deterministic and can be decoupled from the Forward SDE of the dynamic of the state

Xt = (at, zt, At)
T . The decoupling field is thus function – solving the adjoint equation – of the

first moment of the distribution : Yt = g(〈mt, a〉). We use the same logic here, assuming that

the value function – solution of the master equation – is only function of some moment of the

distribution of agents Kh,m = 〈h,mt〉, i.e. :

Kh,m = 〈h,mt〉 =

∫
X̃
h(x)mt(dx) U(t, x,m) = U(t, x,Kh,m) = U(t, x, 〈h,m〉)

The main idea behind aggregation in these MFG would be to obtain the same solution for an

arbitrary function U(·,m) or for a function U(·, 〈h,m〉) considering only the first moment of the

distribution h(x) = x1 ≡ a and h : X 7→ R, and U : [0, T ]×X̃×R 7→ R. Indeed, in the Krusell-

Smith model (with or without credit constraint) the dynamics of the model is only coupled

through the first-moment of the measure, in the interest rate and wage. One could extend the

procedure used in the following, to any functions U(m) = U(g1(m), . . . , gk(m)) with gk any

monomial function gk(m) = Πj〈hkj ,mt〉. In this setting, one would obtain a finite dimensional

PDE, as we will see now.

Derivative in the space of measure. We now briefly use two simple examples to compute

the derivative of functions in the Wasserstein space, i.e. to give a sense of DmU . The idea is to

represent a function of a measure g(m) as a function of the random variable following this law

g̃[X] and X ∼ m – called "lifting" or "extension". The derivative w.r.t. to the measure is the

derivative of this lifted function : Dmg(m, y) ≡ Dy g̃([X], y). One can also use the notion using

"intrinsic derivative" δg
δm and Dmg(m, y) ≡ Dy

δg
δm(m, y). Note that we perform the following

computations in a very informal way, and complete references are found in Cardaliaguet (2018)

• If g1(m) = 〈h,m〉 =
∫
Rd h(x)m(dx). The lifting is g̃1[X] =

∫
Rd h(x)m(dx) = E(h(X)).

Its derivative would be Dg̃1[X](Z) = E(Dg̃1[X] · (Z −X)) = E(Dh(X) · (Z −X)). The

resulting derivative w.r.t. m is therefore :

Dmg1(m; y) = Dyh(y) with Dmg1(m; ·) : Rd 7→ Rd, y → Dmg1(m; y)

• A simple variation: g2(m) = ψ(〈h,m〉). Using the chain rule with the method above:

18Note that the model is also solved in section 6.7 using optimal control of McKean Vlasov dynamics instead
of Mean Field Game (i.e. Pareto equilibrium instead of Nash Equilibrium)
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Dmg2(m; y) = ψ′(〈h,m〉)Dyh(y) with Dmg2(m; ·) : Rd 7→ Rd, y → Dmg2(m; y)

Using this simple example, for the master equation, the derivative of the solution is thus:

DmU(t, x,m; y) := (∂m1U, ∂m2U, ∂m3U)T ∂miU(t, x,m; y) = ∂KhU(t, x,Kh,m)∂yih(y)

Applying these techniques and after some simple calculus, the master equation with aggregation

Kh = 〈h,m〉 becomes:

−∂tU(t, x,Kh) + ρU(t, x,Kh)−H(t, x,Kh, DxU)− σidio∂ 2
x2
U(t, x,Kh)

−σidio∂KU(t, x,Kh)

∫
X̃
∂2
y2
h(y)m(dy)

+ ∂KU(t, x,Kh)

∫
X̃
∇h(y) ·DpH(t, x,Kh, DxU)m(dy) = 0 in [0, T ]×X×R

U(t, x,Kh,m) = v∞(x,m) in X×R with 〈h,m〉 = Kh,m

(7)

Result: Aggregation

1. If the coupling of the MFG system is reduced to the dependence in some moments of the

distribution, i.e. Kh,m = 〈h,mt〉 and U(t, x,m) = U(t, x,Kh,m), then the value function of

the MFG can be represented by the function U solving the master equation eq. (7)

2. If one can aggregate the economy, through the first moment of the measure: K = m̄t =

〈a,mt〉, then19 the master equation reduces to a standard Hamilton Jacobi Bellman equation,

on extended space X̃×R and is given by :
−∂tU(t, x,K) + ρU(t, x,K)−H(t, x,K,DxU)− σidio∂ 2

x2
U(t, x,K)

+ ∂KU(t, x,K)

∫
X̃
∂p1H(t, y,K,DxU)m(dy) = 0 in [0, T ]×X×R

U(t, x,K) = v∞(x,m) in X̃×R with 〈a,m〉 = K

(8)

Note that, when the measure is unknown, the integral term
∫
X̃ ∂p1Hm(dy) may still be a highly

non-linear function of the state, and can not be simplified easily. The aggregation result in

economics would search to express the controlled drift ∂p1H as a linear function of the state

h(x). If this property holds, then the master equation would not feature any more measure

terms, but only functions of Kh.

19Since h(x) = x1, we thus have ∇xh(x) = (1, 0, 0)T and ∆h(x) = 0
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Master equation for MFG with common noise

We now provide intuitions for the master equation with common noise, i.e. when σcom > 0.

The corresponding MFG system is developed eq. (5), where the two PDE are stochastic. The

master equation, a contrario will be a deterministic PDE on [0, T ]×X×P(X) and it will account

for the evolution of the common noise and its influence on the distribution.

−∂tU(t, x,m) + ρU(t, x,m)−H(t, x,m,DxU)− σidio∂ 2
x2
U(t, x,m)− σcom∂ 2

x3
U(t, x,m)

−(σidio+ σcom)

∫
X

div
y
[DmU(t, x,m; y)]m(dy) +

∫
X
DmU(t, x,m; y)·DpH

(
t, y,m,DxU(·, y, ·)

)
m(dy)

−2σcom
∫
X

div
x
[DmU(t, x,m; y)]m(dy)− σcom

∫
X×X

tr
[
D2
mmU(t, x,m; y, y′)

]
m⊗2
t (dy, dy′) = 0 in [0, T ]×X×P(X)

U(t, x,m) = v∞(x,m) in X×P(X)

(9)

In the model considered, the idiosyncratic and common noise affect respectively the second and

third states and the agents controls interact only through the measure of the first state. Using

these observations and using the formulation of eq. (5) – since the master equation is obtained

through the characteristics of the MFG system – we use the method developed in Cardaliaguet

et al. (2017). In our case, the first order and second order derivatives simplify and the resulting

master equation writes as:

−∂tU + ρU −H(·, DxU)− σidio∂ 2
x2
U − σcom∂ 2

x3
U −

∫
X
σidio∂y2∂m2U(·; y) + σcom∂y3∂m3U(·; y)m(dy)

+

∫
X
∂m1U(·; y) ∂p1H

(
·, y, ·, DxU(·, y, ·)

)
m(dy)− 2σcom

∫
X
∂x3Dm3U(·, x, ·; y)m(dy)

−σcom
∫
X×X

∂2
m3
U(·, x, ·; y, y′)m⊗2

t (dy, dy′) = 0 in [0, T ]×X×P(X)

U(t, x,m) = v∞(x,m) in X×P(X)

(10)

where U and H are taken in (t, x,m) and U(·, x, ·; y) = U(t, x,m; y) where there could be

ambiguities. Note that to transform the MFG system of SPDE into the master equation, we

identified the random field Z0
t with :

Z0
t (x) =

∫
X
DmU(t, x,m; y)mt(dy)

Let us also do some remarks on this second order master equation eq. (10) and the effects

of the common noise:

• This equation is of second order, since the derivative w.r.t. the measure mt is of second order

both with the terms div(DmU) and D2
mmU .

• This equation is analogous to the infinite-dimensional HJB expressed in equation (43) of the
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Appendix A.1. of Ahn, Kaplan, Moll, Winberry, and Wolf (2018)

• As in the case without common noise, the first five terms correspond to the control dynamics

– involved in the HJB – and represent the anticipation of an agent of his own future states.

• The last five terms are non-local terms and describe the particles evolution – as in the FP

equation. To be more specific, among these terms:

(i-ii) the first & second terms show how value changes for a distortion of the measure after a

variation in states x2 and x3: these second order derivatives are the direct effects of a Brownian

changes in idiosyncratic or common noise – hence the variance terms σidio and σcom.

(iii) the third terms show the agents control will change the state x1 ≡ a (wealth) and how the

wealth distribution will evolve. Since the agents observe ("expect") the other agents move,

the expectation is drawn on all X.

(iv) this additional term in ∂x3Dm3U(x) is the effect of uncertainty of x3 ≡ At on the value of the

agents. Measured on the state x – with ∂x3 – this term appears with the random field Z0
t (x)

and represents how an agent of state x anticipate the common noise.

(v) the last term shows how an agent expect the anticipations of the other agents (!). This

diffusion term is thus integrated over the whole space twice: the agent x will account on how

the agents y will expects the moves of the players y′ (!!).

Aggregation with common noise

We will reiterate the procedure we used above to derive the master equation when the depen-

dence of the measure can be summarized to a finite set of moments :

Kh,m = 〈h,mt〉 =

∫
X
h(x)mt(dx) U(t, x,m) = U(t, x,Kh,m) = U(t, x, 〈h,m〉)

DmU(t, x,m; y) : = (∂m1U, ∂m2U, ∂m3U)T ∂miU(t, x,m; y) = ∂KhU(t, x,Kh,m) ∂yih(y)

The important point is that the functions we consider g(m) = 〈h,m〉 are linear functions of m.

Indeed, the derivative is no longer a function of m (only of Kh and y). Therefore, the second

order derivative Dmmg(m)(y, y′) = 0. Consequently, the (last) term of type (v) is cancelled,

simplifying substantially the equation.

Applying the above techniques and some calculus, the master equation with common

noise, subject to aggregation Kh = 〈h,m〉 becomes:
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−∂tU(t, x,Kh) + ρU(t, x,Kh)−H(t, x,Kh, DxU)− σidio∂ 2
x2
U(t, x,Kh)− σcom∂ 2

x3
U(t, x,Kh)

− ∂KU(t, x,Kh)
[ ∫

X̃
σidio∂2

y2
h(y) + σcom∂2

y3
h(y)m(dy)

]
+ ∂KU(t, x,Kh)

∫
X̃
∇h(y) ·DpH(t, y,Kh, DxU)m(dy)

−2σcom∂x3∂KU(t, x,Kh)

∫
X
∂y3h(y)m(dy) = 0 in [0, T ]×X×R

U(t, x,Kh,m) = v∞(x,m) in X×R with 〈h,m〉 = Kh,m

(11)

Result: Aggregation with common noise

1. In presence of common noise, σcom > 0, if the coupling of the MFG system is reduced to

the dependence in some moments of the distribution, i.e. Kh,m = 〈h,mt〉 and U(t, x,m) =

U(t, x,Kh,m), then the value function of the MFG can be represented by the function U

solving the master equation eq. (11)

2. If one can aggregate the economy, through the first moment of the distribution: K = m̄t =

〈a,mt〉, then20 the master equation reduces to a standard Hamilton Jacobi Bellman equation,

on extended space X̃×R and is given by :


−∂tU(t, x,K) + ρU(t, x,K)−H(t, x,K,DxU)− σidio∂ 2

x2
U(t, x,K)− σcom∂ 2

x3
U(t, x,K)

+ ∂KU(t, x,K)

∫
X̃
∂p1H(t, y,K,DxU(·, y, ·))m(dy) = 0 in [0, T ]×X×R

U(t, x,K) = v∞(x,m) in X×R with 〈a,m〉 = K

(12)
In this case, when aggregation occurs, there is no more feedback loop of the expectations

of other agents: the terms (i-ii) and (iv-v) disappear since the measure of states x2 and x3

has no influence on states and controls of the other players. However, as before, the term (iii)

remains, showing how the flow (in state x1 ≡ a) will change wealth distribution and prices rt

and wt. However, when the measure is unknown, the integral term:∫
X̃
∂p1H(t, y,K,DxU(·, y, ·))m(dy)

is unknown. The main idea behind aggregation result in economics is to be able to express the

optimal drift ∂p1H(t, y,K,DxU(·, y, ·)) as a linear function of the state – or a linear function of

the function h. Only in such case, the master equation would be an equation of K (or Kh) and

would not feature the measure m.

20Since again h(x) = x1, we thus have ∇xh(x) = (1, 0, 0)T and ∆h(x) = 0
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3.1.3 Weak equilibria of MFG with common noise

The strategy developed in Carmona, Delarue, and Lacker (2016) to handle MFG with

common noise is completely different as the one described in the two previous sections. Nev-

ertheless, this method could be seen as a rationale for the numerical scheme we develop in the

next section.

The approach relies on pure probabilistic arguments and a procedure to discretize the com-

mon noise. Focusing on the case where the common noise has a finite number of outcomes, one

can use the "usual" procedure for MFG existence, this time conditioning on a finitely-supported

approximation of the aggregate noise. The authors use Kakutani’s fixed point theorem – a ex-

tension to multiple controls (& correspondences) of the Brouwer fixed point theorem – to prove

existence.

However, beside on finite approximation, conditioning usual fail to be continuous and one

can not recover the existence at the limit: the limiting solution can actually fail to be adapted

to the filtration generated by the common noise. The existence when refining the discretization

is thus only proved as a weak equilibrium, exactly as weak solutions for stochastic differential

equations, where here more specifically the measure mt of the controlled process may not be

adapted to the aggregate shocks. However, under the assumption of pathwise uniqueness, the

authors can prove an analogous version of the Yamada-Watanabe theorem for SDE: any weakly

existing equilibria that satisfy pathwise uniqueness – i.e. indistinguishable trajectories – is in

fact a strong solution of the MFG.
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3.2 The discretization procedure

The previous section was an introduction to the mathematical formalism of MFG with

common noise. Starting from the framework described in section 3.1, we present here one

numerical technique to tackle this problem.

The main idea is to approximate the stochastic process of common noise. In our setting,

the only state affected by this aggregate shock is the productivity level At. We use a tree

structure to approximate this process in time with a finite number M of simple shocks, and

in space with a finite number K of possible states. With this method, one can approximate

any process using a finite number KM of trajectories. When we consider a simple Brownian

Motion dW 0 or other diffusion processes, we can use different tree structures: (i) binomial,

trinomial or "K-nomial" trees and (ii) optimal quantization trees. The different between these

two approximations will be explained in the following sections.

Building trees

More precisely, in our case, the process for productivity At, will start at Ā0. We first discretize

the time: [0, T ] is divided M + 1 periods [tm, tm+1] with m ∈ {1, . . . ,M}, say uniformly, every

∆T = T
M+1 . At each date tm, the process At will switch between K deterministic trajectories

(Akt )t∈[tm,tm+1] with k ∈ {1, . . . ,K}. The probability of transition from one state Atm to one of

these K trajectories is πkm+1|km := P(At = Akt , ∀t ∈ [tm, tm+1]
∣∣Atm)

This way, we can "build" a tree of different trajectories of common noise, and the dis-

cretized process is still stochastic, with the probability of transition given by the coefficient of

the hypermatrix πkm+1|km – whose coefficients should be carefully chosen as we will see. When

taking ∆T → 0, you can approximate any process.

Solving the MFG system – grafting branches

A way to ’solve’ the MFG with common noise will be to compute the evolution of the MFG

system – HJB and FP equations – on each branch, i.e. on each deterministic trajectories

(Akt )t∈[tm,tm+1]

For a given trajectory, the value function at time tm will depends in the state Atm and

will writes:

v(tm, x, Atm) := sup
ct

E
[ ∫ T

tm

e−ρtu(ct)dt
∣∣∣ Atm]

= sup
ct

E
[ ∫ tm+1

tm

e−ρtu(ct)dt+ e−ρtm+1v(tm+1, Xtm+1 , Atm+1)
∣∣∣ Atm]

by applying standard dynamic programming arguments. Therefore, by denoting t−m the time

before revelation of the shock, and t+m when the future trajectory is revealed, the HJB equation
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with random coefficients Akmt becomes: −∂tv(t, x,Akmt ) + ρ v(t, x,Akmt ) = H
(
t, x,m,Dxv

)
+ σidio∂ 2

x2
v(t, x,Akmt ) on [tm, tm+1]×X

v(t−m+1, x, A
km
t ) = E

[
v(t+m+1, x, Atm+1)

∣∣∣ Akmtm ] on X

The dynamic of At will thus matter a lot on how the agents will consider this terminal condition,

which can thus be written, when the common noise is discretized, as follow:

v(t−m+1, x, A
km) =

K∑
k=1

πk|km v(t+m+1, x, A
k
tm+1

)

In particular, since agents are forward looking (and rational!), they form expectations over the

different set of future branches, and that will be accounted in the value function. The value

function will ’jump’ between t−m and t+m to correct the (past) expectations after the shock of

information. Also, the presence of this conditional expectation E[· |Atm ] will allow the value

function to be adapted to the filtration generated by the common noise At.

Note that, at the last period [tM , T ], there is no more uncertainty and the terminal

condition becomes:

v(T, ·, AkMT ) = v∞,kM

where v∞,kM is the stationary value function of one of the KM terminal equilibria. To compute

these value function, the algorithm will therefore the HJBs backward, starting from the terminal

condition and correcting the value function at each node by taking the conditional expectation

w.r.t. the common noise.

Consider now the associated Fokker Planck equation, on each interval [tm, tm+1], when

the controlled drift is given by DpH. Again, the measure depends on the random coefficient

Akm through the controls: ∂tm(t, x,Akm)− div
[
DpH

(
t, x,m,Dxv(·, Akm)

)
m(t, x,Akm)

]
− σidio∂ 2

x2
m(t, x,Akm) = 0 on [tm, tm+1]×X

m(t+m, ·, A
km
t+m

) = m(t−m, ·, A
km−1

t−m
) on X

where m(t+1 , ·) = m0 for the first period starting at t1 := 0. However, in contrast of the value

function, the measure is backward-looking and naturally accounts for the past drift values. It

is therefore continuous in time t. To compute the measure, the F.P. equations will be solved

forward, starting from the initial condition for each trajectory of the common noise.
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3.2.1 Binomial/trinomial tree structure

When we consider a simple Brownian Motion dW 0 or other diffusion processes21, an

obvious approximation would be to consider a simple random walk, a process that rises or

drops with probability 1/2. Moreover, one could also think about the "normal"-random-walks:

Sn =
n∑
k

εk with εk ∼ N (0, 1) and W
(n)
t :=

Sbntc√
n

The Donsker’s theorem provides a strong justification of this approximation: the process W (n)
t

as a random variable on the Skorokhod space D([0, T ]) will converge in law toward a standard

Brownian Motion, when time increment goes to zero, i.e. when n→∞.

Parametrization

How to choose the trajectories (Akmt )t∈[tm,tm+1] and the transition probability πkm+1|km? Here,

we take advantage of the fact that the increment of the random walk follows a normal distribu-

tion. Hence, one should refer to the "Gaussian case" in the literature on optimal quantization,

cf. Pagès and Printems (2003) and Pagès (2017).

Concretely, thanks to the database on the website http://quantize.maths-fi.com,

the procedure looks similar to clustering methods. One would choose the Voronoï quantiza-

tion grid Γ = {a1, . . . , aK} in order to minimize the L2-mean quantization error e(At,Γ) =∣∣∣∣min{at}∈Γ |At−at|
∣∣∣∣
L2 between the random variable At and the nearest neighbor at in Γ. The

problem consists thus in the minimization over all grids Γ of size K:

eK,L2(At) := inf
{
eL2(At,Γ)

∣∣ Γ ⊂ R, |Γ| ≤ K
}

Now, considering this grid Γ, with the Voronoï partition
(
Ck(Γ)

)
1≤k≤K such that

Ck(Γ) ⊂
{
z ∈ R : |z − ak| ≤ min

1≤j≤K
|z − aj |

}
one could compute the probability weight pk by measuring the probability of the random vari-

able falling into this particular Voronoi cell

pk := P
(
At ∈ Ck(Γ)

)
Moreover, (a) the Brownian motion has stationary increment, one could apply the same method

21If one would approximate diffusions, e.g. Geometric Brownian motion or Ornstein-Uhlenbeck processes with
bi/trinomial trees, one could also refer to the simulation by T. Montes, cf. http://simulations.lpsm.paris/
trinomial_trees/
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for every node and every level 1 ≤ m ≤M of the tree and (b) the increments being independent,

the probability of transition is simply πkm+1|km = pkm+1 .

In the following, we will use several concrete examples:

(i) A simple tree, where K = 3 branches per nodes and M = 3 "waves" of shocks,

(ii) A "long" tree, where K = 2 and M = 9, where the time discretization is finer

(iii) a "large tree", where K = 7 and M = 3 the (space) quantization grid is finer

3.2.2 Quantization tree

While in the previous section we used optimal quantization for every increment of the

tree, which were gaussian, we now consider quantization trees for the whole process. One could

refer to Bally, Pagès, and Printems (2005). The main idea is approximate the process using a

skeleton of the distribution, supported by a tree whose branches are not identical anymore.

We again consider grids with a finite number of points, say N = K×M made again

of M "waves"/"layers" and K branches per layer. The objective is to find a grid such that

we can approximate the process At by a collection of grids Âtm := ProjΓm(Atm) with Γm =

{am1 , . . . , amK} a grid of size K. The main difference is that the grid Γm is chosen in order to

approximate optimally the stochastic process At at time tm and thus account for the underlying

structure of At.

Parametrization

When At is Brownian, the scaling property tells us that At ∼ 1√
t
B1 with B1 a gaussian r.v. with

variance 1. Therefore, at time tm one could chose the grid Γm using the exact same method as

above, this time rescaling appropriately by
√
tm at each layer. The Voronoï partition is thus a

collection of sets
(
Ck(Γm)

)
1≤m≤M .

33



However, computing the transition probability requires to use the Bayes formula.

πkm+1|km =
P
(
Atm+1 ∈ Ck(Γm+1) & Atm ∈ Ck(Γm)

)
P(Atm ∈ Ck(Γm))

A first order approximation would be to consider Atm = akm instead of Atm ∈ Ck(Γm). This

way the transition probability becomes :

πkm+1|km ≈ P
(
N (akm , tm+1 − tm) ∈ [akm− 1

2
; akm+ 1

2
]
)

where Ckm(Γm) := [akm+1− 1
2
; akm+1+ 1

2
] when working in one dimension.

Therefore, we will again display two examples:

(iv) A simple tree, where K = 3 branches per nodes and M = 3 "waves" of shocks. Note that

the variance slows down with time since we know rescale to account for the low probability of

extreme values

(v) A larger tree, where K = 5 and M = 4, where the time and space discretization is slightly

finer.
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3.2.3 Relative advantages and computational challenge

The main difference between the two types of trees, "K"-nomial vs. quantization trees,

is the way to approximate the random variable in space. The quantization tree will keep the

same grid for all the trajectories: the tree will be recombining. However, some trajectories will

have very low probability – e.g. when the brownian reaches the worst state on the 3rd wave

after having peaked at the best level on the 2nd wave.

In contrast, the "K"-nomial tree will not be recombining and thus, the space discretization

will be made finer with time. However, the space of trajectories is restricted to process that

have low probability of extreme values: the discretized common noise will have a lower variance

than its equivalent quantization tree. This drawback can be compensated by increasing M the

discretization in time and K in space. The main issue will be that increasing both valueM and

K will be computationally difficult as we explain below.

In these two cases, the interesting experiment will be to see that the MFG equilibrium

strongly depends on the past values of the measure: two equilibria with the same value Atm
might differ if the past values Atm−1 were different. This past value would indeed affect the

evolution of the measure – which is backward looking and thus path-dependent.

This is a concrete sign that the MFG equilibria is not Markovian in x ∈ X. However, it

will Markovian when enlarging the space to include the infinite-dimensional object m, and thus

on X×P(X). This observation justify to focus on the MFG equilibrium through the Master

equation in section 3.1.2

Computational challenge

The main common point between these two types of trees is the computational difficulty of

simulating the stochastic system of forward-backward PDEs.

Indeed, the tree structure complexity increases exponentially due to the size KM of the

discretization grid. This has two effects: (i) it increases the number of trajectories KM one

has to simulate, the number of both HJB and FP equations to solve, and thus the time of

computation, and (ii) it increases the size of the data, since the value function and the measure

are array in four dimension: [0, T ]×X and Ω the space supporting the underling common noise.

This memory therefore increases when the discretization is made finer.

The following pictures shows the explosion (since it is displayed in log value) of number

of trajectories (LHS) and the size of the memory (RHS).
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These two difficulties can been tackles by different arrangements:

(i) The length of computation can be shortened by parallelizing the algorithm. Indeed, the

tree structure and the backward-forward nature of the algorithm allow to compute different

trajectories on different cores of computer.

(ii) The memory used by the data can be reduced by computing the (stochastic) infinitesimal

generator of the controlled diffusion "à la volée" (on the run). First one would solve the value

function on the different trajectories. Without saving the heavier set of (still sparse) matrices

representing the operator of HJB –needed to compute the F.P. equation – recover the controls

and the drift "on the run" at each step of the Fokker Planck equation22.

3.3 Potential extensions

We will now use some intuitions gained from the section section 3.1 and section 3.2 to

propose two novel methods that could bypass some difficulties inherent to the method developed

above. A first extension would be to use recent quantization methods to handle the Forward-

Backward system, and the second would be to reduce the problem to finite-dimension, using

projection methods.

3.3.1 Forward-Backward system and functional quantization

In mathematical finance, the common way to solve stochastic problems – e.g. computing

option prices, optimal portfolio allocation etc. – is to use methods such as Monte-Carlo, Quasi

Monte Carlo or quantization. According to researchers of the field23 optimal quantization is

22However, this method reveals more difficult than it seems due to the specific upwind scheme we use in the
HJB equation as we will explain in appendix.

23Cf. Pagès (2017)
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one of the most efficient method for such problems that can be solved backward. Indeed, when

the problem is Markovian, dynamic programming yields a formulation with a HJB equation or

an expectation Et[f(XT )] where Xt solves a SDE. The idea is always to start from the future

and compute the value backward in time, updating the conditional expectations.

However, the mean field game system with common noise is no longer Markovian in the

state Xt ∈ X. The future transition of the system (t,Xt,mt) will depend on past shocks and

is no longer memoryless. This is due to the fact that the Fokker Planck equation – which is

computed forward in time – is coupled with the HJB. The equilibrium fixed point has to be

found on the whole trajectory and for each trajectory (whose number can be large).

In the previous section, when handling common noise, we used "K"-nomial and quantiza-

tion trees in a different way compared to the usual methods developed in numerical probability.

In our problem, we used the trees in the two directions: for backward computation (HJB, up-

dating conditional expectations) and in the forward computation (FP) where the whole path

of the trajectory is needed.

A contrario, practitioners of the field in mathematical finance would use other methods

to compute the price of "path-dependent" option – e.g. Asian options, or lookback options –

rely on functional quantization. In these cases, the set of trajectories of the Brownian motion

is reduced to a finite number of trajectories chosen optimally, as shown in the figure below for

different example. The idea is to consider a stochastic process as a random variable in L2 and

to find the optimal grid – i.e. the optimal Voronoï cells – in this infinite-dimensional space.

Figure 1: Functional quantization in the case of Brownian Motion (LHS) Brownian Bridge
(Middle) and Ornstein-Uhlenbeck process (RHS), cf. Corlay (2011)

In the case of MFG with common noise, to avoid the use of a growing number of trajecto-

ries in the case presented before, functional quantization procedure could be used to reduce the

number of trajectories for the common noise. Using a large but fixed number of such trajectories

(instead of a exponentially increasing number), one could compute the evolution of the measure

and the prices rt and wt. However, this method would be completely deterministic: for a given

trajectory, the evolution of the system would not be subject to any uncertainty, i.e. change in
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the common noise.

A potential solution would be to associate this method with standard quantization/"K"-

nomial trees for the backward computation. There, the branching of the tree would allow to

compute conditional expectations and the system would be adapted to the filtration generated

by the common noise.

The general idea would be is the following:

1. Build a "K"-nomial trees/ quantization tree for the common noise of dimension KM (K

branches, M layers) denoted Atreek , 1 ≤ k ≤ KM . The transition probability is expressed

in the hypermatrix Πtm ∀1 ≤ m ≤M .

2. Choose a set of functional quantization trajectories N < KM denoted Afqj , 1 ≤ j ≤ N
3. For each layer tm, "match" each branch of the tree Atreek to a portion of the closest

quantization trajectory Afq, using the L2 norm for instance24:

Afq,?j (k) ∈ argmin
∥∥∥Afq −Atreek

∥∥∥
L2([tm,tm+1])

4. Compute the HJB backward on each portion of trajectory to get the value function vt. At

each time tm, "update" the terminal condition of the HJB to account for the probability

of "changing" trajectory using Πtm

5. Compute the FP forward on the whole trajectory to obtain the measure mt.

6. Update the fixed point25.

In practice, to effectively quantize a Gaussian Processes as the ones proposed above, one

need to compute the Karhunen-Loeve basis of the process cf. Luschgy and Pagès (2002) or

Corlay and Pagès (2015). Using the method to approximate any of these process and with any

number N we believe this method could provide substantial advantages to limit the computa-

tional challenge posed by this model.

3.3.2 Master equation and projection method

In this section we will use the logic developed in the section 3.1.2, concerning the master

equation with aggregation. The idea would be – as in Krusell-Smith – to describe the measure

mt on X by a finite set of moments I, as Ki = 〈hi,m〉, ∀1 ≤ i ≤ I, and where hi is an arbitrary

function, but could be hi(x) = x, x2, x3 etc. Note that one could also consider a projection on

a basis : Pmt(x) =
∑

i〈hi,m〉hi(x) and obtain an analogous result.

24If the average distance between the tree and the quantized trajectories is too large, increase N or change
the norm used in the Nearest Neighbor method.

25Note that the fixed point procedure may not converge completely right after the revelation the shocks at
tm+ since there might a difference between the original tree Atreek which is continuous and the new "patchwork"
Afq,?,kj obtained by Nearest Neighbor that hence be discontinuous
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Therefore, extending the logic seen before, we could write the solution of the master

equation as a finite-dimensional object:

U(t, x,m) = U(t, x,K1, . . . ,Ki, . . .KJ) = U(t, x, 〈h1,m〉, . . . , 〈hJ ,m〉)

Yielding, as before: DmU(t, x,m; y) := (∂m1U, ∂m2U, ∂m3U)T

∂mjU(t, x,m; y) =
I∑
i=1

∂KiU(t, x, {Ki}i)∂yjhi(y)

However, we now have a method to approximate the integral terms of the type∫
X
G(y)m(dy) ≡

∑
i

〈hi,m〉
∫
X
G(y)hi(y)dy

Applying the above techniques and calculus, the master equation with common noise, with

projection on the basis {hj}j and Ki = 〈hi,m〉 can be written:

−∂tU + ρU −H(·, DxU)− σidio∂ 2
x2
U − σcom∂ 2

x3
U

−
I∑
i=1

∂KiU
I∑
j=1

∫
X
σidio∂2

y2
hi(y) + σcom∂2

y3
hi(y)Kjhj(y)dy

+
I∑
i=1

∂KiU
I∑
j=1

∫
X
∇hi(y) ·DpH(·, y, ·, DxU(·, y, ·))Kjhj(y)dy

−2σcom
I∑
i=1

∂x3∂KiU

I∑
j=1

∫
X
∂y3hi(y)Kjhj(y)dy = 0 in [0, T ]×X×RI

U(t, x, {Ki}) = v∞(x,m) in X×R with 〈h,m〉 = Kh,m

where U is taken in (t, x, {Ki}i) and recalling that the Hamiltonian is

H(t, x,m,Dxv) = sup
α
u(α)+b(x,m, α)·Dxv ≡ sup

c
u(c)+s(a, z, A,m, c)∂av+bidio(z)∂zv+bcom(A)∂Av

using the notation of the economic problem.

We therefore see that this problem can be reduced to finite dimension if we expect some

form of dependence with respect to the moments of the measure. If one search to increase

the number of moment/the size of the basis {hi}i the PDE can still be difficult to compute.

However, one could rely on Monte Carlo method for PDE26

26One reference among many could be Fahim, Touzi, and Warin (Fahim et al.) for instance.
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4 Applications and Economic results

In this section, we will now cover four different models:

(1) the Krusell-Smith model

(2) an extension with endogenous labor supply

(3) the one-asset H.A. New Keynesian model (HANK)

(4) the two-asset H.A. model à la Kaplan-Moll-Violante.

In the following, after a brief summary of the main equations and equilibrium conditions,

we cover the numerical scheme. An overview is summarized in the first Krusell-Smith model,

while the complete description is given in appendix section B. This explanation is partly based

on the description made in Achdou, Han, Lasry, Lions, and Moll (2017) and its "Numerical

Appendix", for the case without common noise. However, in the text, we consider different way

to handle the state-constraint for the extensions (2)-(4).

Afterward, we provide results of the model :

• with a Brownian common noise At = Ā0 +Bt.

• with a common noise following a "Jump-Drift" process dÃt = −θ(Ãt − Ã0)dt+ εdNt

where dNt is a jump process (dN = 1 with intensity λ) and ε ∼ N (0, σ2). We consider such

process to provide economic intuitions. It allows to plot the Impulse Response Functions

(IRF) after a one-time temporary deviation from steady-state.

• we then compare the previous results with standard IRF of the representative agent model

(i.e. single player in the game), simulated using Dynare

4.1 The Krusell-Smith model

Recall the household control problem at the basis of the Aiyagari-Bewley model:

max
ct

E0

∫ ∞
0

e−ρtu(ct)dt

subject to : dat = (ztwt + rtat − ct)dt (Budget constraint)

and at ≥ a (Credit constraint)

The supply-side rewrites:

Kt(rt) : =
( αAt
rt + δ

) 1
1−α

zav (Capital demand)

wt = (1− α)AtK
α
t z
−α
av (Wage)

rt = αAtK
α−1
t z1−α

av − δ (Interest rate)
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The MFG formulation is given by:

ρ vj(t, a) = ∂tvj(t, a) + max
c
u(c) + ∂avj(t, a) sj(t, a) + λj(v−j(t, a)− vj(t, a)) on [0, T ]×[a,∞)×{j1, j2} [HJB]

0 = ∂tgj(t, a) +
d

da
[sj(t, a) gj(t, a)] + λjgj(t, a)− λ−jg−j(t, a) on [0, T ]×[a,∞)×{j1, j2} [FP]

S(t, r) :=

∫ ∞
a
a g1(t, a)da+

∫ ∞
a
a g2(t, a)da = K(t, r) [Market clearing]

sj(t, a) = zjwt + rt a− cj(t, a) cj(t, a) = (u′)−1(∂avj(t, a)) [FOC]

vj(T, ·) = v∞j gj(0, ·) = g0
j ∂avj(a) ≥ u′(zjw + ra) [Boundary conditions]

4.1.1 Algorithm: an overview

The objective is to find equilibrium of the MFG i.e. the value function vj and the measure

gj (j = 1, 2) solving the two PDEs and the interest rate r clearing the market.

A complete description can be found in appendix, section B. We summarize here the

general method to find the equilibrium fixed point, iterating on `:

1. Guess interest rate r`, compute capital demand K(r`) & wages w(K)

2. Solve the HJB using finite differences (semi-implicit method): obtain the controlled drift

s`j(a) and then the value function v`j , by solving a system of sort:

−vn+1 − vn

τ
+ ρvn+1 = u(vn) + A(vn; r)vn+1

• In the stationary equilibrium, solve for v∞. In the transition case, compute the path

of vn, starting from the terminal condition vN = v∞ and iterating backward.

3. Using AT , solve the FP equation, via the finite diff. system:
gn+1−gn

τ + A(vn; r)Tgn+1 = 0, and obtain gj

• In the stationary equilibrium, solve for g∞. In the transition case, compute the path

of gn, starting from the initial condition g0 = g0 and iterating forward.

4. Compute the capital supply S(g, r) =
∫∞
a a g1(a)da+

∫∞
a a g2(a)da

5. If S(r) > K(r), decrease r`+1, updating (using bisection method, and conversely, and

come back to step 2.

6. Stop if S(r) ≈ K(r)

Duality: Solving the FP using the HJB

In this problem, the FP is the adjoint equation of the HJB equation. As a result, the operator
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matrix in the Fokker Plank equation is the transpose (AT ) of the HJB operator matrix A –

taking optimal consumption as given. Therefore, the most important would be to solve the HJB

equation numerically and then to solve FP by "simply" transposing the matrix A.

Common noise

The algorithm is rationalized and explained above in section 3.2: it consists in choosing an

appropriate tree structure to approximate the common noise At. On this tree representing

KM trajectories – M waves of shocks and K branches for each shock – one would solve the

time-varying MFG equilibria, using the right boundary conditions:

• A terminal condition for the HJB: vkN =
∑

k πkN+1|kNv
kN+1

• An initial condition for the FP: g0 = g0 and solve the FP on the full trajectory on [0, T ]

The equilibrium on one branch of the tree, with a deterministic trajectory of At, is exactly the

one described above.

4.1.2 Results 1 – Discretized Brownian common noise

We presents the simulation of the MFG system with common noise of the "simple tree"

(i) in the following, to provide intuitions and economic results. The trees (ii)-(v) described in

section 3.2 are displayed in appendix section C.

The evolution of aggregate variables

The main interest of macroeconomists is to know whether microeconomic heterogeneity can

have a impact on aggregate variables. In the following graph we plot the evolution of the main

variables – the capital supply, consumption and saving, and prices: interest rate and wages –

along each branch of the tree of productivity.

Note that the colors of the trajectories are linked between the different graphs: for instance

the sky blue line corresponds to the "best scenario" of productivity on all the plots.

As a result of the continuity of the wealth distribution g in time, the capital stock adjust

continuously, unlike the consumption and saving that feature jumps at each nodes of the tree. In
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Figure 2: Evolution of aggregate variables with a Brownian TFP in the Krusell-Smith model

particular, saving will adjust instantaneously at each node of the tree, and this for two reasons:

(i) at the revelation of the common noise, there will be a shift in expectations of the households,

and during the boom, they will reduce their precautionary saving, decreasing the demand for

asset/capital and raising the interest rate.

(ii) since the productivity rises over time, the capital will be more productive and the demand

for capital from firms will slowly increase as well, raising interest rate and wages. This will

mechanically increase the disposable income, saving and investment.

The first motive is instantaneous but typical of heterogenous agents model while the

second is revealed with the change in productivity and prices and is similar to standard Brock-

Mirman dynamics. The shift from the first to the second will change the trend of capital

evolution, from a drop to a surge during boom periods.

The value function and wealth distribution as a function of time

As explained above both the value function and the measure are now random variables, which

should be adapted to the filtration generated by the common noise σ(B0
t ). Since these ob-

jects are infinite dimensional and "functions" of the common noise (i.e. adapted to the "alea"

generated by this common noise), the task to display the evolution might not be obvious.

With our discretization procedure, we choose to use the tree (ii) as described in section 3.2,

with K = 2 and M = 9 to make the result of the evolution of vt and mt clearer. Note that the

simulation for this tree (ii) and the evolution of the aggregate variables is displayed in appendix

in section C.

The probability distribution of the value or measure would be Et
(
vt|σ(B0

t )
)
≈ hv(B0

t ) and

Et
(
vt|σ(B0

t )
)
≈ hm(B0

t ), where hv : Ωt 7→ C(X) and hm : Ωt 7→ P(X), where Ωt is heuristically

the probability space supporting the common noise at time t.

These random variables have value in C(X) or P(X), where X is in the 3 dimensions.

Instead of plotting one dimension at a time, we choose to display two trajectories ωt :

43



• The "best case" scenario, where aggregate productivity only increases at each tree node

• The "worst case" scenario, where the economy is only subject to TFP contraction

First of all, let us show the value function and the measure at the initial point of the

game, i.e. at t = 0 and at the end of the game – when the randomness is switched off as

explained in our remark at the beginning of section 3.1 – i.e. at t = T in these two scenarios

for productivity.

Figure 3: Value functions and distribution of both type of agents at the time boundaries

We see the aggregate productivity distorts both the measure of the agents and shift

upward or downward the value function for both high and low income agents. The mechanism

is intuitive: the value increases in boom and decreases in contraction, and the measure shifts to

the right – people become richer on average – in boom, and shift to the left – concentrate more

on low wealth – when economy is depressed. We now describe more precisely the underlying

mechanisms for these two trajectories.

As described before, for each ’wave’ of shock m ∈ {1, . . . ,M}, there will be a change of

information about the productivity At between t−m and t+m. Therefore, the value function will

be discontinuous at this point tm to account for the revelation of the shock: this jump in the

value function is linked to the jump in consumption and saving since the agents will evaluate

differently the need of precautionary saving – depending of the probability of future shocks,

thus changing the conditional expectation. For the two scenarios of productivity, the next two

graphs display the evolution of the value functions respectively for poor agents (low income

j = 1) on the LHS and rich agents j = 2 on the RHS:
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Figure 4: Value functions both type of agents in two trajectories of agg. productivity over time

Note that the scale may change the shape of the graphs: despite having different state zj

the poor and rich agents have almost similar value function, as displayed in the fig. 3

On the contrary, the wealth distribution is continuous over time. The control and the

controlled drift, b(t, x,m, α?) = −DpH(t, x,m,∇xv), will also jump – as function of the value

function – but the measure will have a smooth evolution as only the infinitesimal variation in

the Fokker Planck will distort the shape of the distribution.

In the next four graphs, the wealth distribution is represented as a function of time for the

two scenario: best case (LHS) and worst-case scenario (RHS), for the poor agent (first line), or

the rich (second line). Note that the wealth distribution shift leftward in situation of recession

(decrease in productivity), since the income in mechanically lower: both wages and interest rate

are decreasing due to the structural change in productivity At.

However, we claim that – due to precautionary saving – this leftward shift is attenuated by

the willingness of both rich and poor agents to accumulate relatively more assets. Indeed, they

are willing to self-insure against potential risk of further recessions or risk of falling (or staying)

into the low income state. This mechanism changing the control will have a smoothing effect

on capital evolution – the first moment of the distribution – and the evolution of consumption

and saving will have general equilibrium effects on wages and interest rate, as we explain next.

Note that the effect is qualitatively reversed when the productivity increases – in the best

case scenario – but the quantitative result is not symmetrical, since the MFG with common

noise is a highly non linear system.
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Figure 5: Wealth distribution of both type of agents, in two trajectories of agg. productivity
over time

To provide explicit argument for our claim – that precautionary saving will have smooth-

ing effect on capital – we know display the evolution of the control – c?t and the controlled drift

st = b(t, a, j, m̄, c?t ) for the low income agents for the worst-case scenario.

Note that the mechanism is similar for rich agents and reversed in the case of economic

growth (increase in At). To display the clear mechanism, we come back on our "simple" tree

(i), where there is only M = 3 shocks, and the dynamics are more obvious.

As explained above in the description of the aggregate variables, the revelation of the

common noise change abruptly the behavior of household: in recession, the saving jumps up

and the consumption jumps down. This effect is strong, even though the aggregate productivity

have not changed yet – due to the continuity of the Brownian motion At−m = At+m .
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Figure 6: Control – ct – and saving – st – over time for low income agents in the worst case
scenario for productivity

However, the important underlying reason is the change in conditional expectation of

future shocks: there is higher probability of falling is a future depression when the TFP is

already low – thanks to the martingale property of the Brownian motion.

The effect of such jump will have general equilibrium effect: as displayed in fig. 2, the de-

crease in capital will be delayed – with capital increasing at first before decreasing subsequently

– and the interest rate will drop more that what would be strictly implied by the change in

productivity – almost 15% drop when the change in TFP in only 5%.

The transmission channels and the quantitative effects should be analyzed with Impulse

Response Function (IRF) and that is the task we cover in the next section.

4.1.3 Results 2 – Jump-drift process and IRF

In this section, we consider the aggregate shock, affecting firm’s productivity, that follows

a "Jump Drift" Process. This stochastic process, resembling closely to an Ornstein Uhlenbeck

process, is not a diffusion, but feature jumps and a mean-reverting behavior. Such dynamics

will allow to plot the Impulse Response Functions (IRF) of the system. More precisely, the

aggregate productivity and the deviation from steady-state follows:

At = Ā0 e
Ãt dÃt = −θÃtdt+ ε dNt

dN = 1 with intensity λ and ε ∼ N (0, σ2)
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For this experiment, we plot one trajectories – among all the branches of the tree – that

represents the dynamics of the economy after a one-time temporary deviation from steady-state,

i.e. a jump dNt = 1 with ε = σ. On the first plot (showing Ãt) we display the upper and lower

bound of our approximation tree for this process. After the shock, the system is not perturbed

and comes back to the steady-state value of the aggregate productivity.

Figure 7: Impulse Responses to a one-time TFP shock in the Krusell-Smith model

An interesting feature, is the fact that poor agents, who are more likely to be credit-
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constraint and hand-to-mouth, are more willing to reduce their precautionary saving when the

positive shock – while it is the reverse for rich agents – and increases relatively more their

consumption than the rich (high-income) agents.

Moreover, the increase in capital decreases its marginal productivity over time, causing

the interest rate to drop below its pre-shock level. This feature is standard in the Brock Mirman

model. We now want to now if the two models can provide quantitative differences.

4.1.4 Comparison with representative agent model

In this section, we compare the previous model to the standard Brock Mirman model.

We simulate the model using DYNARE (cf. the CEPREMAP working paper Adjemian et al.

(2011)), a software solving rational expectations models using perturbation methods.

Figure 8: Impulse to a TFP shock in the Brock Mirman model

If the quantitative difference may not be obvious, note that the capital stock increase by

0.5 % in the Krusell Smith model compared to 0.3 % in the Brock Mirman. This is due to

the larger increase in investment – caused by precautionary saving of the rich agents – that is
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almost twice as large, 5% compared to 3 % and that imply a stronger amplification effect of the

productivity shock on output. Indeed the production reacts one to one to the 1.1% productivity

shock, while in the Brock Mirman the effect is dampened by consumption smoothing (c.f. Euler

Equation). Due to the presence of Hand-to-Mouth consumers, the reaction of consumption is

also much stronger in the Krusell-Smith model, with 0.25% compared to only 0.125 % in the

Brock Mirman model.

4.2 Endogenous labor supply

We now turn to the model with the Krusell Smith model with endogenous labor supply,

described in section 2.2.1, which is the "Heterogeneous agents" model analogous to the Real

Business Cycle model.

max
{ct}∞t0 ,{`t}

∞
t0

E0

∫ ∞
0

e−ρtu(ct, `t)dt

subject to : dat = (ztwt`t + rtat − ct)dt (Budget constraint)

and at ≥ a (Credit constraint)

Note that in this problem, there are two controls ct and `t for two states variables a and

zj . Therefore the Hamiltonian rewrite:

H(p) = sup
c,`

u(c, `) + (zjw`− c)p

max
c

[ū(c)− cp] + max
`

[−ũ(`) + zjw `]

= Hc(p) +H`(p)

with Hc(p) = max
c
ū(c)− pc and H`(p) = max

`
−ũ(`) + wzj` p

since u(c, `) = ū(c) − ũ(`) is separable and maximisation problems in the Hamiltonian are

both concave, thank to the preferences assumed (CRRA for consumption and Constant Frisch

elasticity for labor).

∂cū(c) = p ⇒ c? = (∂cū)−1
(
p
)

∂`ũ(`) = wzjp ⇒ `? = (∂`ũ)−1
(
wzj p

)
Despite that, the model is similar to the Krusell-Smith model in section 4.1.
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Therefore, the HJB and FP equations are given by:

−∂tvj + ρvj = Hc(∂avj) +H`(∂avj) + rta ∂avj + λj(v−j − vj) on [0, T ]×[a,∞)×{j1, j2} [HJB]

0 = ∂tgj +
d

da
[sj gj ] + λjgj − λ−jg−j on [0, T ]×[a,∞)×{j1, j2} [FP]

S(t, r) :=
∑
j

∫ ∞
a
a g(t, a, zj) da = K(t, r) [Mkt clearing, Capital]

N(t, w) :=
∑
j

∫ ∞
a
`?(t, a, zj , w) g(t, a, zj)da = L(t, w) [Mkt clearing, Labor]

c?j (t, a) = (∂cū)−1(∂avj(t, a)) `?t = (∂`ũ)−1
(
wtzj ∂avj(t, a)

)
[Optimality conditions]

sj(t, a) = zjwt`
?
t + rt a− c?j (t, a) ∂avj(a) ≥ u′(zjw + ra)

vj(T, ·) = v∞j gj(0, ·) = g0
j [Boundary conditions]

The supply side is exactly the same but now labor supply is endogenous:

Yt = AtK
α
t L

1−α
t Production fct

Kt

Lt
(rt) : =

( αAt
rt + δ

) 1
1−α

=
((1− α)At

wt

)− 1
α Capital/Labor ratio

wt = (1− α)At (Kt/Lt)
α rt = αAt (Kt/Lt)

α−1 − δ Wage/Interest

4.2.1 Numerical scheme – differentiation and state-constraint

There is a slight difference between the Finite-difference scheme we use in this model and

the one we consider in the standard upwind scheme in the previous section. Without repeating

the description developed above and in section B of appendix, we emphasize here a particular

treatment of the Hamilton-Jacobi Bellman equation on two points: (i) the Hamiltonian is

separable and the differentiation can be asymmetric in the two controls and (ii) the state-

constraint should be handled differently in presence of two controls.

Asymmetric differentiation

We take advantage of the separability of the utility function: u(c, `) = ū(c)− ũ(`) and hence of

the Hamiltonian.

H(p) = max
c,`

ū(c)− ũ(`) + (zjw `− c)p = Hc(p) +H`(p)

This will allow us to use an asymmetric upwind scheme for the two controls for the Hamilton-

Jacobi-Bellman equation. As explain in the appendix in the case with one control, the upwind
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scheme intend to choose the direction of the differentiation (resp. Forward or Backward) to

match the direction of the drift (resp. positive or negative). In our case, the drift for each

control will have a different direction:

−c? =
∂Hc(p)
∂p

zjw `
? =

∂H`(p)
∂p

The consumption drift on wealth will be negative while the labor income drift will be positive.

The choice of the first-order term p ≡ ∂av will thus be backward for the first Hc (i.e. with

vi,j,B) and forward (i.e. vi,j,F ) for the second one H`. The underlying reason is to insure the

monotonicity of the scheme, i.e. by keeping the discretized operator with positive diagonal term

and negative upper/lower diagonal terms.

A good way of observing this is when linearizing the HJB equation around the solution v

in the direction w:

−∂tv + ρv −Hc(∂av)−H`(∂av)− rta ∂av − λj(v−j − v) = 0 [HJB in v]

−∂tw + ρw −∂H
c(∂av)

∂p︸ ︷︷ ︸
≥0

∂aw −
∂H`(∂avj)

∂p︸ ︷︷ ︸
≤0

∂aw − rta ∂aw − λj(w−j − wj) = 0 [linearized]

Thus, it implies the use of ∂aw = w(a)−w(a−h)
h in the first case and ∂aw = w(a+h)−w(a)

h in the

second case, to keep diagonal terms positive, for the operator to be a M-matrix.

Hence, we will always choose

∂av ≡ vi,j,B in c? = −∂H
c(∂av)

∂p
= (∂cū)−1(∂av)

and

∂av ≡ vi,j,F in `? =
1

zjw

∂H`(∂av)

∂p
= (∂`ũ)−1(zjw∂av)

State constraint

The state-constraint will impose an indirect constraint on the two controls, through the first-

order of the value function. Let us restate the control problem of the Hamiltonian:

H(p) = max
c,`

ū(c)− ũ(`) + (zjw `− c)p

At a = a dat = (ztwt`t + rtat − ct)dt ≥ 0 [λ]

By Karush-Kuhn-Tucker, since it is a concave maximization problem on well-behaved functions,
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we pose the Lagrangian function and derive the optimality conditions:

L(c, `, λ) = ū(c)− ũ(`) + (zjw `− c)p+ λ (ztwt`+ rta− c)
∂L
∂c

= 0
∂L
∂`

= 0
∂L
∂λ

= 0 λ ≥ 0 λ
∂L
∂λ

= 0 [KKT conditions]

⇒ ∂cū(c) = (p+ λ) ∂`ũ(`) = zjw(p+ λ) [FOC]

⇒ λ ≥ 0 (ztwt`+ rta− c) ≥ 0 [Feasibility cond.]

⇒ λ (ztwt`+ rta− c) = 0 [Complementary Slackness]

Therefore, using the two FOC together, we recover the well known equality MRS = MRT 27,

and rewriting the Complementary slackness, we obtain

∂`ũ(`) = zjw∂cū(c)

(∂cū(c)− p) · (ztwt`+ rta− c) = 0

Since, we did not specify the general method will be :

1. Implement the optimal allocation, using the Forward difference for ∂aV

2. Check the primal feasibility conditions: s > 0 at a

3. If the primal feasibility fails (i.e. sa < 0 at a), enforce the constraint: the Lagrange

multipliers are no longer null and thus the FOCs can no longer be used (since we don’t

know the value of λ).

4. Since the Lagrange multiplier are strictly positive, the complementary slackness tells us

to find the values of c, ` so that s = 0.

4.2.2 Results 1 – Discretized Brownian common noise

We now plot the evolution of the aggregate variables, in presence of a Brownian change in

productivity. As observed previously in the Krusell Smith model, the main effect of a positive

shock in productivity (e.g. the light blue line showing the best-case scenario) is to reduce

precautionary saving.

When productivity increases in the first wave, the probability that At decreases below the

initial level is indeed much lower, changing future value function, through its effect of conditional

expectations. The optimal controlled drift – of the movement of the players – is thus reduced.

As a consequence, both consumption increases and labor supply decreases.

27Marginal rate of substitution of the consumer ( ∂`ũ(`)
∂cū(c)

) equals the Marginal rate of Transformation of the
firm (the real effective wage zjwt here in the neoclassical model)
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This effect is slightly contractionary: since output is a function of both labor and capital

– that decline with the drop in savings – the output is reduced due to the change in expectations

of households. This effect is only temporary since the aggregate productivity increases both

wage and interest, fostering a change in the trend of labor and saving.

Figure 9: Evolution of aggregate variables with a Brownian TFP in the H.A. model with
endogenous labor supply
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4.2.3 Results 2 – Jump-drift process and IRF

In this section, we again display the transmission of a one-time shock of productivity on

the other variables. A contrario to the previous section, the process for common noise follows a

Jump-Drift process, and the surge in productivity is concentrated when the shock hits at T = 4.

The dynamics of some of the variables are similar to the responses displayed in the pre-

vious section. In particular, the investment – caused both by the interest rate rise and by

precautionary motives – surges with aggregate productivity. Moreover, in presence of endoge-

nous labor supply, work effort reacts to the change of wage. A new feature of this H.A. model

is to show that poor agents – that have an effective wage zjw twice lower than the rich agents

– reacts also as strongly as the rich agents. This is again due to the presence of Hand-to-mouth

agents that may be close to the borrowing constraint. Indeed, instead of lowering consumption,

these agents reacts by increasing their work effort when wage increases.

When capital accumulates, this decreases the marginal productivity of both capital and

labor, implying a drop in interest rate. This tempers precautionary motives and revert the

trend of consumption, labor and saving. Such reaction is again stronger that what one can

observe in the representative agent, as we will see in the next section.
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Figure 10: Impulse Responses to a one-time TFP shock in the KS model with endogenous labor
supply
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4.2.4 Comparison with representative agent model

In this section, we compare the previous model to the standard RBC model. We simulate

again the model using DYNARE.

Figure 11: Impulse to a TFP shock in the RBC model

Even thought the qualitative reaction seems similar between R.A. and H.A., the quanti-

tative effects display several differences. The reactions of saving is stronger in the H.A. model

(5% instead of 4% in the RBC), as well as the labor supply, which is twice as high, with 0.2%

instead of 0.1%. This is explained by respectively precautionary saving and hand-to-mouth

consumers. The overall effect will imply a stronger amplification effect on output, that rises at

1.25% and last longer, compared to the RBC model.
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An interesting point to note is that now the consumption reacts almost the same in both

models at 0.2% of its steady state level. That can again be explained by precautionary motives,

since the extra work effort will be converted into saving and capital accumulation instead of

consumption in the heterogeneous agents model. Moreover,

4.3 One-asset HANK model

We now turn to the New Keynesian version of the H.A. model with labor supply, as

described in section 2.2.2.

Recall the household control problem:

max
{ct}∞t0 ,{`t}

∞
t0

E0

∫ ∞
0

e−ρtu(ct, `t)dt

subject to : dbt =
(
(1− τ)ztwt`t + rbtbt + Tt + Πt − ct

)
dt (Budget constraint)

and bt ≥ b (Credit constraint)

Recall the supply side and policy rules:

Yt = AtNt wt = AtPtmt (Production fct/Marg. cost)(
it − πt −

Ẏt
Yt

)
πt =

ε

θ

(
mt − m̄

)
+ π̇t (NK Philipps Curve)

Πt := (1−mt)PtYt −Θt(πt) Θt(πt) =
θ

2
π2
t Yt (Firms’ profit, Adj. cost)

Ḃg
t +Gt + Tt = τtwtLt + rtB

g
t (Gvt Budget)

rt := it − πt it = ρ+ φππt (Fisher relation/Taylor rule)

Bh(rb, t) :=
∑
j

∫ ∞
b
b g(t, b, zj)db = −Bg (Mkt clearing - Bond)

L(w, t) :=
∑
j

∫ ∞
b
`?(b, zj , t) g(t, b, zj)db = N(w, t) (Mkt clearing - Labor)

4.3.1 Numerical scheme – some specificities of the HANK model

In this model, we use the same numerical scheme to handle the mean field games system

composed of the HJB and the F.P. equations. However, we now have an additional structuring

equation that drives the firm dynamics: the New Keynesian Philipps Curve now relates the

evolution of inflation and output growth.

(
it − πt −

Ẏt
Yt

)
πt =

ε

θ

(
mt − m̄

)
+ π̇t
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When one add common noise, this Backward differential equation becomes stochastic. If

one could use the theory of BSDEs, the discretization procedure described in section 3.2 can be

easily adapted to the treatment of this equation. The idea is again (i) to treat the equation on

each branch of the tree in the deterministic way and (ii) to replaces the terminal condition of

each branch by a conditional expectation of the endogenous variables, here πt, mt and Yt.

4.3.2 Results 1 – Discretized Brownian common noise

Since the Mean Field Game system of the HANK is identical to the H.A. with labor

supply displayed in the previous section, the result of this model are partly analogous.

The increase in productivity will reduce the precautionary motives and labor associated

with it. This effect can also be found in standard New Keynesian model: positive productivity

shocks usually imply negative output gap. Since there is no clear definition of "Natural level

of output" in this H.A. model, the closest variable "symbolizing" output gap would output

growth, which is indeed negative when the shock hits.

Figure 12: Impulse Responses to a one-time TFP shock in the HANK model (one asset)
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The novelty of the NK model will however be (i) the rigid price setting of firms and (ii) the

role for monetary policy. This small contraction will imply deflation due to the forward looking

behavior of firms, as displayed in the N.K. Philipps Curve. With contraction and deflation, the

central bank react by reducing its nominal interest rate (as displayed by the bottom RHS plot).

However, as in the NK model, this monetary accommodation is not large enough to reduce the

output gap and deflation.

The new feature of this Heterogeneous Agents model is now the change in the consump-

tion of agents. The anticipation effect of this change in productivity – that directly affects

the conditional expectation of future shocks – will incentivize the households to increase their

consumption. This increase in aggregate demand is thus correlated to the future increase in

output and inflation, affecting the real interest rate.

4.3.3 Results 2 – Jump-drift process and IRF

In this section, we compute the response of the economy after a shock of productivity

– that follows the Jump-Drift process. The model has some similarities with the RBC model

above (i.e. H.A. model with endogenous labor supply), since the MFG system is the same.

With the shock being concentrated at time T = 4, the productivity causes the output to

surges. Moreover, the productivity will decrease the cost of labor for firms – marginal cost will

drop – but the nominal wages will surge but proportionally by a larger amount. In response to

this increase in wages and for precautionary motives, workers will increase their labor supply.

Indeed, a large part of labor is supply by poor agents – in income and wealth – who work

relatively more to get away from the credit constraint. The increase of both productivity and

labor supply will imply a strong amplification effect on output, of 1.4% (for a productivity shock

of less than 1.1%.

This expansionary effect will however be inflationary, as a consequence of firm’s price

setting – as explained by the Philipps Curve). The central bank will thus raises the nominal

interest rate. This rise will inverse the trend of consumption and inflation, causing a drop in

real wage and causing the strong reduction is labor supply by workers. This drop, added to

the structural decrease in productivity will cause the economy to contract and experience a

deflationary episode. Monetary authorities will therefore cut their interest rate until the return

of inflation and output to the pre-shock level.
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Figure 13: Impulse Responses to a one-time TFP shock in the HANK model (one asset)

4.3.4 Comparison with representative agent model

In this section, we compare the previous model to the standard New Keynesian model. We

simulate again the model using DYNARE. However, our version of this framework – described

in appendix section D – is the baseline version as found in Galí (2015) (or Woodford (2003)),

and the relations are linearized around the zero-inflation steady state. Moreover, in the HANK

model derived above, there are three deviations compared to the standard NK model:

• Price rigidity takes the form of Rotemberg pricing (instead of Calvo-Yun pricing)

• Distortive tax on labor τwtLt are redistributed lump-sum T to households.

• Firms profits Πt are redistributed to workers in function of their productivity zj

This heterogenous agent version of the New Keynesian model will have very different predictions
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compared to the baseline model we plot in the next graph.

Figure 14: Impulse to a TFP shock in the standard NK model (à la Galí)

In such setting, the TFP shock increases natural level of output that would prevail under

flexible prices – raising natural interest rate and decreasing firms marginal costs. However,

prices are sticky and not all firms can adjust their prices because of Calvo staggered price

setting. This relative price distortion reduces output of those firms, household consumption, due

to monopolistic competition and "taste for diversity", and therefore employment: output gap

widens. This relative contraction is partly accommodated by monetary policy, easing nominal

interest rate. Nevertheless, this expansionary policy is not sufficient to close the negative output

gap, yielding deflation.

The main difference with the HANK model developed above lies in the reverse prediction

for labor supply, output ’gap’ and inflation. In our H.A. model there is a strong role for

precautionary motives and reaction of hand-to-mouth households close to the credit constraint

– who are the one supplying the major part of work effort – and that can now respond positively

in consumption. This positive reaction of consumption and labor imply an amplification effect

absent in the standard framework, causing inflation (instead of deflation) and a monetary

tightening (instead of easing). However, when the shock mean-reverts, the standard mechanisms

at stake in the usual setting reappears – with drop in labor supply, output and inflation.
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4.4 Two-assets model

In this section, we now turn to the two assets model. We recall the control problem:

max
{ct}∞t0 ,{`t}

∞
t0
,{dt}∞t0

E0

∫ ∞
0

e−(ρ+ζ)tu(ct, `t)dt

subject to : dbt =
(
(1− τ)ztwt`t + (rbt (b) + ζ)bt + T − dt − χ(dt, at)− ct

)
dt (Budget – Liquid)

dat = ((rat + ζ)at) + dt)dt (Budget – Illiquid)

bt ≥ b (State constraint – Liquid asset)

and at ≥ a = 0 (State constraint – Illiquid asset)

rbt (b) = rbt + 1{b<0}κ (Discrimination – lending/borrowing)

χ(d, a) = χ0|d|+
χ1

1 + χ2

∣∣∣∣da
∣∣∣∣1+χ2

|a| (Illiquid asset transaction cost)

The mean-field interaction, as before, lies in the Walrasian pricing that leads to market clearing

in the two assets and in labor:

Sa(t, r
a) :=

∑
j

∫ ∞
a

∫ ∞
b
a g(t, a, b, zj)da db = K(t, ra) [Illiquid asset/Capital]

Sb(t, r
b) :=

∑
j

∫ ∞
a

∫ ∞
b
b g(t, a, b, zj)da db = Bg [Liquid asset/Bond]

L(t, w) =
∑
j

∫ ∞
a

∫ ∞
b
zj `

?(t, a, b, zj , w) g(t, a, b, zj)da db = N(t, w) [Labor supply/demand]

The model, translated into a MFG formulation, yields (1) an Hamilton-Jacobi-Bellman

equation :

−∂tv(t, a, b, zj) + (ρ+ ζ)v(t, a, b, zj) = max
c,`,d

u(c, `) + ∂bv(t, a, b, zj)
[
(1− τ)zjw`+ (rb(b) + ζ)b+ T − d− χ(d, a)− c

]
+ ∂av(t, a, b, zj)

[
(ra + ζ)a) + d

]
+ λj (v(a, b, z−j , t)− v(a, b, zj , t))

subject to: b ≥ b and a ≥ a = 0

The dual equation showing the evolution of the distribution is the (2) Fokker Planck equation:

0 = ∂tg(t, a, b, zj) + ∂a [sat (a, b, zj) g(t, a, b, zj)] + ∂b [sbt(a, b, zj) g(t, a, b, zj)]

λjg(t, a, b, zj)− λ−jg(t, a, b, z−j)− ζg(t, a, b, z−j) + ζ δ0(a)δ0(b)g∗(zj)

with sat (a, b, zj) = (rat + ζ)a+ d?t

and sbt(a, b, zj) = (1− τ)zjwt`
?
t + (rbt (b) + ζ)b+ T − d?t − χ(dt, at)− c?t
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where ζ is the rate of death (and birth) of new agents, starting with zero wealth (hence the Dirac

mass δ0(a)δ0(b)), and in the state zj with probability g∗(zj), with g∗ the stationary distribution

of zj . Note that c?, `?, d? denote the optimal controls of the agents.

4.4.1 Control problem, HJB and state-constraints

One can restate the HJB, using Hamiltonians:

−∂tv + (ρ+ ζ)v = Hc(∂bv) +H`(∂bv) +Hd(∂bv, ∂av) + (r̃bb+ T )∂bv + r̃aa∂av

Hc(p) = max
c
ū(c)− pc

H`(p) = max
`
−ũ(`) + (1− τ)wzj`p

Hd(p, q) = max
d
d q − (d+ χ(d, a))p

with u(c, `) = ū(c)− ũ(`) and r̃b = rbt (b) + ζ r̃a = rat + ζ

The optimality conditions of the control problem are the following:

∂cū(c) = p ⇒ c? = (∂cū)−1
(
p
)

∂`ũ(`) = (1− τ)wzjp ⇒ `? = (∂`ũ)−1
(
(1− τ)wzj p

)
(1 + ∂dχ(d, a))p = q ⇒ d? = (∂dχ)−1

(
q

p
− 1

)

Using the analytical formulas for ∂cu(c, `) = c−γ , ∂`u(c, `) = `−1/φ and

∂dχ(d, a) = 1{d>0}[χ0 + ( d
χ1a

)χ2 ] + 1{d<0}[−χ0 + ( −dχ1a
)χ2 ] we obtain, for p ≡ ∂bv and q ≡ ∂av:

c? =
(
p
)−1/γ

`? =
(
z̃j p
)φ

d? = D(q, p) :=

(
χ1a

[
q

p
− 1− χ0

]+
)1/χ2

−

(
χ1a

[
−
(q
p
− 1− χ0

)]−) 1
χ2

with the conventional notation: f+ = max(f, 0) and f− = max(−f, 0) = −min(f, 0) so that

f = f+ − f−

4.4.2 Numerical scheme

As described in appendix28, the differentiation method should make sure that the scheme

is monotonous. For that, the Upwind scheme is implemented as in previous section, where we

28Complete references can also be found in the numerical appendices Note on algorithm (Kaplan-Moll-Violante)
and Note on Two Assets and Kinked Adjustment cost (Moll) on B. Moll website
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use the separability of the Hamiltonian. This one will be split between Hc(p) +H`(p) on one

side and Hd(p, q) on the other.

For Hc(p) +H`(p):

cFi,j,k = (∂cu)−1(DbV
F
i,j) & `Fi,j,k = (∂`u)−1(z̃j DbV

F
i,j,k) ⇒ sFi,j,k = z̃j`

F
i,j,k + r̃n bi − cFi,j,k

cBi,j,k = (∂cu)−1(DbV
B
i,j) & `Bi,j,k = (∂`u)−1(z̃j DbV

B
i,j,k) ⇒ sBi,j,k = z̃j`

B
i,j,k + r̃n bi − cBi,j,k

For Hd(p, q):

Optimal drift for b : dHd(p,q)
dp = −(d? − χ(d?, a)), when drift positive ⇒ use Forward difference

drift negative: ⇒ use Backward difference

Optimal drift for a : dHd(p,q)
dq = d, when the drift positive, ⇒ use Forward difference

drift negative: ⇒ use Backward difference

dF,Bi,j,k = D(DaV
F
i,j,k, DbV

B
i,j,k) & dB,Fi,j,k = D(DaV

B
i,j,k, DbV

F
i,j,k) & dB,Bi,j,k = D(DaV

B
i,j,k, DbV

B
i,j,k)

di,j,k = 1{dF,B > 0 & dF,B > −χ(dF,B)} dF,Bi,j,k
+ 1

[
dB,F < 0 & dB,F < −χ(dB,F )

]
dB,Fi,j,k

+ 1
[
dB,B < 0 & dB,B > −χ(dB,B)

]
dB,Bi,j,k

and since χ(d) > 0 ∀d we never have dF,F since d > 0 and d < −χ(d) never happen simultane-

ously.

4.4.3 Enforcement of the state-constraint

Let us restate the control problem at the credit constraints (there are two of them a and

b) when optimizing controls for the Hamilton-Jacobi-Bellman equation (verification argument):

H(p, q) = max
c,`,d

ū(c)− ũ(`) + p
[
z̃`− c− d− χ(d, a)

]
+ q[d]

At b = b ḃ = z̃`− c− d− χ(d, a) + r̃bb+ T ≥ 0 [λ]

At a = a ȧ = r̃aa+ d ≥ 0 [µ]

At a = a, and b = b, use the two constraints together.

By Karush Kuhn Tucker (appropriately posing the Lagrangian function), the optimality

conditions are:

[c] ∂cū(c)− p− λ = 0 ⇒ ∂cū(c) = p+ λ (∗)

[`] −∂`ũ(`) + z̃p+ z̃λ = 0 ⇒ −∂`ũ(`) = z̃(p+ λ) = z̃∂cū(c) (∗∗)

[d] −(1 + ∂dχ(d))p+ q − λ(1 + ∂dχ(d)) + µ = 0 ⇒ (1 + ∂dχ(d))[p+ λ] = q + µ (∗ ∗ ∗)
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Adding the primal and dual feasibility conditions and complementary slackness conditions:

z̃`− c− d− χ(d, a) + r̃bb+ T ≥ 0 λ ≥ 0

and
(
z̃`− c− d− χ(d, a) + r̃bb+ T

)
· λ = 0

r̃aa+ d ≥ 0 µ ≥ 0

and
(
r̃aa+ d

)
· µ = 0

Using the FOC (∗) and (∗ ∗ ∗), the complementary slackness conditions become:

(
z̃`− c− d− χ(d, a) + r̃bb+ T

)
·
(
∂cū(c)− p

)
= 0(

r̃aa+ d
)
·
(
1 + ∂dχ(d))[p+ λ]− q

)
Let us note that the analysis above is very generic. As we did not specify any value for

a or b, the general method will be:

1. Implement the optimal allocation, using the Forward difference for DaV or DbV

2. Check the primal feasibility conditions: sa > 0 at a, or sb > 0 at b or both at (a, b)

3. If the primal feasibility fails (e.g. sa < 0 at a), enforces the constraint: the Lagrange

multipliers are no longer null and thus (∗) and (∗ ∗ ∗) are no longer possible (since we

don’t know the value of λ and µ.

4. Since the Lagrange multiplier are strictly positive, the complementary slackness tells us

to find the values of c, `, d so that sa = 0 or sb = 0

With this general idea in mind, let us describe each constraint in turn:

A) At a = a the illiquid asset constraint:

• Compute d̂ = D(DaV
F , DbV

up), ĉ = (∂cu)−1(DbV
up) and ˆ̀ = (∂cu)−1(DbV

up) with

DbV
up given (as usual) by the right upwind scheme

• If ŝa > 0 keep these values

• Else if ȧ = ŝa < 0 enforces the constraints: ŝa = 0

• This implies

r̃aa+ d = 0

i.e. d? = −r̃aa (= 0 here).

• Feed the transition matrix appropriately with d? (for both the diagonal and upper-

diagonal).
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B) At b = b the liquid asset constraint, the method is more heavy computationally:

• Compute d̂ = D(DaV
up, DbV

F ), ĉ = (∂cu)−1(DbV
F ) and ˆ̀= (∂cu)−1(DbV

F ) withDaV
up

given (as usual) by the right upwind scheme

• If ŝb > 0 keep these values

• Else if ḃ = ŝb < 0 enforces the constraints: ŝb = 0

• This implies that:

z̃`− c− d− χ(d, a) + r̃bb+ T = 0

• Method to find the optimal c, `, d s.t. this constraint is binding. The relation (∗), (∗∗)

and (∗ ∗ ∗) (with µ = 0) are still valid:

q = (1 + ∂dχ(d))[p+ λ] = (1 + ∂dχ(d))(∂cū(c)) ⇒ ď(c) = D(∂cu(c), DaV
up)

− ∂`ũ(`) = z̃∂cū(c) ⇒ ˇ̀(c) = −(∂`ũ)−1
(
z̃ ∂cū(c)

)
• The only thing to find is thus to solve numerically (unique solution for positive values!) :

z̃ ˇ̀(c)− c− ď(c)− χ(ď(c), a) + r̃bb+ T = 0

• Once this c? found, compute `? = ˇ̀(c?) and d? = ď(c?)

• Feed the transition matrix appropriately with c?, `?, d? (for both diagonal & upper-diagonal).

C) At (a, b) = (a, b) the corner solution will be implemented:

• Compute d̂ = D(DaV
F , DbV

F ), ĉ = (∂cu)−1(DbV
F ) and ˆ̀= (∂cu)−1(DbV

F )

• If ŝa > 0 and ŝb > 0, keep these values

• If ŝa > 0 and ŝb < 0, go back to step B)

• If ŝb < 0 and ŝa < 0, go back to step A)

• If both ŝa < 0 and ŝb < 0:

• 1) Impose d? = −r̃aa =: d

• 2) Solve numerically: (with, again ˇ̀= −(∂`ũ)−1
(
z̃ ∂cū(c)

)
)

z̃ ˇ̀(c)− c− d− χ(d, a) + r̃bb+ T = 0

• Once this c? found, compute `? = ˇ̀(c?)

• Feed the transition matrix appropriately with c?, `?, d (for both diagonal & upper-diagonal).

However, the implementation of this method suffers from several numerical issues. For

simulation of the model with different methods to handle state-constraint, refer to Kaplan et al.

(2018).
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5 Conclusion

In this project, I used novel methods to simulate the Mean Field Game system with

common noise. This system is composed of two stochastic PDEs: a Hamilton-Jacobi-Bellman

describing the evolution of the value function and a Fokker-Planck describing the evolution of the

distribution, and both depends on the realization of the common noise. After a discretization of

this process using different tree structures, these two PDEs were solved using a Finite-Difference

Scheme. This method was applied to the standard Krusell-Smith model and two extension with

endogenous labor supply, à la Real Business Cycle model, or sticky prices, à la New Keynesian

model. We also provide some intuitions for the resolution of the stationary equilibrium of the

two-assets model à Kaplan-Moll-Violante.

One of the main result is to show that precautionary saving behavior of households against

aggregate fluctuations is important quantitatively and highly depends on the anticipations of

the common noise.

Appendices

A MFG general setting

A Mean-Field Game can be described a game with a large number of "small" symmetric

players, with a "mean-field" type of interaction: the interaction is only reflected between each

agent and the "distribution" – i.e. the measure mt – of all the other agents. This game is the

limit of N−players differential games taking the limit as N → ∞. The control problem of an

agent29 is the following:

sup
α

E
[∫ ∞

0
e−ρtf(t,Xt,mt, αt)dt+ g(XT ,mT )

]
dXt = b(t,Xt,mt, αt)dt+ σ(t,Xt,mt)dBt + σ0(t,Xt,mt)dW

0
t

where Wt and B0
t refers respectively to the idiosyncratic noise and the common noise. Let us

consider the case without common noise here σ0 = 0

To control this SDE of Mean-Field type, it is useful to define the Hamiltonian:

H(t, x,m,∇v,D2
xv) = sup

a

(
f(t, x,m, a)+ b(t, x,m, a) ·∇xv(t, x)+ 1

2 tr(σσ′(t, x,m, a)D2
xv(t, x))

)
29Such typical agent is unfortunately called "representative agent" in the MFG literature
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If v is regular enough (C1,2), the controls α are given by the feedback:

α? ∈ argmax
a
H(t, x,m,∇v,D2

xv)

In the simple case where the diffusion is uncontrolled, e.g. σ(·) =
√

2ν, the controlled

drift is given by:

b(t, x,m, α?) = −DpH(t, x,m,∇xv)

For a given measure mt (trajectory fixed!), the SDE is Markovian. We can use standard

Dynamic Programming techniques. This stochastic control problem boils down to a Hamilton-

Jacobi-Bellman (HJB) equation – where the agents make their choices α? taking the measure

mt of agents as given – and the transversality condition pins down the behavior at the limit:

(i) − ∂tv + ρ v − ν∆v −H(t, x,m,∇xv) = 0 on Rd×[0, T ]

lim
t→∞

e−ρt∇xv(t, x) · x = 0 on Rd

Solving the HJB equation yield the optimal control, the value function and the controlled

drift of the SDE Xα? . Taking the controls as given, this SDE allows to compute the evolution

of the agents. The ideas draws from Mean-Field Theory where the movement of particles is

described as a PDE on the probability measures. This PDE is called the Fokker Planck (or

Kolmogorov Forward):

(ii) ∂tm− ν∆m− div
(
DpH(t, x,m,∇xv)m

)
= 0 on Rd×[0, T ]

m(0, ·) = m0(·) on Rd

The MFG system is thus given by these two coupled partial differential equations. The

coupling between the two PDE is induced by the measuremt. The main idea to solve (and prove

the existence) of MFG equilibria – without common noise – is to use a fixed-point procedure –

relying on Schauder fixed-point theorem. The process is as follows:

1. Fix a measure mt

2. Solve the optimal control problem and find α?, and the controlled drift b(t, x,m, α?) and

diffusion terms σ(t, x,m, α?).

3. Find the corresponding probability law of the controlled process Xα?
t

4. Iterating to find a fixed point mt = L(Xt).
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B Numerical algorithm – a finite difference scheme

This section provides a complete description of the numerical algorithm for the transition

equilibria of the Aiyagari-Bewley model, which is the basis of the Krusell-Smith model as

explained in section 4.1. This appendix is inspired by the Numerical Appendix of the article by

Achdou, Han, Lasry, Lions, and Moll (2017).

B.1 Solving the Hamilton Jacobi Bellman equation

We use a finite difference method, an in particular an "implicit upwind scheme". We here

provide a description of the numerical algorithm. The functions v1, v2, g1, g2 are approximated

at I discrete points in the space dimension, ai, i = 1, ..., I. Grids are equispaced, and we denote

by h the distance between grid points in space and τ distance between grid points in time. We

use the short-hand notation vni,j ≡ vj(ai, tn). The derivative vni,j
′ = ∂avj(ai, tn) is approximated

with either a forward or a backward difference approximation:

∂avj(ai, tn) ≈
vni+1,j − vni,j

h
≡ vni,j,F

′

∂avj(ai, tn) ≈
vni−1,j − vni,j

h
≡ vni,j,B

′

The aim of the upwind scheme is to use the proper scheme to approximate this first order

term in the HJB equation. The ∂avj(ai) is approximated with a forward difference (’décentrage

à gauche’) whenever the drift of the state variable snj (ai) is positive and with a backward

difference approximation (’décentrage à droite’) whenever it is negative.

The implicit scheme will be a way to (i) iterate over the value function in the stationary

case (from n = 1 until vn is close enough from v∞, to and (ii) solving for the value vn at time tn

given the knowledge of vn+1 at tn+1, since the HJB is running backward. The two corresponding

implicit scheme will be the following :

(i) Stationary case: (13)

vn+1
i,j − vni,j

τ
+ ρvn+1

i,j = u(cni,j) + vn+1
i,j
′
(zjw + rai − cni,j) + λj(v

n+1
i,−j − v

n+1
i,j )

(ii) Time-varying case (running backward): (14)

vni,j − v
n+1
i,j

τ
+ ρvni,j = u(cn+1

i,j ) + vni,j
′(zjw

n+1 + rn+1ai − cn+1
i,j ) + λj(v

n
i,−j − vni,j)
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Several important remarks

Direction of time Since the second one is exactly the same scheme as the first, only by

interchanging the direction of time and the iteration on n (t̃← T − t and ñ← N − n), we will

only focus on the first scheme for the description. All the results presented further will hold for

the second case. Furthermore, it is surely more convenient to think of the numerical scheme as

a search for vn+1 knowing vn.

A semi-implicit scheme Concretely, this scheme is only ’semi implicit’ since the method do

not approximate for the drift sn+1 but use the closed form solution for sni,j = zjwn + rn ai− cni,j
where cni,j is explicitely given by the first order condition:

cni,j ≈ cj(t, a) = (u′)−1(∂avj(t, a)) ≈ (u′)−1(vni,j
′) (15)

The upwind scheme. It will aim at handling the first order underlined term above, to ensure

the scheme is monotonous (cf. ’informal’ theoretical results presented in the next two pages).

This will imply to use a forward approximation vni,j,F
′ when the drift, i.e. the transport term, is

positive sni,j > 0, and conversely, use backward approximation vni,j,B
′ when the drift is negative

sni,j < 0. The drift will be mostly driven by consumption, and c.f. the previous remark, we will

distinguish between two approximations for consumption:

cni,j,F = (u′)−1(vni,j,F
′) ⇒ sni,j,F = zjwn + rn ai − cni,j,F

cni,j,B = (u′)−1(vni,j,B
′) ⇒ sni,j,B = zjwn + rn ai − cni,j,B

We therefore use the following approximation for the first order term:

vni,j
′
upwind

= vni,j,B
′ 1{sni,j,B<0} + vni,j,F

′ 1{sni,j,F>0} + vni,j,0
′ 1{sni,j,F≤0≤sni,j,B} (16)

where some grids points fall in a set where the drift is approximately null, sni,j,F ≤ 0 ≤ sni,j,B. In

this case, approximate the value function vni,j
′ by the utility when saving is null (i.e. consuming

all income): vni,j,0
′ = u′(zjw

n + rnai).

Furthermore, the running gain u(cni,j) is computed using the FOC eq. (15) and therefore

cni,j = (u′)−1[vni,j
′
upwind

] using the derivative of the value function obtained eq. (16)

The state constraint. Recall that theoretically – combining the FOC from HJB and the

credit constraint – we obtained: vj(a) ≥ u′(zjw + ra). Therefore, if the saving is negative at

the boundary of the set, i.e. at a1 in our discretized scheme, the upwind scheme imply to use

a backward difference. A way to handle this state-contraint is to enforce it by setting:

vn1,j,B
′ = u′(zjw

n + rna1)
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This imply the state constraint is imposed whenever the backward difference approximation

vn1,j,B
′ would result in negative saving on the boundary. In the case the forward difference

vn1,j,F
′ is used – when s1,j,F > 0 – the drift will move the agent away from the constraint and

as a result the value function ’will never see the constraint’.

The initial guess. A simple initial guess for the value function is the value when savings is

null and the agent never change state. The stationary HJB results in the guess:

v0
i,j =

u(zjw + rai)

ρ

A matrix reformulation

With the notation x+ = max(x, 0) and x− = min(x, 0), the implicit scheme of the HJB

eq. (13) rewrites:

vn+1
i,j − vni,j

τ
+ ρ vn+1

i,j = u(cni,j) + vn+1
i,j,F

′
[zjw + rai − cni,j,F ]+ + vn+1

i,j,B

′
[zjw + rai − cni,j,B]− + λj(v

n+1
i,−j − v

n+1
i,j )

vn+1
i,j − vni,j

τ
+ ρ vn+1

i,j = u(cni,j) +
vni+1,j − vni,j

h
[sni,j,F ]+ +

vni−1,j − vni,j
h

[sni,j,B]− + λj(v
n+1
i,−j − v

n+1
i,j )

where in the second line we only used the definition of vn+1
i,j,F

′ and vn+1
i,j,B

′. Collecting the terms

with the same subscripts (i− 1, i, i+ 1), we can obtain:

vn+1
i,j − vni,j

τ
+ ρvn+1

i,j = u(cni,j) + vn+1
i−1,j xi,j + vn+1

i,j yi,j + vn+1
i+1,j zi,j + vn+1

i,−j λj (17)

xi,j = −
(sni,j,B)−

h
,

yi,j = −
(sni,j,F )+

h
+

(sni,j,B)−

h
− λj

zi,j =
(sni,j,F )+

h

Note that we obtained a system of I × 2 equations described in eq. (17). An important point

lies at the boundary, where x1,j = zI,j = 0, (j = 1, 2). Thus vn+1
0,j and vn+1

I+1,j will never be used.

As a consequence of the various remarks, we can write the system with matrix notations:

vn+1 − vn

τ
+ ρvn+1 = u+ Anvn+1

This system can in turn be written as

Bnvn+1 = bn, with Bn =

(
1

τ
+ ρ

)
I−An, bn = un +

1

τ
vn
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This system of linear equations can be solved very efficiently using sparse matrix routines, since

An and thus Bn =
(

1
τ + ρ

)
I−An are both tridiagonal by blocks.

In particular, we have the following form for matrix A:

An =



y1,1 z1,1 0 · · · 0 λ1 0 0 · · · 0

x2,1 y2,1 z2,1 0 · · · 0 λ1 0 0 · · ·
0 x3,1 y3,1 z3,1 0 · · · 0 λ1 0 0
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0
. . . . . . xI,1 yI,1 0 0 0 0 λ1

λ2 0 0 0 0 y1,2 z1,2 0 0 0

0 λ2 0 0 0 x2,2 y2,2 z2,2 0 0

0 0 λ2 0 0 0 x3,2 y3,2 z3,2 0

0 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 · · · · · · 0 λ2 0 · · · 0 xI,2 yI,2



, un =



u(cn1,1)
...
...

u(cnI,1)

u(cn1,2)
...
...

u(cnI,2)



Let us make few remarks on this matrix: First, one can notice it represents the infinites-

imal generator of the stochastic process with drift sn and jumping to the other state −j with

intensity λj . It is indeed a Markovian Jump process transition matrix on the discretized state

space (ai, zj): all rows sum to zero and the diagonal terms are non-positive and off-diagonal

terms are non-negative.

This intensity matrix will thus have nice properties for the numerical algorithm. We

observe that if An has rows that sums to zeros, the matrix −An will be diagonally dominant

(but not strict!)30.

Consequently, provided that τ < ∞, ρ > 0 we obtain that Bn is a M-matrix – since

Bn =
(

1
τ + ρ

)
I−An. The scheme will thus will be monotonous.

Summary of Algorithm to solve the HJB equation.

1. Guess v0
i,j , i = 1, ..., I, j = 1, 2 and for n = 0, 1, 2, ... follow:

2. Compute (vni,j)
′ using the current guess of the value function and the upwind scheme

(forward difference when drift is positive, backward difference when drift is negative)

3. Compute cn from cni,j = (u′)−1[(vni,j)
′]

4. Find vn+1 by solving the system of linear equations involving the matrix A described

above (implicit scheme)

5. If vn+1 is close enough to vn: stop. Otherwise, go to step 2.

30A matrix B is diagonally dominant if ∀i, |Bii| ≥
∑
j 6=i |Bij | (strictly dominant if the inequality is strict).

A matrix B̃ is a M-matrix if B̃ii > 0 and B̃ij ≤ 0,∀j 6= i and ∀i, Bii > −
∑
j 6=iBij

A matrix B̄ is monotonous if it is invertible and its inverse is positive.
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B.2 Solving the Kolmogorov Forward/ Fokker Planck equation

Recall the Fokker Planck in the evolution case:

0 = ∂tgj(t, a) +
d

da
[sj(a) gj(t, a)] + λjgj(t, a)− λ−jg−j(t, a)

Subject to the ’constraint’
∫∞
a g1(t, a)da+

∫∞
a g2(t, a)da = K(t, r) The discretization scheme –

using the same grid as before – will aim at solving the equation:

0 =
gn+1
i,j − gni,j

τ
+ [sni,j g

n
i,j ]
′ + λjg

n+1
i,j − λ−jg

n+1
i,−j

Conversely to the HJB, which is fully non-linear, the Fokker Planck equation is linear, and so

will be the finite-difference scheme. The main advantage is thus that the solution g can be

obtained in one step.

Upwind scheme. Similarly as in the previous case, we use a upwind scheme. However,

since the direction of time if forward, the scheme is reversed: When drift is positive, the backward

approximation is then used, and conversely, when the drift is negative one need to use the

forward approximation:

0 =
gn+1
i,j − gni,j

τ
+

[sni,j,F ]+ gni,j − [sni−1,j,F ]+ gni−1,j

h
+

[sni+1,j,B]+ gni+1,j − [sni,j,B]+ gni,j
h

+ λjgi,j − λ−jgi,−j

Note that because g0,j and gI+1,j are outside the state-space, the measure g will be null

on these points, and thus [sn0,j ]
+ and [snI+1,j ]

− will never be used.

Matrix reformulation Rewriting the scheme, collecting the terms with the same subscripts

(i− 1, i, i+ 1), we can obtain:

gn+1
i,j − gni,j

τ
+ gn+1

i+1,j xi+1,j + gn+1
i,j yi,j + gn+1

i−1,j zi−1,j + gn+1
i,−j λ−j (18)

xi+1,j = −
(sni+1,j,B)−

h
,

yi,j = −
(sni,j,F )+

h
+

(sni,j,B)−

h
− λj

zi−1,j =
(sni−1,j,F )+

h

This discretization scheme yields the following system :

0 =
gn+1 − gn

τ
+ (An)T gn+1

Again, it can be solved implicitly:
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Cngn+1 = gn with Cn = (I− τ(An)T ) (19)

Stationary distribution. In the stationary case, it amounts at solving the system:

0 = (An)T gn

where the matrix AT is the transposed of the intensity matrix A found in the HJB approxima-

tion. In such situation the distribution gn can be found in one step.

However, one issue lies in the fact that the matrix AT is singular and cannot be inverted.

One need to ’fix’ this by applying any value to a given (i, j), say gi,j = 0.1. Since the stationary

distribution of any Markovian process is unique modulo a multiplicative constant, we only need

to renormalize to obtain:
∫∞
a g1(t, a)da+

∫∞
a g2(t, a)da = 1.

In practice, one solve this issue by setting the value of the diagonal of the matrix (AT )kk =

1 and bk = 0.1 for any k, then solve for the value g̃n and the renormalization is gni,j =

g̃i,j
n/(
∑I

i=1 g̃i,1h+ g̃i,2h).

Moreover, this will allow to solve for the initial distribution when this one is unknown.

More specifically, this will be the case in the application in the next section.

Transition case. In the case where shocks occur and economic fundamentals change, one can

solve implicitly the system as in eq. (19), with τ the time step. Given the initial distribution

g0 computed above – as in the stationary case – computing the evolution will simply implies:

gn+1 = (Cn)−1gn

FP as the adjoint of HJB The matrix AT is the transposed of the intensity matrix found in

the HJB. That is, once the HJB equation is solved, we basically get the Kolmogorov Forward

equation "for free" ("two birds one stone", cf. B. Moll). These methods take advantage of the

property of the Fokker-Planck being the adjoint of the HJB – when optimal control is reached.

Since the matrix An is the discretized version of the infinitesimal generator A of the jump

process, the matrix AT will naturally be the discretized version of the adjoint operator A∗

associated to the Fokker Planck equation (c.f. the appendix for details).

B.3 Equilibrium on capital market

The last step of the algorithm is to update the price and quantities for the market to

clear. The market clearing conditions imposes :∫ ∞
a
a g1(t, a)da+

∫ ∞
a
a g2(t, a)da =: S(t, r) = K(t, r) :=

( αAt
rt + δ

) 1
1−α

zav
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First, one of the theoretical result of Achdou, Han, Lasry, Lions, and Moll (2017) provides

a proof of unicity:

Under the assumption that IES := − u′(c)
u′′(c)c ≥ 1 (i.e. 1

RA ≤ 1) and that the household is credit

constrained a ≥ 0, then we have:

(i) the optimal consumption cj(a, r) := (u′)−1(∂avj) is decreasing in interest rate r

(ii) the optimal saving s(a, r) := sj(t, a) = zjwt + rt a− cj(a, r) is increasing in r,

(iii) the stationary distribution shift rightward in r, i.e. the cdf Gj(a; r) is strictly decreasing

in r for all a in its support

(iv) S(r) is strictly increasing and, since K(r) is clearly decreasing, the model has a unique

stationary equilibrium.

In order to find iteratively this unique equilibrium, there exits several solutions:

One can iterate on quantities (B. Moll’s codes). Given the supply of capital from house-

hold saving update the capital demanded by firms: Knew(t, r) := θKold(t, r)+(1−θ)S(t, r) and

then compute the interest rate as the marginal return of capital stock. The second option is to

update the prices, i.e. interest rates, to change household saving behavior. Given the interest

rate formula: r(K) = αAKα−1z1−α
av − δ, update the interest rate following the scheme:

rnew = θ r(K(rold)) + (1− θ) r(S(rold))

The main advantage of this method is to be able to update in one step the path rt for

t ∈ [0, T ] given the paths Kt and St. When dealing with the stationary equilibrium however,

another simple technique is the bisection method.

C Krusell-Smith model, larger binomial trees and quantization

trees

In the following, we will use several concrete examples:

– Binomial/K-nomial tree:

(i) A simple tree, where K = 3 branches per nodes and M = 3 "waves" of shocks,

(ii) A "long" tree, where K = 2 and M = 9, where the time discretization is finer

(iii) a "large tree", where K = 7 and M = 3 the (space) quantization grid is finer

– Quantization tree:

(iv) A simple tree, where K = 3 branches per nodes and M = 3 "waves" of shocks

(v) A larger tree, where K = 5 and M = 4, where time & space discretization are slightly finer.
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C.1 Long binomial tree, K = 2 and M = 9

C.2 Large K-nomial tree, K = 7 and M = 3
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C.3 Simple quantization tree, where K = 3 and M = 3

C.4 Larger quantization tree, where K = 5 and M = 4
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D Representative agent models

The relations of the following models stem from the optimal (stochastic) control problem.

Since there is only one agent, or a continuum of agents that are identical since the market is

complete, we can solve the model using standard Dynamic programming techniques. The model

is purely backward (the agent is forward looking) and is described in discrete time. The models

and IRF are simulated using DYNARE (cf. the CEPREMAP working paper Adjemian et al.

(2011)), a software solving rational expectations models using perturbation methods. In the

IRF above, the calibration is the same as in the MFG with common noise.

The equilibrium relations of the Brock-Mirman model

This model is the analogous of the Krusell Smith model with a representative agent choosing

consumption/saving in function of income/interest rate and expectation of future shocks.

1 = Et
(
β(1 + rt+1)

∂cu(Ct+1)

∂cu(Ct)

)
(Euler equation)

Kt+1 = (1− δ)Kt + Yt − Ct (Law of motion of Capital)

Yt = AtK
αz1−α
av (Production)

wt = (1− α)AtK
α
t z
−α
av (Wage)

rt = αAtK
α−1
t z1−α

av − δ (Interest rate)

At = Ā0 e
Ãt Ãt+1 = (1− θ)Ãt + εt (Agg. productivity)

The equilibrium relations of the RBC model

This Real Business Cycle model is the analogous of the KS model with endogenous labor supply.

The household now solve a control problem with labor supply – creating an intra-temporal

"trade off".

1 = Et
(
β(1 + rt+1)

uc(Ct+1)

uc(Ct+1)

)
(Euler equation)

zavwt =
∂`ũ(Lt)

∂cū(Ct)
(Labor-Conso trade-off)

Kt+1 = (1− δ)Kt + Yt − Ct (Law of motion of Capital)

Yt = AtK
α(zavLt)

1−α (Production)

wt = (1− α)AtK
α
t L
−α
t (Wage)

rt = αAtK
α−1
t zavL

1−α
t − δ (Interest rate)

At = Ā0 e
Ãt Ãt+1 = (1− θ)Ãt + εt (Agg. productivity)
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The equilibrium relations of the New Keynesian model

The usual NK model, found for example in reference by Galí (2008) or Woodford (2003) are

usually log-linearized by hand - comparing the deviation of variables to their steady state

values e.g. zt = log(Zt) − log(Z). Here is the summary of the relations of this model. Since,

in this case, the price-setting of firm follows the Calvo-Yun framework, there are sustantial

differences between the following model and the one developed in the above MFG. In particular,

in this setting there is no government (no tax, no lump-sum redistribution) and no clear profit

redistributed to households. These two points imply major differences between output and

consumption in our framework while the market clearing is simply Ct = Yt in the standard NK

model.

However, the Euler equation and labor-consumption trade-offs are preserved. All these

relations can summarize the simple ’three equations’ model (IS-curve, NK-Philips curve and

interest rule).

ct = Et(ct+1)− 1
σ (it − Et(πt+1)− ρ) (Euler equation)

wt − pt = φ`t + σct (Labor-Conso trade-off)

yt = at + `t (Production)

ỹt = Et(ỹt+1)− 1
σ (it − Et(πt+1)− rnt ) (Dynamic IS equation)

πt = βEt(πt+1) + κỹt (NK Phillips Curve)

rt = it − πt (Real interest rate)

it = ρ+ φππt (Interest rate rule)

rnt = ρ+ σ1 + φσ + φ(at+1 − at) (Natural rate)

Ãt+1 = (1− θ)Ãt + εt (Agg. productivity shock)
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