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2.4 Calculus and Optimization

2.4.1 Properties of functions

2.4.2 Jacobian and differentiability

2.4.3 Existence and uniqueness of optimizers

We consider an optimization problem of the form (P):

inf
x∈X

f(x)

where X is an abstract space, that we can consider to be X = Rn in the following.

Proposition 2.1.

If (X, d) is a compact metric space and f is continuous function, then :

there exists a maximum and a minimum. Said differently, f reaches its boundaries, i.e.

∃x? ∈ X, such that f(x?) = inf
x∈X

f(x) or f(x?) = sup
x∈X

f(x)

In this case the infimum or supremum (that is a set with a unique element) is called minimum

of maximum f(x?) = infx∈X f(x) = minx∈X f(x) and similarly for maximum.

Proposition 2.2.

If (X, d) is a compact metric space and f is lower semi continuous function, then :

there exists a minimum (i.e. the infimum is reached, i.e. (P) has a solution)

∃x? ∈ X, such that f(x?) = inf
x∈X

f(x) = min
x∈X

f(x)

Theorem 2.3.

If (X, d) is a reflexive Banach space with an non-empty subset Y ⊂ X and Y 6= ∅, and if

• the function f : Y → R is a convex and lower-semi continuous

• the set C is convex

• either C is bounded or f is coercive (f(x)→∞ when ||x|| → ∞)

then, with these 5 conditions, there exists a minimum (i.e. the infimum is reached, i.e. (P)

has a solution) on the set C.

∃x? ∈ C, such that f(x?) = inf
x∈C

f(x) = min
x∈C

f(x)

Moreover, if the function is strictly convex, then the minimum is unique Note: This

is a very important/strong theorem of optimization because the assumption are the weakest

(compactness is usually really/too strong and replaced here by closed, convex, bounded set in

a reflexive Banach space, very often met in practice).
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2.4.4 Unconstrained optimization and first order condition

Definition 2.1.

Let f : X → R be a function, f is differentiable in x ∈ X if there exists a linear continuous

map DJ(x) ∈ L(X,R) such that

lim
||h||→0

|f(x+ h)− f(x)−Df(x) · h|
||h||

= 0

when DJ(x) exists it is unique, and we call it differential or Frechet differential

Note:

• f : X → R and if f is derivable (standard case) then it is differentiable and Df(x) · h =

f ′(x)h,∀h ∈ R.

• In the first-order Taylor expansion in the point x0, we write f(x) = f(x0) + Df(x0) ·
(x− x0) + o(||x− x0||), when o(h) is the Laudau’s o notation as : limh→0

o(h)
h = 0

Theorem 2.4.

Let (X, || · ||) be a normed vector space, and O an open set of X and f : O → R a differentiable

function, then,

If x? ∈ X such that f(x0) = min
x∈O

f(x)

Then we have Df(x?) = 0

This first-order condition is a necessary condition (i.e. a consequence) for optimality.

Note: It is not sufficient (yet), since even if x? respects the FOC, it can be max or saddle point.

Theorem 2.5.

Let (X, || · ||) be a normed vector space, and C an open set of X and f : C → R a differentiable

function. If f is convex, then the FOC is also sufficient, i.e.,

If Df(x?) = 0 or Df(x?) · (x− x0) ≥ 0 ∀x ∈ C

Then we have x? ∈ X such that f(x?) = min
x∈C

f(x)

2.4.5 Convex duality

(. . . )
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2.4.6 Constrained optimization and Kuhn-Tucker theorem

Equality constraints

Now, let us suppose that the set C in theorem 2.5 is defined by a equality constraint

function C = {x ∈ X, s.t. g(x) = 0}. As a result the problem P becomes :

inf
x∈C

f(x) = inf
s.t.

g(x)=0

f(x)

Theorem 2.6 (Necessity).

Let (X, || · ||) be a normed vector space, and f and g, f : X → R, g : X → R, two functions

which are both continuous and with continuous derivative (i.e. f, g ∈ C1), if, x? ∈ X such that

f(x0) = min
x∈C

f(x) = min
s.t. g(x)=0

f(x)

(and also Df(x?) 6= 0) then there exists a Lagrange multiplier λ ∈ R, such that :

Df(x?) = λDg(x?) (1)

Notes:

• This is a necessary condition. Again, the FOC is not sufficient for determining optimality.

• This optimality condition generalizes when there are M constraints, if (Dg1, . . . , DgM ) are

linearly independent.

• The value λ ∈ R is the shadow value of the constraint g(x) = 0 : when relaxing the con-

straint, we can have x̃ = x? + ε, with the two first-order approximations :{
g(x̃) ≈ g(x?) +Dg(x?) · ε
f(x̃) ≈ g(x?) +Df(x?) · ε

what would the marginal change of f for this change of x? It would be:

f(x̃)−f(x?)
ε

g(x̃)−g(x?)
ε

≈ Df(x?)

Dg(x?)
= λ

• If you define the "Lagrangian" function:

L(x, λ) = f(x) + λg(x)

one can show that the first order condition is equivalent to find the saddle point of the

Lagrangian function

• Here, the sign of the Lagrange multiplier doesn’t matter: λ would be strictly positive if the

unconstrained problem would make g(x) > 0 and conversely λ < 0 if the unconstrained

problem makes g(x) < 0. The sign of the constraint will matter in th KKT theorem.
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Theorem 2.7 (Sufficiency).

Given the assumptions of the previous theorem, if in addition we assume that f and g are

convex, then the optimality conditions are also sufficient

Inequality constraints and KKT

Now, let us suppose that constraints are multiple inequality functions

C = {x ∈ X, s.t. g1(x), . . . , gM ≤ 0, }. As a result the problem P becomes :

inf
x∈C

f(x) = inf
s.t. ∀i=1...M
gi(x)=0

f(x)

Theorem 2.8 (Karush-Kuhn-Tucker, Necessity).

Let (X, || · ||) be a normed vector space, and f and multiple constraint gi, f : X → R, gi : X →
R, ∀i = 1, . . . ,M , functions which are both continuous and with continuous derivative. We

introduce the "Lagrangian" L function associated to this problem:

L(x, λ1, . . . , λM ) = f(x) +

M∑
i=1

λi gi(x) ∀(x, λi) ∈ X × R+ ∀1 ≤ i ≤M

The optimality condition of the solution x∗ is a saddle point of this Lagrangian function, under

the condition that the constraints are "qualified"1: Under all the previous hypothesis, the four

following conditions are necessary for optimality. Formally, if x∗ is a global minimum, then

the four conditions are satisfied:

1. Stationarity:
Df(x∗) +

M∑
i=1

λi Dgi(x
∗) = 0

(Equivalent to the "saddle point conditions" on the Lagrangian: ∂L
∂x

(x, λ) = 0, ∂L
∂λi

(x, λ) = 0 ∀ 1 ≤ i ≤M)

2. Primal feasibility (simply, constraints should be satisfied): gi(x
∗) ≤ 0 for 1 ≤ i ≤M

3. Dual feasibility: λi ≥ 0 ∀1 ≤ i ≤M

4. Complementarity:
∑M

i=1 λi gi(x
∗) = 0

(If the constraint is binding at optimum (i.e. g(x∗) = 0) then the Lagrange multiplier is strictly positive

(again, it stands for the "shadow value" of relaxing the constraint) and conversely)

1The constraints are “qualified” when ∀1 ≤ i ≤M , the derivative of the constraint function F ′i (u∗) should be
negative (or equal to zero if Fi are affine). These conditions are sometimes called "Slater condition" in case of
convex constraint functions, and "Mangasarian-Fromovitz constraint qualification" in the general case (where
there are also equality constraint, which is not the case here). The main idea of qualification (very important
for the proof of the "necessary condition" of KKT theorem) is that you can look in the neighborhood of the local
minimum to find the optimality condition (after some "linearization" along the lines defined by gradients).
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Theorem 2.9 (Karush-Kuhn-Tucker, sufficiency).

Given the assumptions of the previous theorem, and under the additional assumption that the

objective function f and the constraints g1, . . . , gM are convex, then these four conditions are

also sufficient.

Said differently, if x∗ satisfy the four conditions, then x∗ is global minimum.

Note:

• Again, be careful to check for convexity when using if for sufficiency! (something economists

rarely do!)

• Similarly as above, the Lagrange multiplier is the shadow value of relaxing constraint, for

example λ is the "marginal value of income", when the constraint g is a budget constraint.

• However, this time the Lagrange multiplier has a positive sign, because the inequality con-

straint is directional (on one side of the constraint it binds, but not on the other)

2.4.7 Numerical optimization methods

Gradient descent, Newton methods, Solution of linear and non-linear system of equation
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3 Probability theory

Probability is about "measuring" the frequency of events happening. Since its mathematical

formalization in 1933 by A. Kolmogorov, it has borrowed a lot from measure theory, introduced

as a theory of integration by H. Lebesgue in 1904. Sadly, it is abstract as a first exposure to

probability, but I will try to use only the most important properties in the probability theory

setting.

3.1 Foreword: from measure theory to probability theory

In a nutshell, Lebesgue theory of integration was groundbreaking because it was able to prove

properties of integrals without requiring any conditions on the function (or very mild condition:

the function only needs to be "measurable", which happens very (very) often!).

To reach this, it is required to define a function f : X → R in a new way: we do not need to

consider all the points of the set/space x ∈ X but only "almost everywhere" i.e. everywhere

except on a countable number of points. This countable set of points does not matter because

it has "measure zero".

The measure (or distribution) µ is an extension of measuring interval sizes. For example,

in the following picture, the two functions are equal almost everywhere, and hence the integral

(with respect to a measure µ) of f(x) on [a, b] are the same on the LHS and RHS, even after

changing 3 points of the function: this is because the "measure" µ of these 3 points is zero.

Figure 1: Two functions equal almost everywhere

The benefit of this is the great flexibility of integration. Despite a long (and a bit

tedious) construction of the Lebesgue integral, the main difference with the Riemann integral

is displayed in the following picture: the subdivisions in the Lebesgue integral are made with

respect to the function on the y−axis (instead of the x-axis for the Riemann integral).

The main results of this procedure are the convergence theorems: Monotone convergence

theorem, Fatou’s lemma and Dominated convergence theorem (more on that below and in A.

Shaikh’s class). The main advantage of these theorems is to switch the limit and integral

signs, and thus eliminating many pathological cases when a limit of integrable function fn

9



Figure 2: Difference between the constructions of Riemann (LHS)
and Lebesgue (RHS) integrals

isn’t Riemann-integrable (but it is very well Lebesgue integrable thanks to these convergence

theorems.).

For f(x) = limn→∞ fn(x), converging pointwisely in x ∈ X (almost everywhere), under

conditions on monotonicity of positive function fn (0 ≤ fn ≤ fn+1) or domination of integrable

functions |fn| ≤ |g|, ∀n, then we have:∫
X
f(x)dµ(x) = lim

n→∞

∫
X
fn(x)dµ(x)

where the formalism of this integral will be make clear below. This is in a couples of lines the

main gist of measure theory.

Kolmogorov used this formalism for probability. Considering a space of "states-of-the-

world" ω ∈ Ω, random variables are functions X : Ω → R, X(ω) ∈ R that are defined

almost-everywhere : in probability we call this "almost-surely". We consider distributions –

or "laws" of probability P(·) – as our "measures" of interest: for an event A ⊂ R

PX(A) = P(X(ω) ∈ A) := P(ω ∈ Ω|X(ω) ∈ A) =

∫
Ω
1{ω ∈ X−1(A)}dP(ω)

This definition will be made clear below! In particular, if two random variables X and Y have

the same distribution PX(A) = PY (A) "almost surely" – that is "everywhere" expect on a set

of probability (i.e. measure) null P(X 6= Y ) = 0 – we consider them to be the same (almost

surely!). Hence, we can use all the artillerie of measure theory, in particular the convergence

of sequences of functions. In probability, we will focus of convergence of random variables,

which will be useful for proving the famous and important convergence theorems like Law of

Large Numbers and Central limit theorem.
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3.2 Basics: Random space, Random variables, Moments

Now, let us define many measure-theoric objects that appear in all concepts and properties of

random variables and distributions.

Definition 3.1.

The couple (Ω,F ,P) is a probability space, where Ω the sample space, i.e. set of all possible

outcomes/"states-of-the-world", is attached to a collection F of sets (parts of Ω) – this F

includes all the potential events – and a measure of probability P – over these sets A ∈ F .

Definition 3.2.

A σ-algebra F over the set/space Ω is a family of sets, such that :

(i) Ω ∈ F

(ii) If A ∈ F Then ⇒ Ac ∈ F

(iii) An ∈ F , ∀n⇒ ∪n≥1An ∈ F

It is intuitively the set of all information available. If an event/outcome A is not in F , this

means it can not happen.

Example 3.1.

Consider the sample set of a dice with 3 outcomes {L,M,H} (or a financial that has low,

median, and high values at a given date). The set Ωd = {L,M,H}. Hence, thanks to properties

(i) and (ii), the σ−algebra generated by this set is

Fd =
{
∅, {L}, {M,H}, {M}, {L,H}, {H}, {L,M}, {L,M,H}

}
Example 3.2.

Consider the more abstract but ubiquitous example of Borel. The sample space is R and we

consider all the open intervals A = (a, b) ⊆ R, ∀ a, b ∈ R. The Borel σ−algebra BR is defined as

"the σ−algebra generated by the collection of open sets, i.e. the smallest σ−algebra associated

to R that contains all the open sets. More precisely, this collection of sets contains all the open

sets Ai, as well as their complement Aci and their countable union ∪iAi. This Borel measurable

space (R,BR) with its Borel σ−algebra makes the bridge between standard real analysis and

measure/probability theory.

Definition 3.3.

A probability measure P is a map P : Ω→ [0,∞] such that

(i) P(∅) = 0

(ii) For all sequences of events (An)n of measurable sets, which are disjoints two-by-two i.e.

P(Ai ∩Aj) = 0, ∀i, j, then we have P(∪nAn) =
∑

n P(An). This is called σ-additivity

(iii) The measure is a finite measure with total mass 1: P(Ω) = 1. This is specific to probability

measure (but not general measure that can have infinite mass).
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Note: When we "associate" a sample space and σ-algebra with a measure, it implies that all

the events have a probability P, (i.e. you can "measure" how frequent the outcome will be).

Moreover, the rules of σ-algebra imply that if you can measure P(A) or P(An), you can also

measure P(Ac) = 1− P(A) or P(∪nAn) (≤
∑

n P(An))

Now the following concept is one of most important here:

Definition 3.4.

Consider two measurable spaces (Ω,F ) and (E,E ).

• A function or application f : Ω→ E is measurable if

∀B ∈ E , ∃A = f−1(B) ∈ F

• A random variable X : Ω→ E is a measurable function from the set of possible outcomes

Ω to a set (E,E )

More intuitively, a random variable is a measurable function because each value/outcome of the

random variable is associated with an event included in F . If an outcome B̃ is not associated

with an event (i.e. @Ã = X−1(B̃) in the σ−algebra, then you don’t know what can happen,

i.e. the events associated with the potential results. Because of that, you can not compute the

probabilities of the random variables outcome.

Example 3.3.

Reconsider the example of the dice: Ω = {L,M,H} and (Ω,FΩ) and a random variable X1

such that X1(L) = −1, X1(M) = 0, X1(H) = +1.

Now consider the second case where you have two such dices thrown simultaneously (and in-

dependently): Ω̃ = {LL,LM,LH,ML,MM,MH,HL,HM,HH}. We have the measurable

space (Ω̃,F
Ω̃

) associated with this and we consider a second random variable X2 =
X1+X1′

2

(hence X2(MH) = 0+1
2 = 0.5 and X2(LL) = −1 for example). In the following picture, we

have that the random variable X1 is measurable on the LHS for the space (Ω,FΩ), but X2 is

not measurable on the RHS on the same space (Ω,FΩ) (but it is for (Ω̃,F
Ω̃

)!).

Note: In practice, we do not focus too much on Ω (except for some definitions of stochastic

processes, c.f. comment below and in L. Hansen’s lectures on this topic).

An adjacent concept (a bit hinted in the example above) is the σ−algebra generated by

a random variable, as we see in the following definition:

Definition 3.5.

Let X : Ω→ E be a random variable with values in a measurable space (E,E ). The σ−algebra
generated by X, denoted σ(X) is defined as the smallest σ−algebra on Ω that makes X mea-

surable (on Ω), i.e.

σ(X) :=
{
A := X−1(B), B ∈ E

}
12



Figure 3: Measurability (or not!) of the random variable X1 and X2 w.r.t. (Ω,FΩ)

Note: More generally, let (Xi, i ∈ I) any family (or sequence) or random variables, Xi with

values in (Ei,Ei) then

σ (Xi, i ∈ I) := σ
(
X−1
i (Bi) : Bi ∈ Ei, i ∈ I

)
Proposition 3.1.

Let X a random variable with values in (E,E ). Let Y a real random variable. Then Y

is σ(X)-mesurable if and only if Y = f(X) for a measurable function (i.e. deterministic

function) f : E → R.
Note: As a result, if Y includes the same "relevant information" as X – i.e. Y is measurable

w.r.t. σ(X) but doesn’t have more information than that!! – this implies that there exists

a deterministic mapping between X and Y . However, this necessity Y is σ(X)-mesurable ⇒
Y = f(X) is the one trickier to prove.

Now, let us consider the probability measure for random variables: that’s what we call

their “law”:

Definition 3.6.

Let (Ω,F ) be a measurable space and a random variable X : Ω → E (where E can be R, in
the case of "real random variables" (r.r.v) for example). We call law (or distribution) of the

random variable X the measure PX given, for all event A ∈ F , by:

PX(B) = P(X ∈ B) = P
(
ω ∈ Ω s.t. X(ω) ∈ B

)
= P

(
ω ∈ A with A = X−1(B)

)
, ∀A ∈ F

Note: The measure PX is the "image measure" of P via the application X. For real random

variable, it is quite common to consider the Borel measurable space (R,B), with a standard

measure (called "Lebesgue measure" λ) to

From this law, if the random variable is real (maps into R), we can compute the usual

things, like the expectation of this random variable, i.e. integral of the function with respect

its probability measure.
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Expectation and integration and related concepts

Definition 3.7.

Let (Ω,F ) be a measurable space and a random variable X : Ω → E (where E can be R, we
define the mathematical expectation as :

E(X) :=

∫
Ω
X(ω)P(dω)

The condition for this expectation to be appropriately defined is to assume that E(|X|) < ∞,

where E(|X|) is defined in the same way. This condition is called "integrability" of the random-

variable /function X : Ω→ E, or in other words, we say that X admits a first moment.

Note: [-7mm]

• We can extend this definition to the case of random vectors X := (X1, · · · , Xd), which is

"simply" a random variable with values in Rd,, by taking E(X) := (E (X1) , · · · ,E (Xd))

(provided that allXi admit a first moment, for the expectations E (Xi) to be well defined.

• All the usual results on integrals – like homogeneity, linearity, monotonicity, etc. – are

valid for the Lebesgue integral as much as for the usual (Riemann) integral.

Theorem 3.2 (Transfer theorem (?)).

Let X be a random variable in (E,E ). Then PX the probability law of X is the unique measure

on (E,E ) such that

E[f(X)] =

∫
E
f(x)PX(dx)

for every measurable (i.e. deterministic) function f : E → R+

Note: As a result of this theorem, the expectation of a real random variable write:

E(X) =

∫
Ω
X(ω)P(dω) =

∫
R
xPX(dx)

Definition 3.8 (Notation).

Many mathematicians and economists are a bit handwavy on the notation of measures. Usually,

for an abstract measure µ on the set E, we define integral the following way:∫
X
f(x)µ(dx) =

∫
X
fdµ

Similarly in probability, for a measure of probability, we have interchangeably

E[X] =

∫
Ω
X(ω)P(dω) =

∫
Ω
XdP

=

∫
E
xPX(dx) =

∫
E
xdPX =

∫
E
xdF

=

∫
R
x f(x) dx
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where the 2nd line holds because of Transfer’s theorem, and X ∼ F where F (x) is the c.d.f of

X and the last line holding only if the r.v. X has a p.d.f. f(x) more on that below).

Definition 3.9.

In a general way, we can define higher order moment! Let (Ω,F ) be a measurable space and

a random variable X : Ω→ E, the n−th order moment is defined as

E[Xn] =

∫
E
xnPX(dx)

and the standard variance, skewness and kurtosis defined in the first equalities (the second

equality being results one can prove easily as an exercise), given that E(X) = µ <∞

Var(X) := E
[(
X − µ

)2]
= E(X2)− E(X)2

Skew(X) := E
[(X − µ

σ

)3]
=

E[(X − µ)3]

E[(X − µ)2]3/2
=
µ3

σ3

Kurt(X) := E
[(X − µ

σ

)4]
=

E[(X − µ)4]

E[(X − µ)2]2
=
µ4

σ4

Proposition 3.3.

We have that the Existence of higher moments imply existence of lower moments. Let X be a

random variable. Then,

E
[
|X|k

]
<∞ ⇒ E[|Xn|j ] <∞, ∀k ≥ j ≥ 1

Note: This can be proved easily with Hölder inequality, with one of the two functions being

= 1 a.e. and because the total mass for measures of probability is one. This can also be proved

using Jensen’s inequality (see below)

A last but essential theorem of measure theory links the measures of probability we saw

above and the usual density of

Theorem 3.4 (Radon-Nikodym Theorem).

Let (E,E ) be a measurable space and let µ and v be two measures on (E,E ) with µ(E) < ∞
and ν(E) < ∞ such that µ is absolutely continuous with respect to ν. Then, there exists

f : E → R that is E -measurable such that

µ(B) =

∫
B
fdν, ∀B ∈ E

Furthermore, if there exists f : E → R and g : E → R such that this equation holds, then

f ≡ g ν-almost everywhere.

Note: The Radon-Nikodym Theorem says that if µ� ν then there exists an essentially unique

function f such that the measure µ can be represented by the integral of f with respect to ν.
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We call this function f the Radon-Nikodym derivative of µ with respect to ν often denoted by

f ≡ dµ
dν As such the equation above can be written alternatively, ∀B ∈ E as

µ(B) =

∫
B
1dµ =

∫
B

dµ

dν
dν =

∫
B
f(·)dν

As a corollary, we can define the density function.

Corollary 3.5.

Let us consider for example the probability measure µ = PX ∈ ∆(R,B(R)) that is absolutely

continuous with respect to the Lebesgue measure. Then, there exists an essentially (almost-

everywhere) unique f : R→ R such that

µ(B) = PX(B) :=

∫
B
fdλ,∀B ∈ E

The function f in the corollary above is precisely the density function of the probability

distribution PX , as the Lebesgue integral of the function on any measurable set B is exactly

the probability of B Notice that, for any such probability measure PX

FX(x) := FPX (x) =

∫ x

−∞
f(z)dz, ∀x ∈ R

Together with the Fundamental Theorem of Calculus, we have that F ′ ≡ f Lebesgue-almost

everywhere.

Note that if PX is not absolutely continuous, then the statement above is not true

i.e. not all CDF has corresponding density functions. For example, the Cantor function is

counterexample.

Although not all the probability measures on (R,B(R)) are absolutely continuous with

respect to the Lebesgue measure, all of the measures can be decomposed so that part of it is

absolutely continuous. (c.f. notes and Lebesgue decomposition theorem).

3.3 Additional results of measure theory

More is coming: Some more insight on the construction of the Lebesgue integral (outer mea-

sure, definition of the sum of unions, countable additivity, simple approximation theorem,

extension with sum and difference (provided integrability), extension to the limit), Borel Can-

telli (?), Fubini’s theorem, Lebesgue decomposition
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Comprehension questions:

A couple of (hopefully easy) questions to see if you understood the material above:

• What is the σ−algebra associated with two coins tossed sequentially? Is the random variable

Hn = {number of heads} measurable with respect to the entire sample set? Is it measurable

with respect to the σ−algebra generated by the random variable T1 = {the first toss is a tail}

• What is the law, i.e. probability measure associated with the random variable Hn.

• Consider a random variable following a standard Normal distribution X ∼ N (0, 1). What

could be a σ−algebra associated with this random variable.

• Consider the Lebesgue measure that λ(dx) = dx (the usual thing for 101-integration!) what

is the image measure of the Lebesgue measure w.r.t. the Normal distribution X ∼ N (0, 1).

Is that a measure of probability?

• Consider a Poisson distribution Y (check wikipedia if needed :p), what is the image measure

of the Lebesgue measure, w.r.t Y

• Consider the same Normal distribution X, and Y = X2. Can we say that X is measurable

with respect to the σ-algebra generated by Y ? If yes why? If not why not?

• Consider a sequence of random variable X1, . . . , Xn i.i.d. Is Xn measurable w.r.t. σ(X1)?

And what about σ(X1, . . . , Xn−1)? And what about σ(X1, . . . , Xn)?

17



3.4 Convergence theorems

In the following we will consider (Xn)n≤0 a sequence of random variables – i.e., and we will

need to analyze the convergence toward a limit. The question of the nature of convergence is

at the heart of statistics (to attest the quality of estimators and C.I. as covered extensively by

A. Shaikh in Metrics 1). There exists 4 main modes of convergences:

• Convergence "Almost-surely" ("the probability of converging is one")

• Convergence in mean (or Lp) ("the difference fades out in norm Lp/moment of order p")

• Convergence in probability ("the probability of diverging tends towards zero")

• Convergence in distribution ("the law/c.d.f. tends towards another law/c.d.f.)

We will cover them in turn, but beforehand, we will makes sense of the main theorem of

convergence of sequence of functions that one encounter in measure theory, as explained in the

foreword of section 4.1. above.

From the construction of Lebesgue integral to convergence theorems

Definition 3.10 (Terminology).

We say that a property is true "almost-surely" (or a.s.) or P−almost everywhere, (or P−a.e.),
if it is valid ∀ω ∈ Ω except for a set of null probability. Note: For example the two random

variables X and Y are equal almost surely (or simply X = Y, a.s.) if P
(
ω s.t. X(ω) 6= Y (ω)

)
=

0

(i) Given a measurable space (Ω,F ,P) and a random variable (function) X : Ω → E,

Lebesgue’s integral was build by considering positive "step function" (or "simple functions"),

i.e. that can be written as :

X(ω) =
n∑
i=1

αi1{ω ∈ Ai} ω ∈ Ω

where αi < αi+1, ∀i and Ai = X−1({αi}) ∈ F , and hence the integral can be easily written

as : ∫
Ω
X(ω)P(dω) :=

n∑
i=1

αiP(Ai) ∈ [0,∞]

(ii) The second stage was to extend this to positive functions that have a step-functions as

their lower bound, and the integral is defined as the supremum over all potential step-functions

that bound it below:∫
Ω
X(ω)P(dω) = sup

{∫
Ω
X̃(ω)P(dω) & X̃ ≤ X, & X̃ step-function (r.v)

}
That is where the important theorem of monotone convergence appears:
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Theorem 3.6 (Monotone convergence theorem of Beppo-Levi).

Let {Xn}n a sequence of positive and increasing random variables, i.e. such that Xn(ω) ≤
Xn+1(ω) and let X its almost-sure pointwise limit, i.e. for almost all points ω ∈ Ω (every ω

except a set with null probability) such that :

X(ω) = lim
n→∞

↑ Xn(ω)

Then we have the integral of the limit as the limit of the integral:∫
Ω
X(ω)P(dω) = lim

n→∞

∫
Ω
Xn(ω)P(dω)

Corollary 3.7.

A consequence is to be able to switch integral and sum sign (since a sum can always be written

as a particular sequence Yn =
∑n

i=1Xi) for positive (!) random variables.

E
[∑

i

Xi

]
=

∫
Ω

∑
i

Xi(ω)P(dω) =
∑
i

∫
Ω
Xi(ω)P(dω) =

∑
i

E
[∑

i

Xi

]
Corollary 3.8.

Another consequence, very obvious but used a lot in economics, is the following, for every

positive random variable.

•
∫

ΩX(ω)P(dω) <∞ ⇒ X <∞ almost surely

•
∫

ΩX(ω)P(dω) = 0 ⇒ X = 0 almost surely

Note: The proof of the first property requires the Markov inequality (a must to know if you

ever do statistics! even if unrelated with convergence theorems).

Proposition 3.9 (Markov-Chebyshev’s inequality).

Let X : Ω→ R+ a positive random variable. Then, for any constant c > 0 :

P
(
{ω ∈ Ω : X(ω) ≥ c}

)
≤ E[X]

c

The proof holds in one picture (easy to memorize as well).
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Figure 4: Markov inequality in one picture

The second big theorem of measure theory is the Fatou’s lemma

Theorem 3.10.

Let Xn a sequence of positive random variables, then∫
Ω

(
lim inf
n→∞

Xn(ω)
)
P(dω) ≤ lim inf

n→∞

∫
Ω
Xn(ω)P(dω)

Note: Again, Fatou’s lemma is more a corollary (why?) of the monotone convergence theorem

with clever use of definitions of limit inferior (check out this definition!). But it’s used a lot

in analysis and probability theory to provide upper bounds of integrals and estimators for

examples.

(iii) We provided properties for positive function/random variables. The third stage is

to extend that to function of both sign. In particular, we really want to avoid to end up with

results of the type
∫
fdµ = +∞−∞ =(?), giving indeterminacy. The important concept here

is the one of integrability :

Definition 3.11.

Let X : Ω → [−∞,+∞] a random variable (hence measurable). We say that X is integrable,

or admit a first moment, w.r.t. P, if

E
[
|X|
]

=

∫
Ω
|X|dP <∞

In this case, we define the integral of any random variable (not only positive!) by :∫
Ω
X(ω)P(dω) =

∫
Ω
X+(ω)P(dω)−

∫
Ω
X−(ω)P(dω) ∈ R

where X+ = max{X, 0} and X− = −min{X, 0} = max{−X, 0}
Note: We denote by L1(Ω,F ,P) (or simply L1 if there is no ambiguity) the space of all the

random variable (or function) that are P-integrable, i.e. that admit a first moment. Note that

in this definition again use the fact that random variables are defined almost-surely (or P-a.e.).
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Theorem 3.11 (Change of variable and integrability).

Let Φ : (E,FE) → (F,FF ) a measurable (i.e. deterministic) function, PY is the image-

measure of PX w.r.t. Φ, in the sense that ∀B ∈ FF , PY (B) = PX(Φ−1(B)),∀B.

PY is also called pushforward measure of PX by Φ and also denoted PY = PX ◦ Φ−1 or

PY = Φ]PX (a bit as if we would define Y = Φ(X)).

Now, for every measurable function f : F → [−∞,∞], we have∫
E

(f ◦ Φ)dPX :=

∫
E
f(Φ(x))PX(dx) =

∫
F
f(y)PY (dy) =

∫
F
fdPY

where the equality in the middle holds if one of the two integrals is well-defined (i.e. the function

f(X) is integrable, i.e. f(X) ∈ L1).

Note: That is quite an abstract definition of a change of variable with a measure-theory angle.

Now, we have covered enough definition to consider the most important theorem of

measure theory and probability: the Lebesgue dominated convergence theorem.

Theorem 3.12 (Lebesgue’s dominated convergence theorem).

Let {Xn}n a sequence of random variables in L1(Ω,F ,P) (i.e. E[|Xn|] <∞, ∀n and let X its

limit for almost all points ω ∈ Ω (i.e. every ω except those with null probability) such that :

X(ω) = lim
n→∞

Xn(ω)

and if Xn is dominated – i.e. there exists an other integrable random variable Y ∈ L1 such that

almost surely we have |Xn| ≤ |Y |, ∀n ≥ 0. Then we have that X is integrable (i.e. X ∈ L1)

and the integral of the limit as the limit of the integral:∫
Ω
X(ω)P(dω) = lim

n→∞

∫
Ω
Xn(ω)P(dω)

Note:

• In the proof, the slightly different propriety actually shown is the following:

lim
n→∞

∫
Ω
|Xn(ω)−X(ω)|P(dω) = 0

This is the definition of L1-convergence, that we’ll define below!

• The boundedness by an integrable random variable is important because there are a lot

of case where the integral is finite for each n but the limit is not, as for these 3 types of

examples where the functions/random variable is converging pointwisely to the vanishing

function X(ω) = 0 but its integral is not.
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Figure 5: Counterexamples to the dominated CV thm,
because of lack of domination

Convergence theorem for sequences of random variables

Definition 3.12.

A sequence of random variables (Xn)n≥0 converges "Almost-surely" toward X if there exists

an event A with proba one (P(A) = 1) where, ∀ω ∈ A, limn→∞Xn(ω) = X(ω) Said differently,

P
(
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

)
= 1

Note:

• Intuitively After some fluctuations of the sequence, we are (almost-) sure that Xn won’t

fall too far from X

• This type of convergence is the assumption we used in the condition of the Monotone

convergence and the Dominated convergence theorem, where Xn(ω) →n X(ω) almost-

surely pointwisely.

Example 3.4.

Let Xn be a sequence of Normal random variable of law N (0, 1). Let Sn = X1 + · · · + Xn,

which then follow Sn ∼ N (0, n). By Markov inequality, we have that, for all ε > 0:

P(|Sn| > nε) = P(|Sn|3 > n3ε3) ≤ E[|Sn|3]

ε3n3
=

E[|X1|3]

ε2n3/2

We have that
∑∞

k=1 P(|Sn| > nε) < ∞. Thanks to this condition, we now use a theorem (not

covered too much in this course) called Borel-Cantelli’s theorem, that allow to claims that :

P
(

lim sup
n→∞

{|Sn| > nε}
)

= 0

This last equality is the result of Borel Cantelli. This implies that, by definition of limits, we

have that ∃A ∈ F , with P(A) = 1, such that

∀ω ∈ A, ∃n0 = n0(ω, ε) <∞, such that |Sn| ≤ nε, ∀n ≥ n0
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For all ε > 0, we have as a result:

P
(
ω : lim sup

n→∞

|Sn|
n
≤ ε
)

= 1

This implies that lim supn→∞
|Sn|
n = 0, a.s., and limn→∞

Sn
n = 0

Let us take a little detour via Borel-Cantelli’s lemma. Let us define the main object and

state the result

Definition 3.13.

Let (Ω,F ,P) a measured space. Let {An}n a sequence of events and Bn =
⋃
k≥nAk, is weakly

decreasing. We define

A = lim sup
n→∞

An :=
⋂
n≥1

⋃
k≥n

Ak =
⋂
n≥1

Bn = {ω s.t. ω ∈ An for an infinity of n)}

All these terms are simply different notations for the same thing. A is also an event in A ∈ F .

This represents the set of events/states-of-the-world ω which belong to an infinity of events An.

Also 1A(ω) = lim supn→∞ 1An(ω), justifying the notation. For these states-of-the-world, the

events An occurs infinitely many times. Using the rules of complementarity, we also have:

lim inf
n→∞

An =
⋃
n≥1

⋂
k≥n

Ak = {ω s.t. ω ∈ An for only finitely manyn)}

Theorem 3.13 (Borel-Cantelli’s lemma).

Let {An}n>1 a sequence of events (i) If
∑∞

n=1 P (An) <∞, then

P
(
An infinitely many) = 0

(ii) If
∑∞

n=1 P (An) =∞, and if the events {An}n>1 are independant (i.e. ∀n,A1, . . . , An are

independent), then

P (An infinitely many ) = 1

Note:

• This theorem is quite abstract and i.m.o. not so useful for the core sequence in economics.

But it is fundamental for probability theory and for almost sure convergence, including

the proof of law of large number.

• In applications for almost-sure convergence, we often use the following version of part

(i): there exists an event B with P(B) = 1 (hence an almost sure event) such that for all

ω ∈ B we can find n0 = n0(ω) <∞ such that ω ∈ Acn when n > n0. Typically An could

be an event of the type An = {|Xn −X| > ε} to show the a.s. convergence of Xn → X
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Definition 3.14 (Convergence in Probability).

A sequence of random variables (Xn)n≥0 converges "in probability" toward X if, for all ε > 0

lim
n→∞

P
(
ω ∈ Ω : |Xn(ω)−X(ω)| > ε

)
= 0

Note: Intuitively the probability that the sequence Xn falls far away from X is decreasing in

n (but it can potentially be strictly positive)

Example 3.5.

Let Xn be a sequence of random variable, such that E[Xn] → a ∈ R and Var(Xn) → 0, then

again by Markov inequality

P(|Xn − a| > ε) = P(|Xn − a|2 > ε2) ≤ E[|Xn − a|2]

ε2
=

Var(Xn) +
(
|E(Xn)− a|2

)
ε2

→n→∞ 0

Hence Xn converges in probability to the constant a

Example 3.6 (Difference convergence a.s. and in probability).

Consider exponential distribution, with intensity λ (recall, the higher the intensity the lowest

the value of X, in expectation: E[X] = 1
λ).

First, consider Xn ∼ E (λ = n). It is not difficult to show that

Xn −−→
p.s.

X = 0
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Figure 6: Xn ∼ E (λ = n) converges to X = 0, a.s.

We see well that, for any given (fixed) ε, ∃N ≥ 1 after which P(|Xn−0| > ε) = 0, ∀n ≥
N , hence the sequence converges almost surely.
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Second, consider X̃n ∼ E (λ = log(n)), where the intensity diverges more slowly. Again,

it is not really difficult to show that :

X̃n −→
P
X̃ = 0 and X̃n 9p.s. 0
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Figure 7: X̃n ∼ E (λ = log(n)) converges to X̃ = 0, in
proba, but not almost surely

Note: All the usual results on limits, like unicity, monotonicity, linearity, homogeneity, are

valid for the almost-sure and in-probability convergence.

The next theorem is showing the link between these two modes of convergences

Theorem 3.14 (CV a.s. ⇒ CV in P). • If Xn
a.s.−−−→
n→∞

X almost surely, then the conver-

gence also occurs in probability Xn
P−−−→

n→∞
X

• If Xn
P−−−→

n→∞
X in probability, then there is a subsequence XN(n) that converges almost

surely Xn
a.s.−−−→
n→∞

X.

Example 3.7 (CV in proba ; CV a.s.).

Consider the space Ω = [0, 1
2 ] with B[0, 1

2
] and the Lebesgue measure. Consider for all n, kn

is such that 2kn < n ≤ 2kn+1 and consider the sequence Xn(ω) = 1(n−2k−1

2k+1 ,n−2k

2k+1

](ω), with the

first few elements such that:

X2(ω) := 1(0, 1
2 ](ω)

X3(ω) := 1(0, 1
4 ](ω) X4(ω) := 1( 1

4
, 1
2 ](ω) X4(ω) := 1( 1

4
, 1
2 ](ω)

X5(ω) := 1(0, 1
8 ](ω) X6(ω) := 1( 1

8
, 2
8 ](ω) X7(ω) := 1( 2

8
, 3
8 ](ω) . . .

Then Xn does not convergence almost surely (since for any ω ∈ (0, 1] and N ∈ N there exist
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m,n ≥ N such that Xn(ω) = 1 and Xm(ω) = 0 (we have that lim supnXn = 1). On the other

hand, since

P (|Xn| > 0)→ 0 as n→∞

it follows easily that Xn converges in probability to 0

Moreover, it is easy to find a subsequence of Xn, for example with N(n) = 2n, which

converges almost-surely.

Definition 3.15 (Convergence in Norm Lp).

A sequence of random variables (Xn)n≥0 converges "in mean p" or in norm Lp(Ω,F ,P) toward

X if

lim
n→∞

E
(
|Xn −X|p

)
= 0

Note:

• By Hölder inequality, if Xn → X in norm Lp, and if q ∈ [1, p], then Xn → X in norm

Lq as well. In other words, the higher p the stronger the convergence.

• If Xn → X in norm Lp, then |Xn| → |X| in Lp, since by reverse triangle inequality we

have
∣∣∣|Xn| − |X|

∣∣∣ ≤ |Xn −X|

• If Xn → X in norm Lp, then E[Xp
n]→ E[Xp]

Again a theorem following the link between these two modes of convergence.

Theorem 3.15 (CV Lp ⇒ CV in P). • If Xn
Lp−−−→

n→∞
X in norm Lp, then the convergence

also occurs in probability Xn
P−−−→

n→∞
X

Note:

• The proof of the first point is simply to use the Markov inequality.

• The reciprocal is false as shown in the next example. However, it works in the case of

dominated random variables, c.f. the next theorem.

Example 3.8 (CV in P ; CV Lp ).

Let {Xn}n≥3 a sequence of real random variables, such that P (Xn = n) = 1
lnn and P (Xn = 0) =

1− 1
lnn · For all tout ε > 0, we have:

P (|Xn| > ε) 6
1

lnn
→ 0

therefore, on the one hand, Xn → 0 in probability. On the other hand, we have:

E (|Xn|p) =
np

lnn
→∞

So Xn doesn’t converge toward 0 in Lp.

We already claimed with the dominated convergence theorem implies that CV a.s. im-

plies CV in norm L1. Actually we can actually weaken the assumption.

26



Theorem 3.16 (Weaker Dominated convergence theorem and Fatou’s lemma).

These theorems hold for sequences of r.v. converging in probability instead of almost-surely:

• If Xn
P−−−→

n→∞
X in probability, and if {Xn}n is dominated |Xn| ≤ Y , ∀n and Y is

integrable E[Y ] <∞, then Xn → X in Lp

• If Xn
P−−−→

n→∞
X in probability, and if Xn ≥ 0, a.s. then E(X) ≤ lim infn→∞ E(Xn)

In the dominated convergence, we assumed that the sequence of random variables is dom-

inated, which is enough to get rid of the pathological cases of compressions/dilatation/translation.

However, convergence almost-sure and domination can be very strong. The aim of Vilati’s the-

orem below is to relax these assumptions and choosing the weakest conditions sufficient (so

weak that they are in fact necessary) – which are: convergence in probability, uniform integra-

bility and tightness – to obtain the convergence in Lp as a necessary and sufficient condition.

Let us introduce these two new notions first.

Definition 3.16 (Tightness).

A sequence of random variables {Xn : n ≥ 1} is tight if, for any ε > 0 there exists a (finite)

constant B > 0 such that

inf
n

P (|Xn| ≤ B) ≥ 1− ε

Equivalently, {Xn}n is tight if, for any ε > 0, there exists a finite constant Mε < ∞ and

nε ∈ N such that

P (|Xn| > Mε) < ε, ∀n ≥ nε

Note:

• This is called "boundedness in probability" or uniform tightness. It is a condition to

prevent the collection of measure PXn to "escape to infinity" (i.e. to avoid the translation

cases in the examples above).

• A finite sequence of random variables is always tight.

Definition 3.17 (Uniform integrability).

A collection of random variable {Xn}n is said to be uniformly integrable if for any ε > 0, there

exists δε > 0 such that whenever A ⊆ ω is measurable P(A) < δ∫
A
|X(ω)|P(dω) < ε

for all Xn ∈ {Xn}n (i.e. for all n).

A more probabilistic definition (but equivalent) replace the set A by {|X| ≥ K}: the sequence

{Xn}n is uniformly integrable if ∀ε > 0, there exists 0 < K < ∞ (with K = Kε) such that,

for all Xn ∈ {Xn}n. i.e. for all n:∫
Ω
|X(ω)|1{|X(ω)| ≥ K}P(dω) = E

[
|X|1{|X| ≥ K}

]
< ε
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Note:

• Uniform integrability is a really important notion for convergence of martingales (however

not really covered in the core sequence)

• A finite sequence of integrable random variables is always uniform integrable.

Thanks to these two notions, let us cover the sufficient and necessary conditions for the

Dominated CV theorem

Theorem 3.17 (Vitali’s theorem).

Let (Xn)n ⊆ Lp(Ω,F ,P), X ∈ Lp(Ω,F ,P) with 1 ≤ p <∞.

Then, Xn → X in Lp if and only if we have:

(i) Xn converge in probability to X

(ii) {Xn} is tight and/or P(Ω) <∞ (trivial for proba. measures, but not other measures).

(iii) {Xn}n is uniform integrable

Now that we have introduced all these definitions of convergence, we can finally state

the most important theorem of this sections.

Theorem 3.18 (Law of Large Numbers).

Let {Xn}n a sequence of variable independent and identically distributed. If E(|X|) <∞, and

if E(X) = µ, then:

lim
n→∞

X1 + · · ·+Xn

n
= µ

• This convergence is almost sure (strong law of large numbers)

• This converges also in probability (weak law of large numbers)

Note: The proof of this theorem is long and technical. However, by strengthening the assump-

tion, with Xn admitting a 4th order moment E(|X|4) <∞, we can prove it easily with Markov

inequality. First assume that µ = 0 (if not, we can always define X̃n = Xn − µ. As a result

E[Sn] = 0, ∀n. For all ε > 0

P[|Sn| > ε] = P[|Sn|4 > ε4] ≤ E[|Sn|4]

ε4

By tediously developing the sum S4
n =

(∑n
k=1Xk

)
and using the fact that the random

variables are independent, such that E[XnXn′ ] = E[Xn]E[Xn′ ] and E[Xn] = 0, all the terms

at the first power drops out. We end up with

E[Sn] =
1

n4

[
nE[X4

n] + 3n(n− 1)E[X2
iX

2
j ]

=
µ4

n3
+

3σ4

n2
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We now have the convergence of the series, making the use of Borel-Cantelli possible:

P[|Sn| > ε︸ ︷︷ ︸
Aεn

] ≤ 1

ε4

(µ4

n3
+

3σ4

n2

) ∞∑
n=1

P(Aεn) <∞

As a result, only finitely many Aεn occurs. We can find a threshold n0 such that {ω, s.t.|Sn| < ε}
is almost-sure ∀n ≥ n0, justifying the convergence almost-surely of the sequence.

You can find a lot of textbooks/on the web different version of the proof of the law of

large number (with 2nd order moment, simpler, or only first moment, more difficult).

Convergence in distribution

This mode of convergence is slightly different than the 3 modes considered above. In conver-

gence almost-sure, in probability or in norms Lp, we focused on the sequence of random vari-

ables, i.e. {Xn}, i.e. sequence of functions. In the convergence in distributions, we focus on the

contrary on the convergence of a sequence of laws! (i.e. measures µXi = PX1 , PX2 · · · → PX).

This is much weaker!

Definition 3.18 (CV in distribution).

A sequence of random variables {Xn}n≥0 converges "in law or in distribution toward X if, for

all continuous and bounded functions ϕ

lim
n→∞

E
(
ϕ(Xn)

)
= E

(
ϕ(X)

)
It is denoted Xn

n→∞−−−→
D

X or Xn
n→∞−−−→
L

X. And alternative definition is one in which we make

the distribution appear clearly : Xn converges in law if :

lim
n→∞

Fn(x) = F (x)

for every point x where F (x) is continuous, with Fn and F the c.d.f. of Xn and X respectively.

Note:

• The sequences may not need to be defined on the same space, i.e. we can consider

Xn : Ω→ En.

• If all the r.v. are defined on the same space, we can replace some of the Xn by other Yn,

provided that they are the same law PXn = PYn !.

• The next proposition show an equivalence with another formulation. In many proofs of

convergence in distribution

• In functional analysis, the convergence in distribution is called the weak convergence

of measure. There are many more measures converging weakly than there is functions

converging in probability (or a.s. or in Lp). The main idea is that we consider the

convergence of measure µn (and not functions as in other modes of convergence), where
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we average against any "nice" test function ϕ (continuous and bounded or continuous

with compact support) ∫
ϕ(x)µn(dx)→

∫
ϕ(x)µ(dx)

Proposition 3.19.

The sequence {Xn}n≥0 converges in distribution if and only if, for all functions f ∈ Cc, space
of continuous function with compact support, we have

lim
n→∞

E
(
ϕ(Xn)

)
= E

(
ϕ(X)

)
Note: These are several equivalence statements listed in the portmanteau lemma.

Theorem 3.20 (portmanteau lemma).

We provides several equivalent definitions of convergence in distribution. Although these defini-

tions are less intuitive, they are used to prove a number of statistical theorems. The convergence

in distribution of Xn
D−−−→

n→∞
X if and only if any of the following statements are true:

• P(Xn ≤ x)→ P(X ≤ x) for all continuity points of x 7→ P(X ≤ x)

• E
[
ϕ(Xn)

]
→ E

[
ϕ(X)

]
, for all bounded continuous function’s f

• E
[
ϕ(Xn)

]
→ E

[
ϕ(X)

]
, for all bounded, Lipschitz function’s f

• lim inf E
[
ϕ(Xn)

]
≥ E

[
ϕ(X)

]
for all nonnegative, continuous functions f

• lim inf P(Xn ∈ G) ≥ P(X ∈ G) for every open set G

• lim supP(Xn ∈ F ) ≤ P(X ∈ F ) for every closed set F

• P(Xn ∈ B)→ P(X ∈ B) for all continuity sets B of random variable X;

• lim supE
[
ϕ(Xn) ≤ E

[
ϕ(X)

]
for every upper semi-continuous function f bounded above

• lim inf E
[
ϕ(Xn)

]
≥ E

[
ϕ(X)

]
for every lower semi-continuous function ϕ bounded below.

Theorem 3.21 (CV in P ⇒ CV in D).
Let (Xn) a sequence of random variables converging in probability to X then (Xn) converges

in law / in distribution X :

Xn
P−−−→

n→∞
X =⇒ Xn

D−−−→
n→∞

X

The reciprocal

Xn
D−−−→

n→∞
a =⇒ Xn

P−−−→
n→∞

a

Saying that (Xn) converges in law to the constant a implies that the distribution/measure of

Xn converges toward the Dirac measure at the point a:

δa(x) =

{
+∞ x = a

0 x = 0
and

∫ ∞
−∞

dδa = 1

∫ ∞
−∞

xdδa(x) = a
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or, said differently:

E [ϕ (Xn)] −−−→
n→∞

E[ϕ(a)] = ϕ(a)

Example 3.9 (CV in P ⇒: CV in D ).

Examples and comments to see the link between these two notions.

• Degenerate logistic regression: Consider a random variable following the logistic distribution:

FXn(x) =
exp(nx)

1 + exp(nx)
x ∈ R

Then as n→∞ we have the limit c.d.f.:

FX(x) =


0 if x < 0
1
2 if x = 0

1 if x > 0

This is not exactly a c.d.f. as it is not right continuous at x = 0 (a defining property of

c.d.f.). However, as x = 0 is not a continuity of FX(x), we don’t need to consider it in the

definition of distribution. Moreover, it is clear that we have convergence in probability

P[|Xn| < ε] =
exp(nε)

1 + exp(nε)
− exp(−nε)

1 + exp(−nε)
→ 1 as n→∞

Hence we have that the limiting distribution is degenerate at X = 0 Xn
D−−−→

n→∞
X where

P[X = 0] = 1, or X = 0 almost surely, or the measure of X is a Dirac at zero: PX(x) =

δ0(x). As a result, the convergence in distribution toward a constant and the convergence in

probability are equivalent here, as implied by the last theorem.

Figure 8: X̃n converges to X̃ = 0, in distribution,
i.e. PXn

weak-∗−−−−−→
n→∞

δ0
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• More generally, random variables that converge to a discrete random variable on {x1, . . . , xn}
have their probability distribution (or c.d.f.) converges toward the Dirac measure (measure

with mass points) on {x1, . . . , xn}., and their c.d.f. converges towards the step function

FX(x) =
∑

i αi1[xi, xi+1)(x)

• It is quite easy to see why convergence in distribution is the weakest notion of convergence

and doesn’t imply others, for example in probability. Take simply a sequence of copies of a

random variable: Xn = X,∀n and suppose X ∼ N (0, 1). By symmetry of the Gaussian, we

have that X̃ = −X ∼ N (0, 1) as well. As a result:

Xn = X
D−−−→

n→∞
X̃ = −X

but of course, we don’t have convergence in probability (as indeed |X − X̃| = 2X is strictly

positive almost-surely!). To avoid the confusion with convergence of random variables, we

replace the limit directly by its distribution:

Xn
D−−−→

n→∞
N (0, 1)

Here are some propositions that are covered in Metrics 1 (when talking about τ -consistency)

that link the tightness and convergence in distribution.

Proposition 3.22.

Let {Xn}n sequence of random variables.

• If Xn
D−−−→

n→∞
X, then Xn is tight. (or more precisely {PXn} is tight)

• Tightness is not a sufficient condition

• Prokhorov’s theorem: If the sequence {Xn} is tight, then there exists a subsequence

N(n),∀n such that Xn
D−−−→

n→∞
X.

Theorem 3.23 (Continuous mapping theorem).

Let (Xn) be a sequence of random variable and X another random variable, and g a function

continuous everywhere on the set of discontinuity Dg. If P(X ∈ Dg) = 0 (i.e. g is continuous

PX-almost everywhere, given the underlying distribution of X), then the sequence g(Xn) inherit

the mode of convergence of Xn, toward g(X) (g (Xn)) herite du mode de convergence de la suite

(Xn) :

1. Xn
a.s.−−−→
n→∞

X =⇒ g(Xn)
a.s.−−−→
n→∞

g(X)

2. Xn
P−−−→

n→∞
X =⇒ g(Xn)

P−−−→
n→∞

g(X)

3. Xn
D−−−→

n→∞
X =⇒ g(Xn)

D−−−→
n→∞

g(X)

What matters is not that g is continuous everywhere, but is continuous where g where X have

some chance of falling, what we emphasize with condition P(X ∈ Dg) = 0.

Note:
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• This is one of the most important theorem in statistics, to evaluate the consistency of

estimators, as countless proofs in A. Shaikh’s class use it.

• Note however that convergence in distribution of {Xn}n toX and Yn to Y does in general

”not” imply convergence in distribution of Xn + Yn → X + Y or of XnYn → XY

• The reason for that is that (Xn, Yn) do not converge to (X,Y ), jointly, preventing a

potential convergence. The next theorem makes that clear and is a great generalization

of the law of large number in the case of sequence of random vectors.

Theorem 3.24 (Marginals and joint convergence).

Let Xn = (Xn,1, . . . , Xn,k) vectors of random variables (random vectors).

• Let (Xn) be a sequence of random variable in Rk and X another random variable in Rk. Let
Xn,j denote the j-th element of sequence Xn. Then,

Xn,j
P−−−→

n→∞
Xj =⇒ Xn

P−−−→
n→∞

X

• Convergences in marginal distributions does not imply convergence in joint distribution. To

see this, consider (
Xn

Yn

)
∼ N

((
0

0

)
,

1 (−1)n

(−1)n 1

)

Note that Xn
D−−−→

n→∞
N (0, 1) and Yn

D−−−→
n→∞

N (0, 1)

However, the joint density does not ever converge as it "flips" from being perfectly positive

and negative correlated between Xn and Yn

Note: Associated with the continuous mapping, we can easily have the convergence of estima-

tors. An easy consequence is the Slutsky’s lemma.

Corollary 3.25 (Slutsky’s theorem).

If {Xn}n converges in distribution to X and Yn converges in probability to a constant c ∈ Rk

then
Xn + Yn

D−−−→
n→∞

X + c

XnYn
D−−−→

n→∞
Xc

Xn/Yn
D−−−→

n→∞
X/c

Note: This is simply an application of the joint convergence in probability and the continuous

mapping theorem.

Definition 3.19 (Characteristic function - Fourier transform).

The characteristic function is given by the following mapping φX : Rk → C the set of complex

number:

φX(t) = E
[
ei〈t,X〉

]
=

∫
Rk
ei〈t,x〉PX(dx)
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Said differently, the characteristic function is a rescaled version of the Fourier transform. One

can use all the results from Fourier analysis to compute it.

Note:

• We always have φX(0) = 1 (integral of the distribution sums to one) and |φX(t)| ≤ 1 alway

lives in the unit disk. Moreover, the characteristic function is absolutely continuous w.r.t.

Lebesgue measure.

• In particular, if X and Y are independent, then φX+Y (t) = φX(t)φY (t). This is simpler

than using the usual method: Indeed, for a test function g(·) we can compute the sum as

follow:

E[g(X+Y )] =

∫ ∫
g(x+y)fX(x)fY (y)dxdy

z:=x+y
=

∫ ∫
g(z)fX(z−y)fY (y)dzdy =

∫
g(z)

∫
fX(z−y)fY (y)dydz

Hence we see that fX+Y (z) =
∫
fX(z − y)fY (y)dz ≡ (fX ? fY )(z) (the distribution of the

sum is the convolution of the distributions!). That’s consistent with the fact that the Fourier

transform of the convolution is the product of the Fourier transforms!

• The characteristic function can be used to compute moments E[Xn] = φ
(n)
X (0)/in

• As its name says, this function characterizes the law/distribution in the sense that two

random variables X,Y have the same law i.f.f. they have the same characteristic function

φX(t) = φY (t)

• An important example is the Normal distribution: it is special since the Fourier transform

of N (µ, σ2) is φX(t) = exp(iµt− σ2t2

2 ) (which is a rescaled version of ... a Gaussian density!)

• This is fundamental for the proof of the central limit theorem

Now, we do a very quick detour to what mathematician call Laplace transform, and what

economists use a lot in log-normal / linear models (linear models where the error terms/shocks

follow Gaussian distribution and all the variables are expressed in logs).

Definition 3.20 (Laplace transform and example of expectation of log-normal).

The characteristic function is given by the following mapping LX(t) : Rk → R :

LX(t) = E[e−〈t,X〉
]

=

∫
Rk
e−〈t,x〉PX(dx)

More specifically it looks similar to the Characteristic function, but with the imaginary sign

raised to power 2 (indeed i2 = −1 by definition).

• An important example is again the Normal distribution: the Laplace transform of

N (µ, σ2) is LX(t) = exp(µt + σ2t2

2 ) (which is again a rescaled version of ... a Gaus-

sian density!)
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Theorem 3.26 (Lévy’s continuity theorem).

The sequence {Xn}n converges in distribution to X if and only if the sequence of corresponding

characteristic functions φn converges pointwise to the characteristic function φ of X, i.e.

∀ t ∈ R φXn(t)
n→∞−−−→ φX(t)

We finally arrive to one of the most important result of statistics.
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Theorem 3.27 (Central limit theorem).

Let (Xn)n≥1 a sequence of real random variables, i.i.d., with moments of second order E(X2) <

∞, and noting Sn =
∑n

i=1Xi and σ2 = Var(X), then:

lim
n→∞

√
n
(Sn
n
− µ

)
∼ N (0, σ2)

or written differently
√
n
(Sn
n
− µ

) D−−−→
n→∞

N (0, σ2)

This convergence is in law, and that intuitively implies that any sum of r.v. falls "normally"

around its mean µ, with a variance σ2 and at a speed of convergence
√
n.

Note: The following picture show that the CLT, like the LLN requires the finiteness of first

(and second) moments! Cauchy Distribution is the typical example of a distribution with an

infinite mean (if it even makes sense as we can’t even define the expectation when the first

moment doesn’t exist!)

Figure 9: Example of convergence in law in the CLT

Figure 10: Example of non-convergence in law (no first moment) in the CLT
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Glivenko Cantelli

We have all the tools to cover this theorem (from V. Glivenko, and F Cantelli in 1933)

slightly advanced for the core sequence but very important for econometric theory (Vapnik-

Chervonenkis theory in machine learning and M-estimators in econometrics).

Assume that {Xn}n is a sequence of independent and identically-distributed random

variables in R with common cumulative distribution function F (x). The empirical distribution

function for X1, . . . , Xn is defined by

Fn(x) =
1

n

n∑
i=1

1[Xi,∞)(x) =
1

n

n∑
i=1

1{Xi ≤ x} =
1

n
# {1 ≤ i ≤ n | Xi ≤ x}

where 1C is the indicator function of the set C. Said differently, this is the cumulative sum of

the histogram of sample {Xn}n. First notice that, for every (fixed) x, Fn(x) is a sequence of

random variables which converges to F (x) almost surely by the strong law of large numbers,

that is, Fn converges to F pointwise. Glivenko-Cantelli theorem strengthens this result by

considering the function F as a whole (for all x) using the supremum-norm.

Figure 11: Glivenko-Cantelli: An empirical c.d.f and the limiting theoretical c.d.f

Theorem 3.28 (Glivenko Cantelli).

Consider the empirical distribution Fn of the elements of sequence {Xn}n, the function Fn

converges uniformly to F :

‖Fn − F‖∞ = sup
x∈R
|Fn(x)− F (x)| −→ 0 almost surely

Note:

• One can generalize it to empirical measure indexed by sets C ∈ C.

Pn(C) =
1

n

n∑
i=1

1C (Xi) , C ∈ C
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• If Xn is a stationary ergodic process (c.f. definition below in section 4), then Fn(x) converges

almost surely to F (x) = E
(
1{X1≤x}

)
. The Glivenko-Cantelli theorem gives a stronger mode

of convergence than this in the iid case. Moreover, this has the same intuition as an ergodic

theorem (more on this below). The average law over time (the empirical distribution)

converges to the law over space at the limit.

CLT and Confidence interval

In the following, we will derive confidence regions for a test.

Definition 3.21 (Confidence set/region).

A confidence set/region of level 1 − α for µ = E[X], denoted Cn = Cn (X1, X2, . . . , Xn) ,

is a set such that the probability that the true mean is contained in the set is greater than

1− α, α ∈ (0, 1) i.e.

P (µ ∈ Cn) ≥ 1− α

For example, if α = 5%, then Cn gives us the interval in which the the probability that Cn
contains the true mean is 95%. Here we will rely on the asymptotic properties of the CLT. In

the next example we will show that we can also obtain non-asymptotic (but usually wider),

confidence set using Markov’s Inequality.

Example 3.10 (Confidence region using CLT )).

X1, X2, . . . , Xn
iid∼ Bernoulli B(q) where q ∈ (0, 1). Let α be given. We wish to construct a

confidence region for µ = E[X] = q at level 1− α Recall that the WLLN tells us that :

X̄n
P−−−→

n→∞
µ = q

since Var(Xn) =: σ2 = q(1− q) a natural candidate for σ2 is

s2
n = X̄n

(
1− X̄n

)
Thus, we can write s2

n as a function g, parameterized as s2
n = g

(
X̄n

)
with g(a) = a(1 − a).

Since g is of course continuous, by the Continuous Mapping Theorem:

s2
n

P−−−→
n→∞

σ2

since σ2 > 0, by Slutsky’s Lemma,

√
n
(
X̄n − µ(P )

)√
X̄n

(
1− X̄n

) D−−−→
n→∞

N (0, 1)
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Defining, for zx = Φ(x) the quantile of the standard normal distribution:

cn := z1−α
2

√
X̄n

(
1− X̄n

)
√
n

and hence our confidence interval:

Cn :=
[
X̄n − cn, X̄n + cn

]
Now that we constructed it, let us check that it is indeed a confidence region, i.e. show that

P (µ ∈ Cn)→ 1− α :

P (µ ∈ Cn) = P
(
[X̄n − cn ≤ µ ≥ X̄n + cn

)
= P

(
|X̄n − µ| ≤ cn

)
= P

|X̄n − µ| ≤ z1−α
2

√
X̄n

(
1− X̄n

)
√
n


= P

 √
n|X̄n − µ|√
X̄n

(
1− X̄n

) ≤ z1−α
2


→n→∞ P

(
|z| ≤ z1−α

2

)
CV in D

= 1− (
α

2
+
α

2
) = 1− α

We can write confident regions in the following equivalent way:

Cn :=

x ∈ R :

√
n
∣∣X̄n − x

∣∣√
X̄n

(
1− X̄n

) ≤ z1−n
2


The probability P (µ(P ) ∈ Cn) above is called the coverage probability. The actual coverage

probability based on data may be poor in finite samples, in particular, when q is close to 0 or 1.

Notice that confidence region using Markov’s inequality does not have this problem (although

the region is wider).

Example 3.11 (Confidence sets with Markov’s inequality).

Suppose that X1, X2, . . . , Xn
iid∼ Bernoulli B(q) where q ∈ (0, 1). Let α be given. We wish

to construct a confidence region for µ = E[X] = q at level 1 − α, for α ∈ (0, 1). We can use

the Markov’s inequality to construct this set (later, we will use the Central Limit Theorem).
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Letting q = 2, we obtain:

P
(∣∣X̄n − µ

∣∣ > ε
)
≤

E
[(
X̄n − µ

)2]
ε2

=
Var

[
X̄n

]
ε2

=
1
n2Var [

∑n
i=1X]

ε2
=

1
n2

(∑n
i=1 Var[X] + 2

∑
i 6=j Cov [Xi, Xj ]

)
ε2

=
1

n2

nVar(X)

ε2
=
q(1− q)
nε2

where we used the fact that Xi ’s are identically distributed (i.e. Var [Xi] = Var[X] for all i )

and independently distributed (i.e. Cov [Xi, Xj ] = 0 for all i 6= j)

40



Recap

In the following figure, I display the different modes of convergences and the links between

them.

Figure 12: Modes of convergences – summary
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Comprehension questions:

A couple of (hopefully easy) questions to see if you understood the material above:

• Let Yn ∼ E (λ = n2) and Zn ∼ N (αn, 1), where |α| < 1 is a constant parameter. Justify

carefully, with the help of some convergence theorem of measure theory, why

(i) E
[ ∞∑
k=0

Yk

]
=
∞∑
k=0

E
[
Yk

]
(ii) E

[ ∞∑
k=0

Zk

]
=
∞∑
k=0

E
[
Zk

]
and find these two values.

• Provide a careful (but easy) proof of the Markov inequality.

• Let two positive random variables X and Y , i.i.d. (independent and identically distributed).

Can you find an example where X is integrable and the random variable Z = X−Y
2 is not ?

If yes, why/which one? If not, why not?

• Find three types of counterexamples (c.f. the note) for the theorem 3.12 where removing

the domination prevent the L1-convergence.

• Prove the claims of example 3.6 about the respective convergences almost-surely and in

probability of Xn and X̃n.

• Prove the 3rd remark of definition 3.15.

• Prove the proposition theorem 3.15 using the Markov inequality
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3.5 Additional topics in probability and statistics

Independence

Definition 3.22.

We can (re-)define independence using our measure theory formalism.

• Let G1, · · · ,Gn be sub-σ-algebra of F . We say they are independent if :

P (A1 ∩ · · · ∩An) = P (A1)×· · ·×P (An) , ∀Ai ∈ Gi 1 ≤ i ≤ n

• Let X1, · · · , Xn random variables with values in (E1,E1) , · · · , (En,En) , respectively. We say

that X1, · · · , Xn are independent if σ (X1) , · · · , σ (Xn) are independent. This is equivalent

to

P (X1 ∈ B1, · · · , Xn ∈ Bn) = P (X1 ∈ B1)×· · ·×P (Xn ∈ Bn) , ∀Bi ∈ Ei 1 ≤ i ≤ n

Indeed we just need to recall that σ (Xi) =
{
X−1
i (B) : B ∈ Ei

}
.

• We say that event A1, · · · , An are independent if the random variables 1A1 , · · · ,1An are,

which gives use the usual definition from our high-school class (remember σ(1A) = {∅, A,Ac,Ω})

Consequences:

If G1, · · · ,Gn independent sub-σ-algebra, and if for all i Xi is a random measure that is Gi-

measurable, then X1, · · · , Xn are independent. Moreover, given fi : (Ei,Ei) → (Ẽi, Ẽ ) for

1 ≤ i ≤ n are measurable functions, then f1 (X1) , · · · , fn (Xn) are also independent random

variables.

Theorem 3.29.

Let X1, · · · , Xn are independent random variables, with values in (E1,C1) , · · · , (En,En) re-

spectively. The following conditions are equivalent:

(i) X1, · · · , Xn are independent

(ii) P(X1,··· ,Xn) = PX1 ⊗ · · · ⊗ PXn
(iii) E [f1 (X1) · · · fn (Xn)] = E [f1 (X1)] · · ·E [fn (Xn)] for all positive measurable function (or

bounded) fi on (Ei,Ei)

Note: The last implication (ii) ⇒ is simply Fubini’s theorem, which is also good to have in

our toolbox.

E [f1 (X1) · · · fn (Xn)] =

∫
E1×···×En

f1 (x1) · · · fn (xn)PX1 (dx1) · · ·PXn (dxn)

=

(∫
E1

f1 (x1)PX1 (dx1)

)
· · ·
(∫

En

fn (xn)PXn (dxn)

)
= E [f1 (X1)] · · ·E [fn (Xn)]
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Corollary 3.30.

Let X1, · · · , Xn be independent real random variables, such that Xi admit a density denoted

fXi . Then (X1, . . . , Xn) admit a density denoted

f(X1,···Xn) (x1, · · · , xn) := fX1 (x1) · · · fXn (xn)

Corollary 3.31.

X1 and X2 are independent real random variables in L2 (i.e. admit a 2nd order moment).

Then

Cov (X1, X2) := E
[
(X1 − E[X1])(X2 − E[X2]

]
= 0

Note:

• The converse in not true!!

• The only random variables that are independent if and only if they are uncorrelated are

the Gaussian vectors (Tamdam! → perfect transition!).

Gaussian Vectors

Let X = (X1, . . . , XK) a vector following the multivariate normal distribution : it is

said to be "non-degenerate" when the symmetric covariance matrix Σ is positive definite. In

this case, let us recall the density:

fX (x1, . . . , xK) =
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)√

(2π)Kdet(Σ)

where x ∈ Rk-dimensional column vector and det(Σ) the determinant of Σ:

Σ =


Var(X1) Cov(X1, X2) . . . Cov(X1, Xn)

... . . . . . .
...

Cov(Xn, X1) . . . . . . Var(Xn)


Note: We can rewrite any Gaussian vector as a linear combination:

X = AZ + µ

where Z ∼ N (0, IK) and A is a matrix that decompose Σ such that Σ = AAT
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Bivariate case:

In the 2 -dimensional nonsingular case (k = rank(Σ) = 2), the probability density

function of a vector (X,Y ) is:

f(x, y) =
1

2πσXσY
√

1− ρ2
exp

(
− 1

2 (1− ρ2)

[
(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

− 2ρ (x− µX) (y − µY )

σXσY

])

where ρ is the correlation between X and Y and where σX > 0 and σY > 0 are the respective

standard deviation of X and Y . In this case,

µ =

(
µX

µY

)
, Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)

Figure 13: Joint normal distributions, with ρ > 0
and the marginals on the axis

Definition 3.23 (Gaussian vector/Gaussian process).

A vector X = (X1, . . . , XK) or even any collection {Xn}n is a Gaussian vector/Gaussian

process, if all the linear combination of its elements follows a Gaussian distribution:

Y =

K∑
i=1

λiXi ∼ N (µ, σ2)

Consequences:

• If X is Gaussian then ⇒ Xi,∀ i are Gaussian

• The converse is not true: let X ∼ N (0, 1) and ε ∼ Rademacher (i.e. ε = +1 or −1

each with probability 1/2. Now consider the vector X = (X, εX). The sum of the two

elements is = 0 with probability 1/2, surely not a Gaussian!
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• These collections of non-gaussian vectors of normal r.v. generally sums to "mixture

models" (check it out!)

• The converse is true if the elements Xi,∀ i are independent. This is because the the sum
of independent Normal random variables is always normal.

Theorem 3.32.

Let X = (X1, . . . , XK) be a Gaussian vector. The random variable X1, . . . , XK are independent

if and only if their covariance (taken two-by-two) is null ; or equivalently, when their variance

covariance matrix is diagonal.

Note: Careful: it is not enough to say that two individual gaussian variables are independent

iff they are uncorrelated! Again take the counter example after the definition! The "couple"

needs to be Gaussian vector/collection ! (which isn’t obvious!)

Other tricks

Here is a list of other useful information (for the core sequence) about Normal distribution:

• Two sided truncation: Let X ∼ N (µ, σ2) Let α = (a− µ)/σ and β = (b− µ)/σ. Then:

E(X | a < X < b) = µ+ σ
φ(α)− φ(β)

Φ(β)− Φ(α)

and

Var(X | a < X < b) = σ2

[
1 +

αφ(α)− βφ(β)

Φ(β)− Φ(α)
−
(
φ(α)− φ(β)

Φ(β)− Φ(α)

)2
]

• Moreover, when the truncated has one tail (respective truncated on the lower tail (LHS)

or on the upper tail (RHS), the expectation rewrite :

E(X | a < X) = µ+ σ
φ(α)

1− Φ(α)
or E(X | X < b) = µ− σ φ(β)

Φ(β)

You will use these Normal distribution in Metrics 3 for the Heckman correction.

• Slightly different topic: the ratio above (RHS)

h(x) =
φ(x)

Φ(x)

is called the hazard rate (i.e. the pdf over the cdf). This is defined as :

h(x) = lim
δ→0

1

δ
P[x < X ≤ x+ δ | X > x]

Moreover, φ(x)
1−Φ(x) is the inverse-hazard rate (useful for Price theory 3 for Monopoly

screening problems). Also h(x) is the inverse of the Mills ratio: m(x) = Φ(x)
φ(x) . For the

normal distribution, this ratio converges to x (i.e. φ(x)
Φ(x) ∼ x, when x → ∞. For the

uniform U([a, b]) this ratio is x−a
b−a

46



• Coming back on Normal distribution, check out the Characteristic function and the

Laplace transform (expectation of the log-normal), defined above!

Comprehension questions (In progress)

• Find a example of Normally distributed r.v. that are uncorrelated but not independent.

• Work out the very easy proof of corollary 3.31

•

• Find a counterexample where two random variables are uncorrelated but not independent
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3.6 Conditional expectation

In this section we are interested in knowing the expectation of a random variable, condi-

tional on the information contained in a (sub)-σ-algebra G/another random variable. Careful!

Conditional expectation is a mathematical object that tends to be greatly misunderstood by

economists (and students in mathematics).

Example 3.12 (Motivating example).

Suppose two random variables associated with dices: Y, Z : Ω → {1, . . . , 6} are independant

random variables with the same distribution over these numbers P(Y = i) = P(Z = i) =

1/6, ∀ i. The expectation is obviously E[Y ] = E[Z] = 7/2. Now let us consider the sum

X := Y + Z, with linearity of expectation E[X] = E[Y ] + E[Z] = 7.

Now suppose that the result of the 2nd dice is known (Z is determined), and we want to compute

the mean of X conditional/knowing Z, i.e. E[X|knowing Z]. We can say naively (but rightly

so:)

E[X|knowing Z] = E[Y |knowing Z] + E[Z|knowing Z]

• As Y is independent (and hence doesn’t depend on) the value of Y , it doesn’t change the

usual result and we just have E[Y |knowing Z] = E[Y ] = 7/2.

• Moreover, E[Z|knowing Z] isn’t less obvious: it should be E[Z|knowing Z] = Z.

As a result, after linearity of expectation (conditional or not), we hence have :

E[X|knowing Z] = E[X|σ(Z)] = Z + 7/2

where σ(Z) is the σ-algebra generated by the information provided by Z (i.e. the set of events

that have happened and could happened).

Definition 3.24 (Conditional expectation w.r.t to a σ-algebra).

Let (Ω,F ,P) a measure space, and G ⊂ F a sub-σ-algebra, we can define the conditional

expectation of Y with respect to G , denoted E(Y |G ). We define it as any variablemY checking

the two following conditions:

• (i) mY is G -measurable

• (ii) ∀A ∈ G , E(Y 1A) = E(mY 1A)

Therefore E(Y |G ) is a random variable ! It is not a number !

Note: The two defining properties can be intuitively translated as follow:

(i) For all the different values of mY (and thus E(Y |G )), there exists a corresponding event

in G (if there is not such event, then Y is not G -measurable)

(ii) Along each of the events A in the information set G , the value of Y (and thus E(X|G ))

is the same as the averaged value of X.
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Theorem 3.33 (Existence and uniqueness).

For all random variable Y , and any σ-algebra G , there exists a random variable mY = E[Y |G ].

Moreover, the conditional expectation is defined uniquely almost-surely, i.e. if there are two

random variable mY = E[Y |G ] and m̃Y = E[Y |G ], then

P[mY = m̃Y ] = 1

Note: The existence relies of the Theorem of Radon Nikodym.

Conditional expectation - Important properties

• If Y is G -measurable, then E(Y |G ) = Y Y is a G -measurable random variable, (that implies

that Y cannot have more information than G ), therefore it implies that the information contained
in Y is redundant with the information of G and Y averaged on all events of G equal Y .

• If Y is independent of G , then E(Y |G ) = E(Y )

Independence is here the opposite of measurability: no info contained in G can inform us on the
value of W , therefore averaging W on each event of G ends up as the same thing as averaging
over the whole space, i.e. E(Y ) (which is the only value of the random variable E(Y |G )).

• (Law of iterated expectations) H ⊂ G (both sub-σ-algebra)

⇒ E(E(Y |G )|H ) = E(Y |H )

If the info in H is smaller than the info in G (which is smaller than the info in F ), then
averaging w.r.t. H ends up taking only the smaller set of info available (and it doesn’t change
anything if you have a more (or less) refined variable inside the sign E(·|H )

As a result, E(E(Y |G )) = E(Y )

• "Extreme" conditional expectation. Let F the largest σ-algebra, and T = {∅,Ω} the (most)
trivial σ-algebra. We have :

E[Y |F ] = Y E[Y |T ] = E[Y ]

First, any random variable is always measurable w.r.t. the largest F , so we can take it out of
the expectation because all the information is already provided. Second, any random variable is
always non-measurable w.r.t the trivial σ-algebra T (except constant!) Hence the conditional
expectation is a constant, i.e. E[Y ]

Conditional expectation w.r.t. a random variable

Definition 3.25.

Let Y,X two random variables X : Ω → E and Y : Ω → Ẽ. We define the conditional

expectation of Y with respect to X, denoted E(Y |X) as conditional expectation w.r.t. G =

σ(X), i.e. E(Y |X) = E(Y |σ(X)). Again this expectation is a random var. depending on X!

Basically, we can just rewrite the above properties given by the σ-algebra σ(X).
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Proposition 3.34 (Properties).

Let mY (X) = E(Y |X) = E[Y |σ(X)]

1. We can write E(Y |X) = g(X)

2. If Y is σ(X)-measurable / i.e. if Y = h(X) (cf definition of measurability above), then

E(Y |X) = E[h(X)|σ(X)] = h(X)

3. Similarly, with Y = h(X) and for all random variable Z, we have

E(Y Z|X) = E[h(X)Z|σ(X)] = h(X)E[Z|σ(X)]

4. If Y is independent of X, i.e. independent of σ(X), then E[Y |X] = E[Y ]

5. Similarly, if Y is mean-independent of X, i.e. its conditional expectation is a constant

and equal its unconditional expectation, i.e. E[Y |σ(X)] = c = E[Y ], then :

E[E[Y |X]] = E[c] = c = E[Y ]

(note that independence implies mean-independence (c.f. 4th point!) but the converse is

not true! Mean independence is a condition about a particular moment.
6. Law of iterated expectation: Let X0 be a σ(X)-measurable function, but X is not σ(X0)-

measurable – i.e. X embeds more information than X0, then we have:

E
[
E(Y |X)

∣∣X0

]
= E

[
Y
∣∣X0

]
Theorem 3.35 (Conditional Expectation as Orthogonal projection).

Let Y a random variable that has a 2nd moment E[Y ] < ∞. Then mY (X) = E[Y |X] is the

minimizer of the loss function:

mY (X) ∈ argminE
[(
Y −m(X)

)2]
Note that instead of considering σ(X) and m(X), we can condition G and search for a random

variable m(·) that satisfy the G -measurability constraint.

Proposition 3.36 (Discrete conditioning and link with Bayes rule).

Recall Bayes rule : For two events A and B, the conditional probability is given by the Bayes

rules, which can be extended with law of total probabilities

P(B|A) =
P(A ∩B)

P(A)
=

P(A|B)P(B)

P(A)
=

P(A|B)P(B)∑
i P(A|Bi)P(Bi)

Now, let’s come back on conditional expectation, with E[Y |X] = g(X) and Y : Ω → Ẽ. Let

X be a discrete random variable on {x1, . . . , xN}. Then we can characterize the function g(·)
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with :

g(x) =
E[Y 1{X = x}]

P(X = x)

We can denote this function, and rewrite it with conditional probability measure:

g(x) = E[Y |X = x] =

∫
Ẽ
yPY |X=x(dy)

where this measure is defined as an image measure of the law of Y conditioning on {X = x},
i.e.

PY |X=x(B) = P(ω s.t.ω ∈ A&A = Y −1(B)|X = x) = PY (B|X = x) =
P({dy} ∩ {X = x})

P({X = x})

where the end of the line is an abuse of notations (but to make it look more similar to the

Bayes rule).

Proposition 3.37 (Continuous conditioning).

Let (X,Y ) a couple of random variables and let f(X,Y )(x, y) its density. Let fY (y) the marginal

density of Y . We "define" (informally) the "conditional density" :

fY |X=x(y) =
f(X,Y )(x, y)

fX(x)

As a result, we can write the conditional expectation

E[Y |X = x] =

∫
Ẽ
yPY |X=x(dy) =

∫
Ẽ
fY |X=x(y)y(dy) = g(x)

and again E[Y |X] = g(X) is the random variable-conditional expectation.

We can make the notation fY |X=x(y)

fY |X=x(y) = lim
dy→0,dx→0

P(Y ∈ [y, y + dy], X ∈ [x, x+ dx])/(dydx)

P(X ∈ [x, x+ dx])/dx

= lim
dy→0,dx→0

P(Y ∈ [y, y + dy] | X ∈ [x, x+ dx])/dy

That’s why fY |X=x is often called conditional density of Y given X = x (sometimes written

fY |X=x(y) = f(y|X = x) = f(y|x) by economists). Similarly, the notation E(Y | X = x) is

frequent to denote this function g(x) (and in this case this conditional expectation is a number)

Note: This result is due to a clever application of Fubini’s theorem.

Example 3.13 (Bayesian statistics).

Let θ be a (vector of) parameter and let X a r.v. with law parametrized by θ, in the sense that

its pdf is f(x|θ). Consider a sample {X1, . . . , Xn} with some value {x1, . . . , xn}. We define

the likelihood as :

L(θ|x1, x2, . . . , xn) =

n∏
i=1

f(xi|θ)
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We say that Bayesian statistics "invert" the relationship between the parameter θ and the data

{x1, . . . , xn} (compared to the frequentist approach) in the same way as Bayes rule invert the

relation between A and B (c.f. proposition 3.36).

In this context the parameter has a distribution that is informed by the data, and depending on

the likelihood of the parameter L(θ|x). The "posterior" distribution is given by the Bayes rule

(with continuous data and values), given a prior – the ex-ante distribution of θ before knowing

the data. In the case of n = 1

π(θ|x) =
f(x|θ)π(θ)∫

Θ f(x|θ̃)π(θ̃)dθ̃

with f(x) =
∫

Θ f(x|θ̃)π(θ̃)dθ̃ uses the law of total probabilities. Now considering the entire

sample:
π(θ|x1, . . . , xn) =

L(θ|x1, . . . , xn)π(θ)∫
Θ L(θ|x1, . . . , xn)π(θ̃)dθ̃

Example 3.14 (Gaussian vector).

Let (X,Y ) be a Gaussian vector in RK+M

(
X

Y

)
∼ N

((
0K

0M

)[
SXX′SXY ′

SY X′SY Y ′

])

Question: Can one compute the conditional distribution of Y |X ?

Rules of measurability told us that E[Y |X] should be a function X.

Theorem: The nice properties of Gaussian vector yield a linear relation, with a matrix A:

Y |X ∼ N (AX,SY Y ′|X)

where A and SY Y ′|X are given by:{
A = SY X′S

−1
XX′

SY Y ′|X = SY Y ′ − SY X′S−1
XX′SXY ′ = SY Y ′ −ASXX′A′

Hence the conditional expectation is :

E(Y |X) = SY X′S
−1
XX′X

Let us uncover the simpler case (but very frequent in the core sequence):(
X

Y

)
∼ N

((
0

0

)[
σ2
X ρσXσY

ρσXσY σ2
Y

])
Hence the previous theorem yields : A = α = ρσXσY

σ2
X

= ρσY
σX

Y |X ∼ N (ρ
σY
σX

X,ΣY |X)
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with ΣY |X = σ2
Y −ρ2

(
σY
σX

)2
σ2
X = σ2

Y (1−ρ2) You discount more the variance if the two variables

are more correlated (less independent!).

Two other important theorems for optimization

Theorem 3.38 (Jensen’s inequality).

Let X : (Ω,F ,P)→ R be a real random variable and φ be a real convex function. Suppose X

and ϕ(X) are integrable (i.e. E(|X|) <∞ and E(|φ(X)|) <∞). Then:

φ(E(X)) ≤ E(φ(X))

This also holds also for conditional expectations, for any G ⊂ F sub-σ-algebra:

φ(E(X|G )) ≤ E(φ(X|G ))

Figure 14: Illustration of the Jensen’s inequality

Theorem 3.39 (Interchanging differentation and expectation).

On (Ω,F ,P), and I an interval inR, let define ϕ : I × Ω→ R be a measurable function. If it

satisfies:

1. For every x ∈ I, the random variable ϕ(x, ·) is integrable,

2. ∂ϕ(x,ω)
∂x exists at every x ∈ I

3. There exists Y an integrable random variable such that,

∀x ∈ I :
∣∣∣∂ϕ(x,ω)

∂x

∣∣∣ ≤ Y (ω)

Then, the function Φ(x) = E(ϕ(x, ·)) is well defined and differentiable at every x ∈ I, with:

Φ′(x) = E
(
∂ϕ(x, ·)
∂x

)

3.7 Numerics : Monte-Carlo based methods
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4 Statistics

Let us start with a toy example : suppose we flip a coin n times, and measure the results

(x1, . . . , xn) of 1 for heads and 0 for tail (we can imagine an econ example where a worker

is looking for job and is being hired or not. We can “consider” the values – the sample –

(x1, . . . , xn) as the realizations of the random variables X1, . . . , Xn independent and identically

distributed (i.i.d) with a Bernoulli distribution with parameter θ ∈ (0, 1) (the probability of

head (or being hired): we write (X1, . . . , Xn)
iid∼ B(θ). Starting from this sample we want to

measure θ. That’s the most basic question of statistical inference.

What is the difference between Probability and Statistics now? In probability theory,

θ is given and known, so the probability law of X = Xi, i.e. PX is also known and we can

answer questions like "what is the law of Sn =
∑

iXi?, what is the limit limn→∞ Sn/n?, etc. In

statistical inference, it is the reverse. You start from the data (x1, . . . , xn) and try to deduce

characteristics of the law of X i.e. PX . Many of the tools are the same, the definition of

random variables (as function on the sample space), asymptotic theorems like LLN and CLT,

classical inequalities (Markov, etc.), properties of the most standard probability distribution

(Normal, exponential, student, etc.) that we briefly introduced above (note that the previous

section is far from complete compared to a full semester class on probability).

4.1 Statistical models

Statistical inference usually includes two steps : the first relates to modelling, something us

economists are good at, given the theoretical roots of the discipline! It consists of formalizing a

real phenomenon with a mathematical structure, typically a probability distribution PX that

can be unknown, but belongs to a collection of parametrized distributions (Pθ)θ∈Θ that is

specified by the modeller.

Given that first step, the second step consists of the inference properly defined: given

the family (Pθ)θ∈Θ and the observation X = (X1, . . . , Xn), we look for the best information on

the model parameters, i.e. the law PX . Recall that X is a stochastic object (random variable,

vector, process) with value in a measurable space (E,E ). Its law is defined on all sets A ∈ E

such as:

PX(A) = P(X ∈ A) = P({ω ∈ Ω : X(ω) ∈ A})

i.e. the probability (i.e. the “measure"/size of the sample space) that X falls in this set A.

Definition 4.1 (Statistical experience).

A statistical experience is the data given by (i) the random object X with values in the space

(E,E ), and (ii) the family of probability distribution (Pθ)θ∈Θ that is assumed to contain the

law PX, that is call the statistical model for the law X.

Note: The law PX of random object X is called Data Generating Process, that is assumed to

follow a particular form (the model we assume!)
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In this definition, the fundamental assumption is that there exists a value θ ∈ Θ such

that PX = Pθ. The parameter is unknown a priori, but the space Θ is known.

Definition 4.2 (Parametric model).

If the space Θ of model parameters of (Pθ)θ∈Θ is a space contained in Rk for a given k ∈ N we

define it as a parametric model. If not, it is non-parametric.

Example 4.1.

Consider three basic example of labor economics:

• In a given population, the wages of people is modeled with a normal distribution, with

mean and variance that are unknown. We estimate them with a sample of n persons

taken randomly in the population. We consider E = Rn with the Borel σ−algebra :

E = B(Rn). The random object is the n-tuple X = (w1, . . . , wn) with wi i.i.d. with a

Normal distribution N (µ, σ2). In this case θ = (µ, σ2) and Θ = R×R?+. The parametrized

family is hence

(Pθ)θ∈Θ =
(
N (µ, σ2)⊗n

)
(µ,σ2)∈R×R?+

Suppose the law is not assumed to be Normal or not assumed to follow any known distri-

bution, on, say, E = [0, w̄]. In this case Θ is the set of probability distribution on [0, w̄],

which is clearly an infinite dimensional space. Usually, since this set is too big (poor

Stata), we put assumptions on the set of distributions, for example regularity properties.

• Consider that the wages depends on observable characteristics (ages, diplomas, location

of residence): now X = (w1, . . . , wn) has the law modeled as wi i.i.d. with a Normal

distribution N (Xiβ, σ
2), where X is a m-vector of observables (which are also random)

and β a vector of unknown parameters. This is synonymous for the regression equation

wi = Xiβ + ε ε
iid∼ N (0, σ2)

That’s the linear Gaussian model (c.f. next subsection). In this case θ = (β, σ2) and

Θ = Rm×R?+. Note that the observables are given and treated as "constant" in the sense

that their distribution PXi are not assumed to follow any law a priori. Apologies for using

twice the letter X (one for the outcome/dependent variable – following my formalism in

the definition – and one for the independent variables – following the standard formalism

in econometrics. Note that the probability law Pwi is itself a random variable that is a

function of observables X!

• In the case where the data on wages are biased – since the workers have “selected them-

selves” into employment due to intrinsic characteristics – the Heckman correction model

assumes a method with two steps:

First, the probability of working is specified with a Probit regression of the form:

P(D = 1|Z) = Φ(ZTγ)
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where Z is a vector of observables – i.e. explanatory characteristics of working – D = 1

indicates employment, γ is an unknown vector of parameters and Φ(·) is the c.d.f. of

the standard normal distribution. Note that the conditional probability is itself a random

variable that is a function of observables Z! Said differently, the Probit model can be

reformulated as a latent variable model, with an auxiliary variable of the form:

D? = ZTγ + u u
iid∼ N (0, 1)

The employment status D can be viewed as an indicator for whether this latent variable

is positive:

D =

{
1 Y ? = ZTγ + u > 0

0 otherwise

Second, the wage equation model is specified as:

w?i = XT
i β + ε ε

iid∼ N (0, σε)

where w? denotes an underlying wage offer, which may not be observed if the respondent

does not work. The conditional expectation of wages given the person works is then

wi = E[w|X,D = 1] = XT
i β + E[ε|X,D = 1]

wi = E[w|X,D = 1] = XT
i β + ρσελ(ZTγ)

where λ(ZTγ) is the inverse Mills ratio evaluated at ZTγ, and ρ is the correlation between

unobserved determinants of the propensity to work u and unobserved determinants of the

wage offer ε.

This equation demonstrates Heckman’s insight that sample selection can be viewed as a

form of omitted-variables bias.

Exercise: given the 2-steps nested structure we didn’t write the stastistical model for Pwi
but you should do it :D

Note: Every statistical model is an approximation of reality (oh really?). In the case where we

assume that wages follow a Normal distribution, there is an inherent inconsistency with the

fact that wages are usually not negative. This could be that the model is not well suited for

wages. However, this is not really a good argument since Normal distribution have a super

low probability of taking extreme value: the probability that X ∼ N (0, 1) is outside [−8, 8]

is around 10−15 (even with a billion data points, the chance of being below −8 is one in a

million!).

Another super important point (especially in the applied micro group of UChicago)

relates to the relationship between model parameters and the Data generating process, and

this defined without ambiguity. That’s the next definition:

Definition 4.3 (Identifiability).
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The statistical model (Pθ)θ∈Θ on (E,E ) is identifiable if the application θ 7→ Pθ is injective,

i.e. if two parameters θ1 6= θ2 can not correspond to the same law Pθ1 = Pθ2.

Note: Be careful with non-identified models! or you can get caught in a Norwegian storm

during seminars (your Nobel prize won’t save you!)

Definition 4.4 (Statistics and estimators).

A statistic T (X) is a measurable function of the random object X (and eventually of other

known parameters) that does not depend on θ. An estimand is the target value, taken for the

entire population, of the parameter θ as function of the probability PX. An estimator of θ is a

particular statistic θ̂ = θ̂(X) that is aimed at approximating the estimand of θ.

Note: Let (X1, . . . , Xn) ∼ PX , the estimand for the first moment is denoted µ(P ) in the class

of A. Shaikh. The estimator is the sample mean X̄n =
∑n

i=1 and the estimate is the value this

estimator takes for a particular sample.

Definition 4.5 (Loss and decomposition biais-variance).

Given an statistical experience such that Θ ⊆ R, the mean squared error (or the quadratic loss

or quadratic risk) of the estimator θ̂ is defined for all θ (the true parameter) as :

R(θ̂, θ) = E
[
(θ̂(X)− θ)2

]
=

∫
E
θ̂(x− θ)2Pθ(dx)

We can decompose this loss between biais and variance:

Proposition 4.1 (Biais-variance tradeoff).

R(θ̂, θ) =
(
E[(θ̂]− θ

)2
+ E

[(
θ̂ − E[θ̂]

)2]
=: B(θ̂)2 + Var(θ̂)

The term B(θ̂) is the biais of the estimator θ̂. If it is nul, the estimator is unbiased.

Note:

• The biais is the mean error of the estimator and the variance measure fluctuations of

this estimator around its average value. An estimator is good if both biais and variance

are both low, but there is often a tradeoff!

• The decomposition can be generalized in larger dimension.

Other notions such as consistency of estimators, confidence interval and hypothesis test-

ing are introduced in A. Shaikh’s class or any other Metrics 1 class, and not developed here

for the sake of time.
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4.2 Linear regressions

The principle of regressions is modelling the relation between the dependent variable Y and

the independant variables X = [X1, . . . , Xm]′, also called explanatory variables.

Y = G(X) = G(X1, . . . , Xm)

We have a sample of n observations Yi and n vectors of m dimensions Xi and the aim is to

find the function G. The easiest way is when G is linear, in which case the function is exactly

approximated with a set of coefficients β = [β1, . . . , βm]. In practice of course, the model is

assumed to follow a linear approximation or there are measurement errors, we can rewrite the

model as:

Y = X′β + ε = β1X1 + · · ·+ βmXm + ε

where ε is assumed to be normal with unknown variance σ2. That’s the basic definition of

linear regression. We aim at estimating β and σ2 using statistical inference.

Note: Y and X′ are random variables/m-vectors. For the sample of data, we can stack

them in vector/matrix form: Y = [Y1, . . . , Yn]′ is n×1 vector, and X = [X1, . . . ,Xn]′ is a n×m
matrix.

Y = Xβ + ε

The assumption of this linear model are : (i) rank(X) = m, i.e. there is no couple of observables

that are colinear (for example both the age in month and in years!), and (ii) the error terms

εi are i.i.d with E[ε] = 0n and Var(ε) = σ2In, i.e. errors are centered and homoskedasticity.

Definition 4.6 (OLS).

The ordinary least square (OLS) estimator β̂ is defined as :

β̂ = argmin
α∈Rp

n∑
i=1

(
Yi −

m∑
j=1

αjXij

)2
= argmin

α∈Rp

n∑
i=1

(
Yi −XT

i α
)2

= argmin
α∈Rp

∥∥∥Y− Xα
∥∥∥2

Note: There is a geometric interpretation of β̂: the matrix X = [X1, . . . , Xm] of the plane of

observables is formed with m-column vector in Rn. The subspace of Rn generated by these m

vectors is called the linear span (spanned space), denoted

MX = Im(X) = span(X) = span(X1, . . . , Xm)

It is of dimension m and every vector of this space (by definiton of the linear span) has the

form: Xα = α1X1 + · · ·+ αmXm. Hence, the vector Y is the sum of a element Xβ, that’s the
closest to Y in the sense of the Euclidian distance (square of the difference, summed on the m

dimensions).
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This element is unique (the Euclidian distance is convex :p) and is by definition the projection

of Y on MX . This projection is denoted Ŷ = PXY where PX is the orthogonal projection

matrix onMX . Of course, we can also write it as Ŷ = Xβ̂ where β̂ is the OLS estimator.

As a result, the orthogonal space of MX denoted M⊥X is called the space of residuals.

This space is of dimension (because it’s an orthogonal complement) is

dim(M⊥X) = dim(Rn)− dim(MX) = n−m

which is the degree of freedom of our linear model!

Figure 15: Representation of X ′β̂ in the space of observables

Proposition 4.2 (OLS estimator, formula).

The estimator β̂ has the expression

β̂ = (X′X)−1X′Y

and the matrix PX of orthogonal projection onMX is written

PX = X(X′X)−1X′

Note: The idea of the proof is super simple: one version consists of minimizing the mean

squared error
∥∥∥Y − Xα

∥∥∥2
, implying to take the First order condition (thanks to convexity!)

and using the fact that X′X is invertible, thanks to assumption (i) above. Another version

relates to the definition of the orthogonal projection on the spaceMX

Note: Again, there is much more to say on OLS: unbiaisedness, formula for the variance,

estimator for σ, confidence intervals, student law of the estimator of unknown variance, student

test for significance of one varia le and Fisher test for significance of all/a group of variables,

Gauss-Markov theorem – OLS is the best (in the sense of minimizing the variance) unbiased

estimator – consistency and limit distributions, etc. All that is covered in A. Shaikh’s class or

any other metric class.
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Note: Sometimes, linearity is not satisfying, so one might want to take (known) non-linear

functions of the linear combination Xβ, and perform compositions to improve the fit. That’s

the object of a whole branch of machine learning!

4.3 Maximum Likelihood

Let us start with the toy example of coinÂ flipping (or job applications). How to choose the

value of the parameter θ – the proba of a head/of being hired – given the data we observe?

The idea is to choose the “best” parameter θ to have the maximum chance to observe the

realizations Xi = xi that are in our dataset, given our assumption on the statistical model

(Pθ)θ∈Θ.

We hence study the likelihood function L(θ|x)

Definition 4.7 (Likelihood function).

L(θ|x1, x2, . . . , xn) = Pθ(x1, x2, . . . , xn) =

{∏n
i=1 P(Xi = xi) if Xi is a discrete r.v.∏n
i=1 f(xi|θ) if Xi is a continuous r.v.

where the second equality follows from the usual assumption that our data are i.i.d., so that we

can take the product. The log-likelihood is the logarithm of the likelihood (oh really?):

`(θ|x1, x2, . . . , xn) = logL(θ|x1, x2, . . . , xn)

Note:

• The last equality follows from a standard assumption that our class of statistical model

(Pθ)θ∈Θ admit a density w.r.t. the Lebesgue measure µ – in this case we say that the

statistical model is dominated by the Lebesgue measure. In particular the density (p.d.f)

follows from the definition of Radon Nikodym (c.f. ?? 3.4) f(x|θ) = dPθ
dµ . In the case

where the random variable is assumed to be discrete (as in the case of our Bernoulli coin

flip/job search, this is replaced by the probability mass function pθ(x) = P(Xi = xi)]

• We already see that the likelihood function already operates the inversion we talked about

in the introduction: statistics goes from the data to the parameter θ, while probability

take the parameter as given and obtain the (law/simulation/properties of the) random

variables Xi. This inversion logic will be even stronger for Bayesian statistics.

Definition 4.8 (MLE).

In statistical model (Pθ)θ∈Θ, we call Maximum likelihood estimator θ̂ the parameter that max-

imize the likelihood function (it’s in the name no?), i.e. such that

L(θ̂|x1, . . . , xn) = max
θ∈Θ
L(θ̂|x1, . . . , xn) ⇔ max

θ∈Θ
L(θ̂|x1, . . . , xn) ⇔ θ̂ = argmax

θ∈Θ
L(θ̂|x1, x2, . . . , xn)
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Note:

• Here we put a “max” instead of a “sup” because we implicitely assume that the maximum

exists.

• In the last equivalence we put a unique argmax (instead of a multi-elements set) be-

cause we assume the conditions for uniqueness (what are they? check the section on

optimization in the 1st part of the mathcamp!).

• Moreover, if the log-likelihood is differentiable (C1) and if the maximum is not obtained

on the boundaries of Θ, a necessary condition to find the MLE is the first-order condition:

∇θ`(θ|x)
∣∣
θ=θ̂

= 0

This is sometimes called the likelihood equation /system of equations. Note that a root

of the likelihood may not be the MLE! (one of the roots is, though). We need restrictive

conditions on the model for this necessary condition to become sufficient!

We will see a common example of “conditional” Maximum likelihood, where we consider

a model where (Xi, Yi)
[

i .i.d.]∼P some law, and we assume the parametric model for the

conditional law Yi|Xi ∼ Pθ, and PX is the (independent) law of X.

Example 4.2 (OLS and MLE).

The conditional likelihood is defined as

L(θ̂|y,x) =

n∏
i=1

f(yi|θ, xi)

Let us assume the conditional law is of linear form:

Yi = Xiβ + ε ε
iid∼ N (0, σ2)

The conditional log-likelihood is (do the calculation as an exercise!) for the n-vector of obser-

vations y and the n×m matrix x – (note that x is the new notation for X from the previous

notation, i.e. a n×m matrix!)

`(β, σ2|y,x) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − xiβ)2

Note that the maximization w.r.t. to β does not depend on σ. The FOC gives (that’s both a

necessary and sufficient condition (why?)

∇β`(β, σ|y,x) = − 1

σ2

n∑
i=1

x′i(yi − xiβ) = 0p×1
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Which gives (tadam!) the same formula for the estimator β̂ than the OLS estimator:

β̂ =
( n∑
i=1

(x′ixi)
)−1

n∑
i=1

x′iyi ⇒ β̂ = (x′x)−1x′y

Moreover, for the variance, the FOC gives the MLE for σ2:

σ̂ =
1

n

n∑
i=1

(yi − xiβ̂)2

which is the standard empirical variance for the error terms.

4.4 Generalized Methods of moments

c.f. TA session
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5 Stochastic process and stochastic calculus

Definition 5.1 (Filtration).

Given a probability space (Ω,F , P ), we define a filtration (Ft)t≥0 as an increasing sequence

of sub-σ-algebras.

F0 ⊂ Ft1 ⊂ Ft2 ⊂ · · · ⊂ F

Note: In econ or finance, we often call (Ft)t≥0 the information set, as the knowledge of what

can happen (i.e. the set of events that can be measured) grows over time.

Definition 5.2 (Stochastic process).

A stochastic process is a sequence of random variables Xt indexed (and ordered) by their time

t ∈ T .
We can pose (Ft)t≥0 ≡ σ(Xs : 0 ≤ s ≤ t), which is a filtration generated by the stochastic

process (or canonical filtration).
Note: t is an index of time: it can be countable (t ∈ N) and the time is discrete, or it can be uncountable
(t ∈ R) and the time is continuous. With the use of stochastic calculus, most models in finance are in
continous-time.

Definition 5.3 (Adaptability and Predictabillity).
A stochastic process is adapted w.r.t. (Ft)t≥0, if ∀t, Xt is Ft-measurable.
A stochastic process is said to be predicable, if ∀t ∈ N, Xt is Ft−1-measurable.
Note:

• If Xt is not Ft-measurable, it often means that Xt contains more (or different) information than
Ft

• If Xt is Ft−1-measurable, then the knowledge of Xt can be predicted by the information in Ft−1

(i.e. predictability)

• It implies that if (Xt)t is adapted, the knowledge of Xt does not give you more information than
the information set Ft (in particular you can’t predict the future).

• A stochastic process is always adapted to its canonical filtration.

Example 5.1.
Any sequence of random variables can be a stochastic process.

• A sequence of deterministic variables (constant accross Ω), such as Xt = t is a stochastic process,
but quite boring. Informally, because there is no randomness, it is not even "stochastic".

• A sequence of random variables (Xt)t≥0 which are all following the same law (for example Xt ∼
N (0, 1)) is also a stochastic process, but not some much interesting neither. Indeed, informally,
there is no dynamics (always the same law), but this represents the baseline for "stationary
processes".

⇒ Researchers in probability are looking for processes that "behave well", i.e. which have some
structure and probability law that vary or have constant properties over time and that are simple
to study.

• Two "simple" processes are i) martingales, and ii) Markov process
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Definition 5.4 (Link with the conditional expectation).
In economics, the conditional expectation w.r.t. a σ-algebra from a filtration (Ft)t≥0 is a crucial tool.
It is denoted compactly by the operator Et

Et(X) ≡ E(X|Ft)

Moreover, the Law of iterated expectations rewrites :

Ft ⊂ Ft+1(both sub-σ-algebra) ⇒ E(E(X|Ft+1)|Ft) = E(X|Ft)

or in short: Et(Et+1(X)) = Et(X)

Note: Et(X) is not a number, but rather a function of the different shocks present in Ft (in economics:
TFP shocks – aggregate or idiosyncratic – or policy shocks)

Example 5.2.
For a stochastic processes evolving over time:

• If Xt is adapted, then Et(Xt) = Xt

• If εt is idiosyncratic, i.i.d., mean zero and not predictable, then Et(εt+1) = E(εt+1) = 0.
• If Xt is adapted, but not Yt, Et(Xt Yt) = Xt Et(Yt)

Example 5.3 (Additional example).
Two examples with graphs:

• AR(1) process:
Xt = ρXt−1 + ε

with ε ∼ N (0, 1). We hence have a structure of dependence and some randomness. The graph shows
this example with two different values of ρ but the same path of exogenous shocks.

Figure 16: Example 1 in 5.3.

• Stochastic process "closed" by the random variable Y = X̃T , where {X̃t}t is itself another stochastic
process (we take a random walk here for simplicity).

Xt = E[Y |Ft] = E[XT |Ft]
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If X̃t = X̃t−1 + εt a random walk, then we observe that

Xt = E[XT |Ft] = X̃t ∀t < T and Xs = E[XT |Fs] = X̃T ∀s ≥ T

As displayed on the following graph:

Figure 17: Example 2 in 5.3

Stationary and Ergodicity

We finish this section by adding two important definitions for macroeconometrics.

Definition 5.5 (Stationarity).
We say that a stochastic process {Xt}t is stationary, if it the law/joint distribution of a subset of these
random variables (Xt1 , Xt2 , . . . , Xtn) is the same as the joint distribution, translated in time at a date
τ . More precisely, the

P(Xt1 ,...,Xtn )(x1, . . . , xn) = P(Xt1+τ ,...,Xtn+τ )(x1, . . . , xn) ∀τ ∈ R and∀ t1, . . . , tn ∈ R

We sometimes call such processes "measure preserving" stochastic process, because the translation
doesn’t affect the joint law. This measure-theoric definition yields: ∀B ∈ E , we have P(X−1

t (B)) =

P(X−1
t+τ (B)). We say that the stochastic process is measure-preserving if A = {ω ∈ Ω s.t.Xt ∈ B} has

the same measure by translation of time t′ = t+ τ,∀τ ∈ R
Note:

• This is the strongest sense of stationary. A weaker sense is to have a constant moment over this
translation.

• A natural consequence is simply that the law of a stationary process is the same and doesn’t not
depend on time t, i.e. with n = 1, PXt = PXt+τ ∀τ ∈ R

Next, we need a simple /yet general definition for invariant set.

Definition 5.6 (Invariant sets).
Let (Ω,F ,P) a probability space. We say that an event A ∈ F is invariant w.r.t to the stochastic
process {Xt}t if for all ω ∈ A, then Xt(ω) ∈ B =⇒ Xt+1(ω) ∈ B.
A measure theory-type of definition says that a set A ∈ F is invariant if A := X−1

t+1(B) = X−1
t (B)
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Note:

• Said differently, an invariant set is a set where the stochastic process is "trapped": once it is inside
this set, it can’t go out of it!

• Of course Ω and ∅ are invariant events.
• The definition here focuses on A, but in applications, the invariant set is often implicitely the one

denoted B here!
• We denote (as in Hansen’s class) I the set of all invariant events. This collection I is a σ-algebra.

We say that a stochastic process is ergodic – in the physical sense – if over (long) periods of
time, the time share spent by a system/stochastic process in some regions of the state space equals the
probability distribution over this space (i.e. is proportional to its volume). Mathematically, we can
make this statement more precise:

Definition 5.7.
Let (Ω,F ,P) probability space. A stochastic process {Xt}t is PX-ergodic (or PX is an ergodic measure),
then for A = X−1

t+τ (B) ⊆ X−1
t (B), ∀τ (i.e. A is invariant) we have PX(B) = 0 or PX(B) = 1 Note:

In other words there are no invariant strict-subsets (almost-surely).

Theorem 5.1 (Birkhoff Law of Large number).
Let {Xt}t be a stationary/measure-preserving process, we have that the average over time converges to
the average over space (i.e. the mean E[f(X)|I]):

1

T

T∑
t=1

f(Xt(ω))
a.s.−−−−→
n→∞

E[f(X)|I]

for all measurable function f : E → F , and I is the set (σ-algebra) of all invariant events and where
the convergence is both almost sure (and hence in probability) and in L2.

Moreover, if the process is ergodic (measure-preserving and all its invariant events have probabil-
ity 0 or 1) then E[X|I] = E[X] <∞. And hence we have a Law of Large number, without requiring i.i.d.!!

1

T

T∑
t=1

Xt(ω)
a.s.−−−−→
n→∞

E[X]

5.1 Markov chains

Definition 5.8 (Transition matrix).
We now consider Markov chains – a simple example of stochastic process – which are finite – i.e.
that happen on a finite number of "states".

• S the state space is a finite space, with n elements {x1, . . . , xn}

The Transition function, or transition matrix we can denote Pt ≡ pt(x, y), is a function Pt : S×S →
[0, 1] such that

(i) Each element of Pt(·, ·) is non-negative

(ii)
∑
y∈S pt(x, y) = 1,∀x ∈ S

This means the rows of the matrix some to one.
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Note:

• S can be a real value (consumption level, growth rate) or anything else (high or low "states of
the world": h, l ∈ S, employed/unemployed, etc.).

• It is easy to see that if P is a transition matrix, then it k-th power P̃ = P k is also a transition
matrix.

• Moreover, since all the rows sum to 1, we have the matrix equation 1n = P1n.
• If the transition does not depend on time pt(·, ·) ≡ p(·, ·), we say that the Markov chain is

homogeneous. If it is not, we say it is inhomogeneous. For simplicity and time, we only consider
homogeneous Markov chain in the following (except the next definition that is the most general).

Definition 5.9 (Transition function – general definition).
A transition function is a function p : T × S × G → [0, 1] s.t.

(a) for each t ∈ T , x ∈ S, p(t, x, .) is a probability measure on (S,G);
(b) for each t ∈ T , A ∈ G, p(t, ., A) is a G-measurable function;
(c) (Chapman-Kolmogorov) ∀s, t ∈ T , x ∈ S and A ∈ G,

p(t+ s, x,A) =

∫
S

p(s, y, A)p(t, x, dy)

Note: For discrete time Markov processes where T = N, it is enough to specify p(t, x,A) for t = 1 and
the rest follows from (c). In this case, we write p(x,A).

Definition 5.10 (Markov property).
We say that a discrete-time/discrete-state stochastic process {Xt}t respect the Markov "memoryless"
property if:

P(Xt+1 = y |X0, X1, . . . , Xt) = P(Xt+1 = y |Xt)

A general definition (for uncountable state-space and time-space): A stochastic process {Xt}t if ∀A ⊂ S
and s < t:

P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs)

Note:

• In general, c.f. the definition above, P(Xt+1 = y |X0, X1, . . . , Xt) is a measurable function of
X0, X1, . . . , Xt, not only Xt

• In other words, to forecast the distribution of Xt+1 on S, the only information need is the current
state Xt.

• This is quite general, given that you can consider very large state-space, c.f. example 4 below.

Definition 5.11 (Markov Chain).
A Markov chain Xt is a sequence of S-valued random variables, with transition matrix P , if, for all
t ≥ 0, and for all y ∈ S we have:

P(Xt+1 = y |X0, X1, . . . , Xt) = p(Xn, y)

Note: Therefore, it satisfies the Markov property.
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Example 5.4.
A set of examples:

• Example 1: A worker can be either (i) unemployed or (ii) employed

– When unemployed, he finds a job at rate α

– When employed, he loses its job with probability β

• Therefore, the transition matrix writes:

P =

(
1− α α

β 1− β

)

Note: Question (exercises?)

– What is the average duration of unemployment?
– Over the long-run, what fraction of time does a worker find herself unemployed?
– Conditional on employment, what is the probability of becoming unemployed at least once over

the next 12 months?

• Example 2: Hamilton (2005) used the US employment data, and determined the frequency of:
(i) Normal growth (ii) Mild recession (iii) Severe recession.
The stochastic matrix is estimated such as:

P =


0.971 0.029 0

0.145 0.778 0.077

0 0.508 0.492


It says that, when US are in a severe recession, there is a 50.8 probability to face a mild recession
next month, and no chance at all to come back to normal growth.

• Example 3: Random walk:

Xt+1 = Xt + εt

= X0 +

t∑
i=0

εi ∀t ≥ 0

where εt are i.i.d. random walk s.t. εt ∼ P (any distribution) with probability mass function ψ –
recall that S is finite and thus countable.
Question: What would be the transition matrix? (Problem set 1!)

• Example 4: Markov chain may depend on a finite set of event/random variables in the past. Indeed,
consider an AR(2) process:

zt = ρ1zt−1 + ρ2zt−2 + εt

Thus, {zt}∞t=0 is not a Markov process. However, it could be written as:(
zt

zt−1

)
=

(
ρ1 ρ2

1 0

)(
zt−1

zt−2

)
+

(
1

0

)
εt
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Let z̃t =

(
zt

zt−1

)
. Clearly, {z̃t}∞t=0 is a Markov process. The cost is to increasing the state-space,

which is not always computationally feasible.

Recursive formulation and probability distribution of Markov chain

We defined the Markov chain {Xt}t. We are now interested by its law, or probability distribution
P(Xt = x) for every x. Recall that we start from the transition kernel.

P(Xt+1 = xt+1 |Xt = xt) = p(xt, xt+1)

Therefore, knowing the initial state, one can iterate over the transition matrix:

P(Xt = xt |X0 = x0) = [P t](x0, xt)

In other words, initial conditions and transition matrix are the only determinant of the path of Xt.

To know the "marginal distribution" at time t. Let us proceed in a recursive way (over time):

• Knowing the distribution at time Xt ∼ PX (with p.m.f., probability mass function π) and the
transition matrix P ≡ p(xt, xt+1), what can we say about the probability of Xt+1?

• The solution lies in the law of total probabilities:

P(Xt+1 = xt+1) =
∑
x∈S

P(Xt+1 = xt+1 |Xt = x) · P(Xt = x)

πt+1(y) =
∑
x∈S

p(x, y)πt(x)

where the second line use the formalism of the transition matrix and the distribution of present
states πt (expressed as a p.m.f., πt =

(
P(Xt = x1), . . . ,P(Xt = xn)

)
.

We express the p.m.f. π as a n-values rows vector (of probabilities), the n equations become matrices
as:

πt+1 = πt P

This equation represents the law of motion of the distribution – something found in countless economics
problems. This is a simple version – discrete time and discrete state space – of the famous Kolmogorov
equation (that originally describes the evolution of a distribution of particles moving with a stochastic
process).

Definition 5.12 (Distribution dynamics: Kolmogorov forward in discrete time).
Consider ψt the distribution a Markov process at time t, i.e. the probability measure of Xt. Given a
transition kernel p(x, y) over S×S

ψt+1(y) =

∫
S

p(x, y)ψt(dx)

where P is thought as an operator (more on that in the section 4.4.) Coming back on discrete states,
similarly, we can derive the Multi-step transition probabilities by iterating it recursively over time.
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Indeed, if πt+1 = πt P , therefore, we generalize it:

πt = π0 P
t

πt+m = πt P
m

Finally, we can also compute these change in distributions when starting from a given state x,
for example if it is common knowledge that X0 = x, the initial probability distribution is a Dirac mass
point PX(·) = δx(·) and hence πt =

(
0, . . . , 0, 1︸︷︷︸

↑x

, 0, . . . , 0
)
. Hence the distribution πt rewrites, again

a row vector as :
πt =

(
0, . . . , 0, 1, 0, . . . , 0

)
P t =

[
P t
]
(x, · · · )

Example 5.5.
Exercise: Using the transition matrix on recessions seen before, and considering the today’s state as
unknown, (you only know the distribution-vector πt), what is the probability to be in a mild or severe
recession in 6 months? Answer:

P(recession) = πt+6 ·


0

1

1

 = πt · P 6 ·


0

1

1



Conditional expectation of functions of a Markov chain

We are now interested in computing conditional expectation of the type E[f(Xt+1)|Xt], which formally
writes as

E[f(Xt+1)|Xt] = E[f(Xt+1)|σ(Xt)] = E[f(Xt+1)|Ft]

Again, this is a random variable Ft-measurable.
Given a columns vector :

f(Xt) ≡


f(x1)
...
f(xn)


As a result,

E[f(Xt+1)|Xt] =
∑
y∈S

f(y)P(Xt+1 = y|Xt)

Given P(Xt+1 = y|Xt) = P (·, y) a column vector, given each present states Xt, we have using the
transition matrix :

E[f(Xt+1)|Xt] =
∑
y∈S

f(y)p(Xt, y) = Pf

by remember that we are talking about a random variable, hence a column vector! As a result, for
each of these rows at given x we have:

E[f(Xt+1)|Xt = x] =
∑
y∈S

f(y)p(x, y) = P (x, ·)f(·) =
[
Pf
]
(x)

Hence, we can realize that starting at Xt = x, we can get a conditional expectation as a number (but
otherwise it is not a number, it’s a random variable).

. . . . . .
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For discrete time/discrete space - Markov chains, the formalism you should remember is:

• Functions are expressed in column vector, e.g. f(Xt) = {f(x)}x ≡


f(x1)
...
f(xn)


• Measures/distributions are expressed in row vector πt = {P(Xt = x)}x ≡ (πt(x1) . . . πt(xn))

Let us move on to two of the most important theorems for Markov Chains. But beforehand we introduce
the relevant notions:

Definition 5.13 (Irreducibility).
Let {Xt}t a Markov chain on the state space S

• Two states xa, xb ∈ S×S are said to communicate with each other if there exist positive integers m
and n such that:

P m (xa, xb) > 0 and P n (xb, xa) > 0

• The stochastic/transition matrix is said irreducible if all states communicate, i.e. xa and xb in
S × S can communicate.

Note: Question: is the "growth/recession regime matrix" irreducible? If yes why, if no why not?

Definition 5.14 (Aperiodicity).
Let {Xt}t a Markov chain on the state space S

• The period of a state xo is the greatest common divisor of the set of integers defined by:

D(xo) ≡ {j ≥ 1 : P j (xo, xo) > 0}

• A stochastic matrix is said aperiodic if the period of every state is 1, or periodic otherwise.

Note: Example: if D(x) = {3, 6, 9, . . . }, the period is 3. Question: what is the period of :

P =

(
1− α α

β 1− β

)

when α = 1 and/or β = 1?

Stationary distribution:

Definition 5.15.
Some distributions are invariant under the transition matrix. We call these distribution stationary, if
the distribution π? on S is such that:

π? = π? P

Note:

• Obviously, an immediate consequence is : π? = π? P t ∀t
• Therefore if the random variable X0 has a stationary distribution, then Xt also have this same

distribution.
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• Again, we can give a more general definition

Definition 5.16 (Stationary distribution).
The stationary distribution associated with a Markov process Xt is a probability measure π over (S,G)

such that ∫
S

p(t, x, y)π(dx) = π(y), ∀t

Example 5.6.
Let take again the simple example given by the transition of growth regimes in the US economy. We
compute the stationary distribution by iterating on the Law of Motion of the distribution (i.e. the
Kolmogorov Forward equation).

Figure 18: Stationary distribution

Starting from an initial distribution π0 = (0, 1/2, 1/2), we converge fast (100 iterations) to the limit.

Figure 19: Convergence toward the stationary distribution

Theorem 5.2 (Existence of stationary distribution).
Every stochastic matrix P has at least one stationary distribution. ∀P,∃π?, s.t. π? = π? P

Note:

• Here, the assumption that S is a finite set is a key one.
• The proof of this theorem lie in the Brouwer fixed point theorem
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• If P is the identity matrix, then all distributions are stationary

Questions:
(i) Is this stationary distribution unique? and
(ii) How fast does the stochastic process converges to its stationary distribution?
The answers to these natural questions are in the next two theorem:

Theorem 5.3.
If the stochastic matrix P is irreducible and aperiodic, then :

1. P has exactly one stationary distribution π?

2. For any initial distribution π0, we have ‖π0 P
t − π?‖ → 0 when t→∞

Note:

• A stochastic matrix satisfying the conditions of the theorem is sometimes called uniformly ergodic
• Note that part 1 of the theorem requires only irreducibility, whereas part 2 requires both irre-

ducibility and aperiodicity

• One easy sufficient condition for aperiodicity and irreducibility is that every element of P is
strictly positive (Exercise?)

Ergodicity

Proposition 5.4 (Ergodicity for Markov chains).
The definition above is quite abstract but here is a sufficient condition for Markov chains.
A Markov chain is said to be ergodic if for π? stationary distribution, if f(·) is solution of this "eigen-
value equation"

E[f(Xt+1)|Xt] = f(Xt)

then it is simply the constant function π?-almost surely (i.e. constant wherever the stationary distri-
bution is strictly positive). To visualize why we are talking about an eigenvalue problem, rewrite in
matrix form:

Pf = f

Ergodicity implies that this f is constant f(x1) = · · · = f(xn) = α, π? almost-surely.

Theorem 5.5 (Ergodic theorem for Markov Chains).
Under irreducibility, an important result:

1

n

n∑
t=1

1{Xt = x} a.s.−−−−→
n→∞

π?(x)

Note that the convergence is almost sure and it does not depend on the initial distribution π0 of X0.

Note:

• The result tells us that the fraction of time the chain spends at state x converges to π?(x) as
time goes to infinity

• This convergence theorem is a special case of a Law of large numbers result for Markov chains
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5.2 Martingales

Definition 5.17 (Martingale).
In discrete-time, we define Mt as a martingale (resp. super-martingale, sub-martingale), w.r.t. a
filtration (Ft)t≥0, a stochastic process verifying:

1. (Mt)t is adapted

2. ∀t,E
(
|Mt|

)
<∞

3. ∀t,E(Mt+1|Ft) = Mt

(resp. E(Mt+1|Ft) ≤Mt and E(Mt+1|Ft) ≥Mt)

Note:

• Intuitively, the mean of a martingale Mt is constant over time, while decreasing for a super-
martingale and increasing for a submartingale.

• We see this by applying the law of iterated expectations to E[Mt+1] = E[E(Mt+1|Ft)] ≶ E[Mt]

Proposition 5.6 (Doob-Meyer decomposition).
Let (Xt)t≥0 a sequence of real random variables (Ft)t≥0-adapted and integrable. There exists a unique
pair of stochastic processes (Mt)t≥0 , (Vt)t≥0 such that:

(i) Xt = X0 +Mt + Vt, n ≥ 0

(ii) (Mt)t≥0 is a (Ft)t≥0-martingale.
(iii) (Vt)t≥0 is (Ft)t≥0-predictable process with V0 = 0

Proof: Uniqueness. Let (Mt)t≥0 and (Vt)t≥0, satisfying the three points. By (i) we have
Xt+1 − Xt = Mt+1 −Mt + Vt+1 − Vt. By taking the conditional expectation knowing Ft, we find:
E [Xt+1 −Xt | Ft] = Vt+1 − Vt. B V0 = 0, and we conclude that Vt =

∑t−1
k=0 E [Xk+1 −Xk | Fk], and

then necessarily, Mt = Xt −X0 − Vt.
Existence. We pose V0 = 0 and Vt =

∑t−1
k=0 E [Xk+1 −Xk | Fk] and then Mt = Xt −X0 − Vt,

both for t ≥ 1. The points (i) and (iii) are obviously verified. For (ii), we remarque that Mt+1−Mt =

(Xt+1 −Xt)− (Vt+1 − Vt) = (Xt+1 −Xt)− E [Xt+1 −Xt | Ft], and hence E [Mt+1 −Mt | Ft] = 0.

Stopping times
Stopping times are really useful for "stopping problem", for example American options, Entry-Exit
problems of firms, Time of adjustment (change in prices or inventory, etc.), run to the bank, etc.

Definition 5.18 (Stopping time).
Let {Ft}t≥0 a filtration. A random variable T : N∪ {∞} → ∞ is a {Ft}t stopping time if ∀ s > 0, we
have that {T ≤ s} ∈ F .
We can therefore pose FT = {A ∈ F∞, s.t. A ∩ {T < s} ∈ Fs,∀ s ∈ R}.

Example 5.7. • Let T = tn ∈ N (orR) a deterministic time. It is a stopping time, and FT = Ftn

• If {Xt}t is another stochastic process adapted. Then for all B ∈ BR, we define
TB = inf{n ≥ 0, s.t. Xt ∈ B}. It is a F−stopping time,

Proposition 5.7.
Let {Xt}t be a martingale (or resp. supermartingale, or submartingale) on {Ft}t, and let T be a
stopping time on {Ft}t. Then, the "stopped process" (Xt∧T )t≥0 is also a martingale (or resp. super-
martingale, or submartingale) on {Ft}t Note: The second example 5.3. in figure 13 also works with
T a stopping time and indeed it is a martingale.
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Proposition 5.8.
Let {Xt}t be a martingale on {Ft}t and let T be a stopping time on {Ft}t. We suppose that T < ∞
almost-surely and there exists a real random variable Z such that ∀t ∈ N (or R) we have |Xt∧T | ≤ Z.
Then XT is integrable and E[X0] = E[XT ].

We arrive at the main point of this section:

Theorem 5.9 (Doob Stopping time theorem).
Let {Xt}t be a martingale (or resp. supermartingale, or submartingale) on {Ft}t, X∞ it limit almost-
sure, and let S ≤ T be two stopping times on {Ft}t. Suppose either that Xt be uniformly integrable
that or S and T are bounded, we have

• XT is FT measurable and integrable and XT = E[X∞|FT ] and consequently E[XT ] = E[X]

• {Xt∧T }t is a martingale uniform integrable, which converges almost-surely and in L1 toward XT

• E[XT |FS ] = XS
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5.3 Continuous time stochastic processes

In this section, we will cover two main classes of stochastic process in continuous time: first diffusion
processes, based on Brownian motion – known to be smooth and regular, and second Markovian Jump
processes, that are simply a generalization of discrete-time discrete-state-space Markov chains.

Brownian motion

Let us start with the Brownian Motion, the "continuous-time" stochastic process which is the
closest to a random walk.

Definition 5.19.
We define as a Brownian motion the continuous process Bt valued in R such that:

1. The function t 7→ Bt(ω) is continuous on R+

2. For all 0 ≤ s < t, the increment Bt −Bs is independent of σ(Bu, u ≤ s)

3. For all t ≥ s ≥ 0, Bt −Bs follows the normal distribution N (0, (t− s)σ2)

Note:

• The Brownian motion is "standard" if B0 = 0 and σ = 1.
• Here, the Brownian motion is a martingale
• It is used to model any "small" shock in a continuous-time finance/macro models.
• By a theorem (Donsker theorem), it is possible to show that a "normal-shock"-random-walk

converges in law toward a Brownian motion, when time increment tends to zero.
• Notation: we call dBt = limdt→0Bt+dt − Bt the increment of the Brownian motion when time

goes to zero.

Figure 20: Sample paths of the Brownian Motion

Proposition 5.10 (Combo!).
The Brownian motion {Bt}t is the continuous-time stochastic process that is all :

1. A continuous process
2. A Markov process
3. A martingale
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Note: The other processes that are together (2) and (3) are Levy processes, which are a mixture of
diffusion processes and Jump processes.

Let us introduce some properties for the Brownian motion:

Proposition 5.11 (Properties).
The Brownian motion has the following features:

• A continuous process {Bt}t is a Brownian motion (BM) if and only if (i) it is a Gaussian process
(c.f. section above) and (ii) it verifies:

E[Bt] = 0 E[BtBs] = min{s, t}, ∀ t, s ≥ 0

This is due to the fact that Gaussian processes are entirely characterized by their mean and variance.
Some consequences are implied:

• Translation : ∀ τ > 0 {Bt+τ −Bτ}t≥0 is a BM
• Scaling : ∀α > 0 { 1√

α
Bαt}t≥0 is a BM

• Time inversion {tB1/t}t≥0 is a BM
• Time reversal ∀ τ > 0, {Br −Br−t}t≥0 is a BM

Slightly different (and unrelated) properties:

• Non-Hölder paths : lim supt→0
Bt√
t

= +∞
Said differently, for small t, Bt goes slower to zero than

√
t.

• A Brownian path t 7→ Bt(ω) pass by zero infinitely many times (we say 0 is recurrent)
• A Brownian path is nowhere differentiable

Proposition 5.12 (Brownian-based Martingales).
If {Bt}t is a Brownian motion (BM), the following 3 processes are martingales:

(i) Bt, (ii) B2
t − t (iii) eλBt−

λ2

2 t

Stochastic integral and diffusion processes
Let us first define the stochastic integral very briefly. A two-line summary of the Ito’s integral is

the following. For a Ft-predictable process (right-continuous and adapted) σt such that
∫∞

0
σ2
sds <∞,

an ”Ito integral process” is a stochastic processMt defined as the limit – with a partition Πn with mesh
size going to zero:

Mt =

∫ t

0

σsdBs =

∫ t

0

= lim
n→∞

∑
(ti,ti+1)∈Πn

σs · (Bti+1 −Bti)

This integration is a stochastic counterpart of Riemann-Stieltjes integral.
A longer summary follows. As the Lebesgue integral, it takes a couple of steps to construct Ito’s

stochastic integral:

• We start with step processes {Xt}t, with a collection {Xti}ti , Fti-measurable, of the form:

Xt =

k∑
i=0

Xti1[ti,ti+1](t)
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This allow us to define a first "step" of the integral:

Mt =

∫ t

0

XsdBs :=

k∑
i=0

Xti

(
Bti+1∧t −Bti∧t

)
• We then do an extension (i.e. the limit, a bit like in the 2nd step of the construction of Lebesgue

integral), for all process that are adapted and continuous and bounded {Xt}t

Mt =

∫ t

0

XsdBs

• We can then define the integral with respect to any semi-martingale that are bounded in L2.

M̃t =

∫ t

0

YsdXs

Definition 5.20 (Ito process).
We define an Ito process as a stochastic process which the sum, for two processes {µt}t and {σt}t
adapted and continuous of integrals

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdBs

Or written as a differential form :
dXt = µtdt+ σtdBt

Note: (Important) This definition takes the processes {µt}t and {σt}t as given. In the following we
will see processes where {µt}t and {σt}t are functions of Xt (and potentially other variables: controls,
General equilibrium feedback X̄t = E[Xt] or other moments – which is called the "mean field" impact).
These processes – called diffusions – are actually the solutions of stochastic differential equations (SDE),
provided these solutions exists ! (which is not obvious at all).

Definition 5.21 (Quadratic variation).
Let Mt a continuous martingale.

• We define the quadratic variation of 〈M〉t the unique adapted and increasing process such that
M2
t − 〈M〉t is a continuous martingale.

In differential form, if dXt = µXt dt+ σXt dBt, then

d〈M〉t = (σXt )2dt

• Let us generalize to the multidimensional case: Let Xt, Yt be Ito processes

dXt = µXt dt+ σXt dBt dYt = µYt dt+ σYt dBt

Their quadratic covariation process 〈X,Y 〉t is given by:

d〈X,Y 〉t = σXt σ
Y
t dt

Note: Hence, intuitively, the quadratic covariation process 〈X〉t capture the “variance” and 〈X,Y 〉t the
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“covariance” of the Brownian part of two Ito processes at time t. Note that in general, 〈X,Y 〉t will be
a random variable instead of a constant as the simple case above.

Moreover, after this construction, we obtain that :

Proposition 5.13 (Integral and martingales).
The following processes are martingales:

Mt =

∫ t

0

XsdBs ⇒ E[Mt] = E
(∫ t

0

XsdBs

)
= 0

Qt = M2
t −

∫ t

0

X2
sds = M2

t − 〈M〉t ⇒ E[Qt] = 0 ⇒ E
[( ∫ t

0

XsdBs
)2]

= E[

∫ t

0

X2
sds]

However, before we state the main result of this section, the Ito’s lemma, which is very important
to compute the function of diffusion process and is used a lot in Econ-Finance.

Theorem 5.14 (Ito’s lemma).
For any Xt Itô process:

dXt = bt dt+ σt dBt

with bt and σt continuous and adapted processes and any C1,2([0, t]×R) scalar function f(t, x) of two
real variables t and x, one has:

df(t,Xt) =
∂f (t,Xt)

∂t
dt+

∂f (t,Xt)

∂x
dXt +

1

2

∂2f (t,Xt)

∂x2
d〈X〉t

or

df(t,Xt) =

(
∂f

∂t
+ bt

∂f

∂x
+
σ2
t

2

∂2f

∂x2

)
dt+ σt

∂f

∂x
dBt

Theorem 5.15 (Ito’s lemma, multidimensional version).
For k-dimensions vector-valued processes Xt = (X1

t , X
2
t , . . . , X

k
t ) and given d-dimensions source of

Brownian noise Bt = (B1
t , . . . , B

d
t ), the process :

dXt = bt dt+ σt dBt

where bt and σt is are respectively k×1 and k×d vector/matrices of continuous and adapted processes,
the Itô formula rewrites:

df(t,Xt) =
∂f

∂t
(t,Xt) dt+

k∑
i=1

∂f

∂xi
(t,Xt)dX

i
t +

1

2

k∑
i,j=1

∂2f

∂xi∂xj
(t,Xt)d〈Xi, Xj〉t

= ∂t f dt+∇xf · dXt +
1

2
Tr
(
σtσ

T
t D

2
xxf
)
dt,

=

{
∂t f +∇x f · bt +

1

2
Tr
(
σtσ

T
t D

2
xx f

)}
dt+∇x f · σt dBt

Note: The proof of the Ito’s lemma relies on the discretization procedure for the construction of the
stochastic integral, explained (but not detailed...) at the beginning of this section
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Proposition 5.16 (Laplace transform and exponential of martingales).
The Ito processes X = {Xt}t is a Gaussian process. In particular, its law is entirely determined by its
characteristic functions (Fourier transform) and/or its Laplace transform :

∀λ ∈ CK E
[
eλ·X

]
= eλ·E(Xt)+λ

TVar(Xt)λ

As a result, let {Xt}t a continuous sub/super- martingale (or simply an Ito process), then there exists
a continuous martingale {E (Xt)}t

E (X)t := exp
(
Xt −

1

2
〈X〉t

)
This is called the “exponential” of the martingale Xt (or sometimes the “Doleans-Dade” exponential).

The following the main artillery to prove all the asset pricing formulas initiated by the Black-
Scholes model. However, it is a very deep result on martingales.

Theorem 5.17 (Girsanov theorem).
Let us consider (Ω,F , {Ft}t,P) an Ito processes {Xt}t and consider the exponential E (X)t given in
the result proposition. If E (X)t is a martingale (i.e. the drift of the Ito process is null), then we can
define a new measure Q such that the Radon-Nikodym derivative can be expressed as a exponential of
Xt:

dQ
dP

∣∣∣
Ft

= E (X)t

Moreover, if Yt is a continuous martingale under P, then the process Ỹ

Ỹt = Yt − 〈X〉t

is also a martingale under Q.

Figure 21: Girsanov theorem with Yt = Bt
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Definition 5.22 (Stochastic differential equation).
Let us consider (Ω,F , {Ft}t,P) and a Brownian noise Bt = (B1

t , . . . , B
d
t ). We call the following

equation a stochastic differential equation.

dXt = b(t,Xt)dt+ σt(t,Xt)dBt

Note:

• This is simply the generalization of ẋt = dxt
dt = b(t, xt) for xt

• There are different notions of existence and uniqueness of solution (weak or strong existence for
example) and this is the object of an entire field in mathematics called "stochastic analysis"

Example 5.8 (Resolution using Girsanov).
Take the SDE on (Ω,F , {Ft}t,P), with b(·) a bounded function:

dXt = b(t,Xt)dt+ σdBt

First, Xt is a Brownian motion on the space (Ω,F , {Ft}t,Q), where we define the measure Q

Q = . . .

The rest of this example is forthcoming

Kolmogorov Forward equation and Feynman Kac theorem

Suppose we consider N particles Xi
t , i = 1, . . . , N subject to shocks given by a SDE:{

dXi
t = b(t,Xi

t)dt+ σdBit

Xi
t0 = Y i

with Y i and Bit i.i.d. (independence is key!).
From the evolution of these particles when N →∞, we look for their measure/law of the process:

m(t, x) = PXt(x), and one can obtain the Kolmogorov Forward or Fokker-Planck equation:{
∂tm(t, x)− div

(
b(t, x)m(t, x)

)
+ σ2

2 D
2
xx

(
m(t, x)

)
= 0

m(0, x) = m0(x)

To obtain this more formally, derive the Itô’s formula for test function ϕ ∈ C∞c on Xt, take the expec-
tation and derive the ’adjoint’ operators on m (which is a more elaborate way to think to integration
by part)
Note: On adjoints, recall that : (b∇·)? ≡ −div(b·) and (σσT∆·)∗ ≡ D2(σσT ·)

Link with Feynman-Kac
The Feynman-Kac theorem is giving us a conceptual link between expectation of a process and

its local dynamics given by a Kolmogorov Backward equation (which is a PDE).
If w(t, x) is a C1,2 function and has bounded derivative, ∇xv ∈ L∞, and is solution of :{

∂tw(t, x) + b· ∇xw(t, x) + 1
2Tr

(
σσTD2

xxw(t, x)
)

= 0

w(T, x) = g(x)
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Then, the Feynman Kac formula gives us the form of the solution:

w(t, x) = Et0
(
g(Xt0,x

T )
)

where XT is the solution of the SDE:{
dXx

t = b(t,Xx
t )dt+ σ(t,Xx

t )dBt

Xx
t0 = x (t0, x0) ∈ [0, T ]× Rd

The above PDE is called Feynman-Kac equation or "Kolmogorov Backward equation"
The Feynman-Kac/Kolmogorov Backward equation is{

∂tw(t, x) + b·∇xw(t, x) + 1
2Tr

(
σσTD2

xxw(t, x)
)

= 0

v(T, x) = g(x)

When one "return the time" (and call w ≡ p), one finds the following "Kolmogorov Forward equation"{
−∂tp(t, x)− div

(
b p(t, x)

)
+ 1

2D
2
xx

(
σσT p(t, x)

)
= 0

p(0, x) = p0(x)

More formally, this equation is the "adjoint" equation of the KBE.
Let us give a general formula for the Feynman Kac.

Theorem 5.18 (Feynman-Kac).
Consider the function

v(t0, x0) = Et0
[ ∫ T

t0

e
−

∫ s
t0
r(u,Xu)du

f(s,Xs)ds + e
−

∫ T
t0
r(u,Xu)du

g(XT )
]

∀(t, x) ∈ [0, T ]× Rd

Supposing that X follows the SDE:{
dXt = b(t,Xt)dt+ σ(t,Xt)dBt

Xt0 = x0 (t0, x0) ∈ [0, T ]× Rd

The Feynman-Kac formula tells us that v is solution to the PDE:{
r(t, x) v(t, x)− ∂tv(t, x)−∇xv(t, x)· b− 1

2Tr
(
σσTD2

xxv(t, x)
)

= f(t, x)

v(T, .) = g

Moreover, if w(t, x) is C1,2 and has bounded derivative, then w(t, x) = v(t, x), i.e. admits the repre-
sentation above.

Intuitions: a function v of X subject to a diffusion can be represented by the expected future
value g, adding running gain f and discounting r. It is used a lot in finance to compute option prices
(Black-Scholes). Moreover, one can compute w using Monte-Carlo methods for instance.
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5.4 Continuous-time Markov processes

We consider continuous time processes that are "right continuous with left limits", or càdlàg2 processes
(or functions, think to c.d.f.!). This is defined as ∀ ω ∈ Ω and ∀ t ≥ 0 there exists ε such that
Xs(ω) = Xt(ω) for all s ∈ [t, t + ε]. This allows to have consistent definition of jump processes while
keeping fundamental properties like adaptability. Recall that a (time-homogeneous) continuous time
Markov chain Xt is can be described by a transition function P defined in definition 5.9.

We will start with jump process on discrete state-space, where the main example are Poisson
jump processes, because turning to more general Markov process.

Jump process in discrete state-spaces

In the following, consider {Xt}t a cadlag process.

Definition 5.23 (Jump times).
We introduce the times of jump J0, J1, J2, . . . :

J0 = 0, Jn+1(ω) = inf {t ≥ Jn(ω) : Xt(ω) 6= XJn(ω)} , n = 1, 2, . . . , inf ∅ =∞

and the time spent between the jumps:

Sn(ω) =

{
Jn(ω)− Jn−1(ω) if Jn−1(ω) <∞
∞ is Jn−1(ω) =∞

The discrete time process Yn = XJn is said to be the jump chain of {Xt}t≥0 Again assume that the
state space S = {x1, . . . , xi, . . . } is discrete (i.e. countable or finite). Again the Markov process is
described by a special matrix:

Definition 5.24.
Intensity matrix An intensity matrix (also called the transition rate matrix) called Q that has the
following properties:

• 0 ≤ −qi,i <∞, for all xi ∈ S
• qi,j ≥ 0 pour tout i 6= j, xi, xj ∈ S
•
∑
xj∈S qi,j = 0 for all xi ∈ S

Note: For Q given, we introduce a matrix P = pk,j , ∀xi, xj ∈ S which is the Markov transition matrix
associated with the intensity matrix above. Intuitively it describes the transition (hence in discrete
time) of the continuous time Markov-process, conditional on jumping, i.e. the transition matrix of
Yn = XJn the jump chain is :

pi,j =

{
qi,j/ (−qi,t) if j 6= i, qi,t 6= 0

0 if j 6= i, qi,i = 0

πi,i =

{
0 if qi,i 6= 0

1 if qi,i = 0

In the following we denote −qi,i = qi.

2From French continue à droite et limite à gauche, no joke it’s called like that in English!
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Definition 5.25 (Markov process).
A process {Xt}t≥0 in continuous time is a Markov process if it is described by an intensity matrix Q
and if its jump chain is a Markov chain on the same state space S, and the times spent between jumps
S1, . . . , Sn has the conditional law of independent random variable of exponential law of parameters
q (Y0) , . . . , q (Yn−1) respectively conditional on fixed values Y0, . . . , Yn−1.

Let us do a brief recap detour:

Definition 5.26 (Exponential law).
A random variable T follows an exponential law of parameter λ (or E (λ) if for all t > 0

P(T > t) = e−λt

The p.d.f of the exponential distribution is fT (t) = λe−λt1t>0 and ET = 1
λ

Example 5.9.
The matrix:

Q =


−2 1 1

3 −7 4

0 0 0


for the jump process generates the jump chain that follows a Markov chain with intensity:

P =


0 1/2 1/2

3/7 0 4/7

0 0 1


A jump process will jump faster if its intensity qi is more negative. The Markov jump process with
intensity Q is associated with the jump chain {Yn}n≥0 which is Markov chain with transition matrix
P . When a trajectory is fixed e.g. Y0 = 1, Y1 = 2, Y3 = 1, Y4 = 3, then S1 the time lapsed between 1
and 2 is the exponential law of intensity 2. S2 the time lapsed between 2 and 3 is the exponential law of
intensity 7 and similarly S3 ∼ E (2). Moreover, S1, S2, S3 are independent. Moreover, the last /third
state is fully absorbing (when you reach this state, the intensity of jumping is null, so you never jump
again).

Proposition 5.19 (Constructions).
There are different way to construct a Markov process in practice (and numerically).

(i) Construct a Markov chain {Yn}n of transition matrix P and then to use T1, T2, . . . independent r.v.
of parameters 1. Let Sn = Tn/q (Yn−1) – using rescaling properties of exponentials and

Xt =

{
Yn if S1 + · · ·+ Sn ≤ t < S1 + · · ·+ Sn + Sn+1

∞ if not

(ii) This second equivalent construction is recursive. Start from X0 = Y0 use T1, T2, . . . independent r.v.
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of parameters 1. By recursion, we have, if Yn = i we pose :

Sjn+1 = T jn+1/qi,j for j 6= i

Sn+1 = inf
j 6=i

Sjn+1

Yn+1 =

{
j if Sjn+1 = Sn+1 <∞
i if Sn+1 =∞

Then, under conditions Yn = i, Sjn+1 follow independent exponential law of parameters qi,j.

Example 5.10 (Poisson process).
We consider a Poisson process: it is a jump process on N where all the jump are upward of one unit.
Here we consider the Poisson process of parameter λ > 0, i.e. it is the counting process associated
to the jump time process {Tn}n≥1 where the random variables Tn are called time of jumps, and are
defined as:

∀n ≥ 1, Tn − Tn−1 = Sn, with T0 = 0

with {Sn}n≥1 a sequence of i.i.d. of exponential law λ > 0.
Note that the intensity matrix has the i-th row (. . . , 0,−λ, λ, 0, . . . ) where the negative term is

on the i-th column.
For all t ≥ 0, we define:

Nt =
∑
n≥0

1Tn≤t,

and in the next graph we simulate the trajectories {Nt}t∈[0,T ] for a finite horizon T > 0.
Note that the parameter is quite high: λ = 20, so a trajectory jumps on average every E[St] = 1

λ = 0.05

units of time.

Figure 22: Poisson Process
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Theorem 5.20 (Markov Property).
Let {Xt}t≥0 a Markov process of intensity matrix Q and let s > 0. Under condition {Xs = i},
(Xt+s)t≥0 is a Markov process with intensity matrix Q independent of σ (Xr, r ≤ s) The proof of
this property relies on the important of property of exponential laws :

Theorem 5.21 (Memoryless properties).
Let T : Ω ∈ (0,∞] follows an exponential law if and only if

P(T > s+ t | T > s) = P(T > t) ∀s, t > 0

We now find again the dynamics of the distribution using the properties of the exponential (in
particular the first order approximation).

Theorem 5.22.
The three following properties are equivalent:

• The process {Xt}t is a Markov process in continuous time with intensity Q
• For all t and h > 0, conditional on Xt = xi, Xt+h is independent of σ(Xs, s ≤ t) and for all xj,

when h ↓ 0 uniformly for all t ≥ 0:

P(Xt+h = xj |Xt = xi) = δi,j + qi,jh+ o(h)

• For all n = 0, 1, 2, . . . , and t0 ≤ t1 ≤ · · · ≤ tn+1 times and xi,0, xi,1, . . . , xi,n+1 the states, as well as
a distribution over states π(t, x) starting at π(0, x) (intuitively a row vector for all t), we have :

P(Xtn+1 = xi,n+1|Xt0 = xi,0, . . . , Xtn = xi,n) = P(Xtn+1 = xi,n+1|Xtn = xi,n)

and we have the Kolmogorov forward equation:

dπ(t, y)

dt
=

∫
S

π(t, x)Q(x, y)dx

or in matrix form:
dπ(t)

dt
= π(t)Q
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General Markov processes
A (time-homogeneous) continuous time Markov chain Xt is can be described by a transition

function P defined in definition 5.9. Recall, given the time homogeneous Transition function p : T×S×G,
we denote the transition function over the interval of time s:

Ps = [p(s, x, dy)]x,dy

where ps,i,j = P(Xt+s ∈ dy|Xt = i). Note that we assume that the process is time-homogenous in
the sense that ps,i,j doesn’t on time t but only on the interval of time. By the Chapman Kolmogorov
property, it is immediate that Pt+s = PtPs and P0 = I. We will also assume that Pt is right-continuous
so limh→0+ Ph = I.

Definition 5.27.
The infinitesimal generator of a continuous-time Markov process Xt is an operator A such that:

Af(x) = lim
h→0

1

h
E[f(Xt+h)− f(Xt)|Xt = x]

Note:

• In the cases of pure jump process as in the previous section, the Infinitesimal generators are nothing
else that the intensity matrix. However, in uncountable spaces the intensity matrix becomes an
operator, i.e. the generalization of matrix in infinite dimension.

• For intuitions, assume |S| <∞ for Markov chains, any function f : S → R is simply a column-vector
[f(xj)]j and:

E[f(Xt)|X0 = xi] = eiP
t[f(xj)]

where ei = (0, .., 1, .., 0) is a row vector with 1 at the ith component and zero otherwise (c.f. discussion
above in the discrete time case). Then, subtract f(Xt) = f(xi) on both side,

E[f(Xt+h)− f(Xt)|Xt = xi] = eiPh[f(xj)]j − f(xi)

and, in matrix form:[
E[f(Xt+h)− f(Xt)|Xt = xi]

]
i

=
[
Ph [f(xj)]

]
i
− [f(xj)]j = (Ph − I)[f(xj)]j

In this finite state case, define A : RN → RN a matrix such that

A := lim
h→0+

Ph − I
h

,

then A is the infinitesimal generator of the Markov process:

A f(xi) = lim
h→0+

1

h
(Ph − I)f(xi) = lim

h→0

1

h
E[f(Xt+h)− f(Xt)|Xt = xi]

• We ignore the problem of the existence of this limit and proceed as if this linear operator (simply a
"matrix" with infinite entries) A exists.
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Infinitesimal generators and Kolmogorov equations
With an infinitesimal generator, we can describe the transition function Pt in a concise way. Consider
the derivative of Pt at time t:

dPt
dt

= lim
h→0+

Pt+h − Pt
h

We can either factor Pt out on the left or on the right:

dPt
dt

= APt,
dPt
dt

= PtA

These differential equations correspond to Kolmogorov’s backward and forward equations respectively.
The solution of the Kolmogorov equations are given by

Pt = CeAt

where given matrix B, the matrix exponential is defined as eB :=
∑∞
j=0

Bj

j! . Moreover, P0 = I implies
C = I.

Following the same logic as in discrete time and discrete space, we compute the dynamics of the
distribution π and the conditional expectation of a function f

Let Xt ∼ πt, the distribution of Xt+s is given by:

πtP
s = πt+s =⇒ dπt = πtAdt

Let V (xi, T ) = f(xi) and V (xi, t) = E[f(XT )|Xt = xi], then we have the Kolmogorov backward
equation:

Vt = PT−tVT =⇒ −dVt = AVtdt

These system of differential equations, together with initial conditions π0 and VT , are the Kol-
mogorov forward and backward equations (or Fokker-Planck and Feynman-Kac equations using):

dπt = πt A dt, π0 given

−dVt = A Vt dt, VT given

The stationary distribution π of the process {Xt} is again the distribution that stabilize over
time. Then πt = πPt = π,∀t and satisfies

0 =
dπt
dt

= πA
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