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Abstract

We characterize jointly optimal fiscal and monetary Ramsey policies in Heterogeneous-
Agent New Keynesian (HANK) economies with both price and wage rigidities. We compare
aggregate allocations to Representative-Agent (RA) benchmarks. A major force drives the
qualitative response of the optimal policy and the divergence between RA and HA cases: the
time-varying tightness of borrowing constraints, summarized by a new sufficient statistic –
the Marginal Value of the Credit Constraint (MVCC). When fiscal instruments are restricted,
the MVCC rises and HA–RA gap widens. In such cases, persistent inflation becomes optimal
as a costly substitute for missing labor-tax instruments.
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1 Introduction

Since 2020, macroeconomic policy has entered uncharted territory. Governments in the United
States and Europe launched large-scale fiscal interventions during the pandemic, with trillions
of dollars in emergency support, while central banks cut interest rates at extraordinary speed.
As inflation surged and concerns over wage-price spirals re-emerged, monetary policy reversed
abruptly to the fastest tightening cycle in decades. These exceptional developments have brought
renewed attention to the coordination between fiscal and monetary stabilization policies.

Heterogeneous-agent New-Keynesian (HANK) models offer a renewed environment to under-
stand these fiscal and monetary interactions. They describe economies with realistic distribution
of income, wealth, and consumption, resulting from credit constraints and incomplete markets.
They lead to relevant marginal propensity to consume (MPC) of households, a departure from the
Ricardian equivalence, as well as amplification effects of aggregate demand channels. However,
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the normative implications of those HANK models for optimal monetary and fiscal stabilization
policy remain unclear, as shown in the literature review below.

The goal of this paper is to draw general lessons for optimal fiscal and monetary policy and
to determine how those lessons differ between HANK and Representative-agent New-Keynesian
(RANK) economies. We address the following questions: Do HANK models generate new
mechanisms for fiscal-monetary policy mix? When and why do the implications for optimal
stabilization in HANK differ from those in RANK?

We answer these questions in a large class of HA models featuring both wage and price
stickiness, subject to a wide variety of aggregate shocks: a productivity shock, a government
spending shock, a preference shock, and an uncertainty shock. Our strategy rests on the known
result that any real effect of monetary policy can be replicated by a well-chosen set of fiscal
instruments, regardless of the nature of the aggregate shock. Indeed, we first characterize a
fiscal system, under which the planner optimally implements the flexible-price allocation, and
where optimal price and wage inflation rates are zero, after any aggregate shock. We refer to this
benchmark fiscal system as a complete fiscal system. It comprises three labor tax instruments
(employer contributions, employee contributions, and total labor income tax), a capital tax,
and public debt. This extends the equivalence findings of Correia et al. (2008) or LeGrand
et al. (2025a) to an environment featuring both price and wage nominal rigidity. Identifying this
complete tax system allows us to characterize the role of inflation, when some fiscal instruments
are missing.

We first identify new stabilization mechanisms in a tractable HA environment with a complete
fiscal system, where prices can thus be assumed to be flexible. Our main finding is that the
nature of the aggregate shock plays a pivotal role for the optimal stabilization policy and its
difference with the one in RA economies. For supply (e.g., TFP) shocks, optimal stabilization
involves a constant debt-to-GDP ratio and a constant labor tax. The resulting optimal aggregate
allocation (savings and consumption) is also constant in proportion to GDP. This implies that
the aggregate dynamic response in the HA economy is identical to the one in the RA economy,
even though steady states differ. For demand shocks (e.g., discount factor shocks), the optimal
paths of public debt to GDP and labor tax are time-varying, and so are consumption and savings
to GDP ratios. The resulting optimal allocation responses differ between HA and RA economies.

The reasons behind these two very different responses is the agents’ precautionary saving
motive. For demand shocks, we prove that precautionary saving is time-varying because the
tightness of the credit constraint is not constant. For supply shocks, precautionary saving is
time-invariant and shocks only induce a homogeneous scaling effect of planner’s instruments and
allocation. HA and RA economies respond similarly, which rationalizes existing results in the
literature.

We capture this property by introducing a new sufficient statistic: the Marginal Value of the
Credit Constraint (MVCC), that positively comoves with the Lagrange multiplier on binding
household borrowing constraint. We show that the dynamics of the MVCC are crucial for
determining when stabilization policy is HA specific. These qualitative insights are general
and carry over to a quantitative framework. We also explain how the MVCC relates to the
discount-factor wedge used Nakajima (2005), Werning (2015), Acharya and Dogra (2021) and
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Berger et al. (2023).
In a second step, we solve for optimal fiscal-monetary policy in the general HA model with

both sticky wages and sticky prices. Our analysis starts from the complete fiscal environment
in a general HANK with both price and wage stickiness, for which optimal price and wage
inflation is zero. In this setting, we confirm the results of the tractable model. After supply
shocks, the ratios of instruments (public debt and labor tax revenues) and allocation (ratios
of consumption and savings) to GDP are almost time invariant. Conversely, after a demand
shock, instruments and allocation do markedly move over the business cycle. The MVCC again
provides a useful statistic. It remains nearly constant after supply shocks, because the tightness
of credit constraint is not time-varying after these shocks.

Building on this zero-inflation/full-instruments benchmark, we then solve for optimal policy
in HA and RA economies when some fiscal instruments are constrained and thus held constant.
We identify which missing fiscal tools generate the most significant optimal deviations from price
and wage stability. With four taxes in total, we explore many possible subsets of time-varying
instruments, and for each configuration we examine the effects of four aggregate shocks. In total,
we simulate 120 economies. In this general environment, we compute the average dynamics of
the MVCC in each case to understand the deviations between RA and HA economies.

This general investigation yields three main results. First, when some labor taxes cannot
vary over time, we observe sizable optimal deviations from price stability. This occurs when
the aggregate shock generates a labor wedge—when the real wage differs from the marginal
product of labor. In this situation, price inflation becomes a second-best instrument—a costly
substitute for missing time-varying labor taxes—to mitigate the labor wedge when nominal
wages are sticky. As also present in RA models, this mechanism is not specific to HA economies,
but its quantitative importance differs substantially in HA models when fiscal tools cannot vary
optimally.

Second, when the planner cannot optimally adjust the capital tax, short-lived movements in
inflation also act as an imperfect substitute for time-varying capital taxation in HA models. By
contrast, the absence of an optimal capital tax has no effect in RA models. However, substantial
inflation adjustments through this channel require relatively flexible prices.

Third, we derive predictions for the optimal path of public debt. In HA models, the initial
change in debt is always smaller in absolute value than in RA models. Because public debt
serves as a buffer stock in HA environments, the planner reduces its volatility relative to the
complete-market benchmark. Public debt is highly persistent in both RA and HA economies,
but slightly more so in HA economies.

Related literature. This paper contributes to three strands of the literature: (i) optimal
policy in HA environments, (ii) the interaction between fiscal and monetary policies in RANK
and HANK models, and (iii) literature aiming at understanding the implications of both price
and wage stickiness.

First, our analysis relates closely to the growing literature on optimal fiscal or monetary
policy with heterogeneous agents, in HANK model following the analysis of Kaplan et al.
(2018). If, with complete markets, the optimal fiscal policy (Werning, 2007) or monetary
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policy (La’O and Morrison, 2024) can be characterized, the task becomes even more challenging
with incomplete markets and aggregate shocks. Limited heterogeneity (Bilbiie and Ragot,
2021), CARA environment without capital (Acharya et al., 2023), zero-liquidity (Challe, 2020),
or continuous-time techniques (Nuño and Moll, 2018 and Nuño and Thomas, 2022 among
others), have provided a renewed understanding of the transmission mechanisms of such policies.
Bhandari et al. (2021) provide a general perturbation method in HANK models without credit
constraints. Dyrda and Pedroni (2023) solve numerically the optimal coefficient of parametric
fiscal rules, as does Yang (2022) for the monetary Taylor rule, while McKay and Wolf (2022)
characterize these rules in the linear-quadratic framework. Dávila and Schaab (2023) use the
primal approach in continuous-time and Açikgöz et al. (2022) solve the general Lagrangian in
infinite dimension. Auclert et al. (2024a) use the dual approach to study the existence and long-
run properties of such an environment. Applications of these tools in HA models are numerous:
studying macroprudential policy (Farhi and Werning, 2016), imperfect instruments (Dávila
and Walther, 2021), informational frictions (Angeletos and La’O, 2020), redistribution and
investment (Morrison, 2023), sectoral shocks (Caratelli and Halperin, 2025), liquidity effects of
fiscal policy (Bayer et al., 2023a), automatic stabilizers (McKay and Reis, 2021), unemployment
insurance (Kekre, 2023) or optimal carbon taxation (Bourany, 2025).

In comparison, in this paper, we rely on the tools developed by LeGrand and Ragot (2022a)
and their subsequent improvements, and construct a finite state-space representation of HANK
models. This approach makes it possible to solve for optimal policy with multiple instruments,
various nominal frictions, and different aggregate shocks. Whereas LeGrand et al. (2025a) solve
for optimal monetary policy and LeGrand and Ragot (2025) solve for optimal fiscal policy, the
current paper is the first to solve jointly for optimal and monetary policy, to the best of our
knowledge.

Second, the conduct of optimal policy naturally depends on the interaction between fiscal
and monetary policy. Our analysis starts from the equivalence result between the path of
interest rates and taxes in Correia et al. (2008). We show how to generalize such equivalence
result in HANK model, with a wide set of shocks and general nominal rigidities, related to the
unconventional policy equivalence result by Seidl and Seyrich (2023) and transfer equivalence by
Wolf (2025).

In contexts where both fiscal and monetary policy interact, a long line of research has
investigated the fiscal origin of inflation, e.g. Leeper and Leith (2016) and Cochrane (2023) for a
review, or more recently in the analysis of Bianchi et al. (2023), Barthélemy and Plantin (2019),
or Bassetto and Miller (2025). These questions have been reinvigorated due to the stronger role
of indirect effects in HANK models. Surveys by Auclert et al. (2025), or Eichenbaum (2025)
provide an overview of these questions in the canonical RANK and HANK models. More recently,
Bilbiie et al. (2024) provide a tractable approach to study such interaction in TANK models,
while Kaplan et al. (2023) study the fiscal root of inflation in the long-run equilibrium of HA
models, and Angeletos et al. (2024) and Rachel and Ravn (2025) analyze the conduct of these
policies in OLG models with slow fiscal adjustment.

Finally, the recent 2021-2023 inflation surge has originated from multiple sources studied
in the literature: energy shocks (Auclert et al., 2023 and Bayer et al., 2023b), supply chain
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disruptions (Comin et al., 2023), or fiscal shocks (Barro and Bianchi, 2023 and Cochrane,
2025). This has highlighted the “wage-inflation spirals” at the heart of the transmission and
amplification mechanism of shocks. In the framework of our paper, we investigate how the
presence of both price and wage stickiness – as reviewed in Taylor (2016) – matters for the
design of optimal fiscal-monetary policy. The early contributions of Blanchard (1986), Galí
(2015, chapter 6), or Blanchard and Galì (2007) included wage rigidities in the standard NK
model. In such a framework with both wage and price rigidities, Erceg et al. (2000) studied
optimal monetary policy, while Chugh (2006) analyzes both optimal monetary policy and labor
taxation. More recently, Lorenzoni and Werning (2023) have analyzed wage-price dynamics in
such an environment. Our paper analyzes the design of optimal policies in this framework.

2 Optimal policy differences between RA and HA economies: a
tractable exploration

In this section, we analyze a tractable model, where we characterize analytically the difference
between optimal policies and allocations in HA and RA economies. The key simplifying
assumption is to consider deterministic productivity fluctuations, following the approach of
Woodford (1990).1 Although our goal is to study the optimal fiscal-monetary policy mix, we
further streamline the exposition by focusing on the flexible price economy. This corresponds to
the benchmark of our general model, in which the fiscal system is sufficiently rich to let monetary
policy focus on price stability only. Starting from this benchmark case allows us to identify the
core mechanisms.

Production. The production function transforms each unit of labor Lt into Zt units of output,
such that aggregate output is given by Yt = ZtLt. Since prices are flexible, the real wage is equal
to TFP: w̃t = Zt.

The agents. The economy is populated by two types of agents, denoted by A and B. A unit
mass of agent A has a productivity 1 in every odd period and a productivity 0 in every even
period. Conversely, a unit mass of agent B has a productivity 1 in every even period and a
productivity 0 in every odd period. Thus, in each period, there is a unit mass of agents with
productivity 1, and income fluctuations are deterministic. Agents with positive productivity are
referred to as “employed” (subscript e), while those with zero productivity are referred to as
“unemployed” (subscript u).

In this simple model, agents’ preferences are represented by a Greenwood-Hercowitz-Huffman
(GHH) utility function: U(c, l) = log(c− l

1+ 1
φ

1+ 1
φ

), where c and l are individual consumption and
labor supply respectively, and φ > 0 is the Frisch elasticity of labor supply. We assume that
agents discount utility from period t+ 1 in period t by a possibly time-varying discount factor βt,
with 0 < βt < 1. Following Galí (2015) among others, we interpret changes in βt as a demand

1In a previous version of the paper, we considered a production function with capital and labor. The results
are qualitatively similar, but at the cost of heavier algebra. In LeGrand and Ragot (2025), we use an economy
with capital to study optimal capital tax.

5



shock. The discount factor for utility in period t as of period 0 is:

Θt = Πt
k=0βt,

which simplifies to βt if βt is constant over time.
The only friction in the economy is a credit constraint: Agents cannot borrow. We denote

ce,t, ae,t, cu,t, au,t ≥ 0 as the consumption and saving levels of employed and unemployed agents
in period t, respectively. We denote as rt and wt the real post-tax interest rate and wage rate,
respectively. They differ from pre-tax rates due to linear taxes detailed below. The budget
constraints for employed and unemployed agents are:

ce,t + ae,t = (1 + rt)au,t−1 + wtle,t, (1)

cu,t + au,t = (1 + rt)ae,t−1. (2)

For simplicity, we assume that initial wealth is zero: ae,−1 = au,−1 = 0. The Euler equations for
employed and unemployed agents are:

Uc(ce,t, le,t) ≥ βt(1 + rt+1)Uc(cu,t+1, 0), (3)

Uc(cu,t, 0) ≥ βt(1 + rt+1)Uc(ce,t+1, le,t+1), with equality if au,t > 0. (4)

with Uc(c, l) = (c− l1+1/φ

1+1/φ)−1. Because they have a null productivity, unemployed agents do not
work: lu,t = 0. Due to the GHH utility function, the labor supply of employed agents is pinned
down by the real wage. Aggregate labor supply Lt is therefore:

Lt = le,t = wφt . (5)

Government. The government issues a quantity of public debt Bt. Financial market clearing
requires:

ae,t + au,t = Bt. (6)

The government raises linear capital tax τKt and labor tax τLt to finance public debt repayments.
If r̃t denotes the net pre-tax interest rate, the gross post-tax interest rate is rt = (1 − τKt )r̃t.
Similarly, the post-tax wage rate is wt = (1 − τLt )w̃t. The government budget constraint writes
as (1 + r̃t)Bt−1 ≤ Bt + τKt r̃t(ae,t−1 + au,t−1) + τLt w̃tLt, which can be simplified into:

(1 + rt)Bt−1 = (Zt − wt)Lt +Bt. (7)

The Ramsey allocation. For a given sequence of MIT shocks, known at date 0, {βt, Zt}t≥0,
the Ramsey program selects the path of instruments {τKt , τLt , Bt}t≥0 that implements the
competitive equilibrium achieving the highest aggregate welfare (given the initial conditions).
The aggregate welfare criterion used is the standard Utilitarian objective, in which both agents
are equally weighted. Since the discount factors correspond to those of the agents, they may
therefore be time-varying.

We follow a standard tradition since Chamley (1986) and express the Ramsey program in
terms of post-tax instruments. The planner is assumed to choose the paths of post-tax rates
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and public debt, {rt, wt, Bt}t≥0 to maximize aggregate welfare. The Ramsey program is:

max
(ce,t,cu,t,ae,t,au,t,le,tBt,At,Rt,wt)t

∞∑
t=0

Θt

(
log
(
ce,t −

l
1+ 1

φ

e,t

1 + 1
φ

)
+ log(cu,t)

)
(8)

subject to: ce,t, cu,t, ae,t,au,t, le,t, lu,t ≥ 0, (9)

ae,−1 = au,−1 = 0, (10)

and subject to: the constraints (1)–(5) guaranteeing the optimality of individual choices (budget
constraints, Euler equations and labor first-order condition (FOC) with GHH utility function,
respectively); the financial market clearing condition (6); and the government budget constraint
(7).

A particularity of this simple no-capital setup is that only the post-tax interest rate rt is
determined. In other words, for any pre-tax interest rate r̃ > 0, the capital tax τKt = 1 − rt

r̃

implements the optimal allocation.

2.1 The RA economy

To be consistent with the HA model, the RA economy is an economy populated by an agent of
mass two endowed with the same GHH utility function as in the general case. This agent has
the average productivity of the population in the HA economy, which is 1/2. In this setting,
the Ramsey problem involves maximizing the agents’ intertemporal welfare subject to the Euler
equation and the resource constraint. The optimal policy is straightforward to characterize,
as the first-best allocation can be achieved. Specifically, the planner sets τKt = τWt = Bt = 0.
Under this policy, the labor supply is given by LRAt = 2−φZφt , and optimal consumption is
CRAt = ZtL

RA
t = 2−φZ1+φ

t .2

2.2 The Ramsey allocation in the HA economy

As a preliminary remark, we can show that in the Ramsey program in equations (8)–(10), that
the planner does not increase public debt to the point where credit constraints cease to bind
for unemployed agents. Such a policy would imply a very high debt level and necessitate an
excessively high and distortionary labor tax. We therefore guess and verify that credit constraint
remains binding for unemployed agents. By substituting the labor supply expression (5), the
program can considerably be simplified.

Our main result, stated in the following proposition, characterizes the optimal stabilization
policy in the HA framework and summarizes how the resulting optimal aggregate HA allocation
departs from the one in the RA economy. We denote the aggregate consumption in the HA
economy by CHAt := cu,t+ce,t, and we denote as the public-debt-to-GDP ratio bHAt = BHA

t /Y HA
t

in the HA economy, and bRAt = BRA
t /Y RA

t in the RA economy.

Proposition 1. We consider arbitrary paths of TFP (Zt)t and discount factor (βt)t.
2Since the RA economy implements the first-best allocation—making aggregate consumption proportional

to Zφ+1
t —considering a RA economy with an agent of mass 1 and a unit productivity would let our results

unchanged. But for the sake of consistency, we opted for the current version.
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1. In the HA, economy, the optimal path of the labor tax (τL,HAt )t and of the public-debt-to-
GDP ratio verify:

τL,HAt = 1
2

1 − βt
1 + φ(1 + βt)

, (11)

bHAt = (1/2 + φ)1+φ

1 + φ

βt
1 + βt

( 1 + βt
1 + φ(1 + βt)

)1+φ
, (12)

and
CHAt =

(1
2 + φ

)φ ( 1 + βt
1 + φ(1 + βt)

)φ
Zφ+1
t .

2. In the RA economy, τL,RAt = bRAt = 0, and CRAt = 2−φZφ+1
t

3. Furthermore, the optimal allocations in the HA and RA economies are related as follows:

CHAt

CRAt
= (1 + 2φ)φ

( 1 + βt
1 + φ(1 + βt)

)φ
.

Proposition 1, whose proof can be found in Appendix A, highlights the main insights regarding
the role of aggregate shocks in HA and RA models. We discuss the effect of each shock in turn.

TFP shocks (Zt)t only As can be seen in equations (11) and (12), the labor tax and public
debt ratio are independent of TFP shocks in the HA model. The effect of TFP on aggregate
consumption in the HA economy is the same as the effect of TFP on consumption in the RA
model. Formally, the ratio of aggregate consumption levels CHA

t

CRA
t

stays constant over time, or
equivalently, the proportional deviations are the same ĈHAt = ĈRAt (where x̂t is the proportional
deviation of xt). Thus, although RA and HA economies have different steady states, their
aggregate responses to TFP shocks are identical.

Discount factor shocks (βt)t only For discount factor shocks, the optimal stabilization
policy in the HA economy differs significantly from the TFP case. Public debt over GDP and
labor tax are now time-varying in the HA model, whereas they a constant in the RA model. As a
consequence, the aggregate consumption response differs from that of the RA economy, in which
the allocation is invariant to discount factor shocks, and the ratio CHA

t

CRA
t

becomes time-varying,
what implies ĈHAt ̸= ĈRAt .

We introduce a simple statistic to explain the differences between allocations in RA and HA
economies.

The Marginal Value of the Credit Constraints (MVCC). We define as νt the Lagrange
multiplier associated to the credit constraint of unemployed agents. The multiplier is: νt :=
Uc(cu,t, 0) − β(1 + rt+1)Uc(ce,t+1, le,t+1). Intuitively, νt measures the gap between the current
and future discounted marginal utilities of agents u and reflects how slack the Euler equation
(4) of unemployed agents is. It equals 0 when credit constraints do not bind and is positive
otherwise. The Marginal Value of Credit Constraints (MVCC) is defined as:

MVCCt := 1
1 − νt/Uc(cu,t, 0) . (13)
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This statistic increases with the Lagrange multiplier νt ≥ 0 normalized by current marginal utility
of unemployed agents. The tighter the credit constraint, the higher MVCCt and MVCCt ≥ 1.
Combining the definitions of νt and of MVCCt yields:

Uc(cu,t, 0) = βt ×MVCCt × (1 + rt+1)Uc(ce,t+1, le,t+1). (14)

Thus, MVCCt is the wedge between the return the agent would demand to save and the actual
(market) return. MVCCt thus measures how much the market interest rate must rise to relax
the credit constraints of unemployed agents. If credit constraints do not bind, the MVCC will
equal one, because the agent already saves at the market interest rate.

The MVCC can be explicitly computed in this economy (see Appendix A):

MVCCt = (1 + 2φ)2

(1 + φ(1 + βt+1)) (1 + φ(1 + βt))
. (15)

We can check that the MVCC is time-varying only for discount factor shocks. As a consequence,
for TFP shocks, RA and HA aggregate allocations have the same dynamics and the MVCC is
constant. For discount factor shocks, the RA and HA aggregate allocations are divergent and
the MVCC is time-varying.

To understand this outcome, we can prove the following result.

Lemma 1. If the MVCCt is constant and (Zt)t≥0 and (βt)t≥0 are convergent, then the ratio of
the marginal utilities of employed and unemployed workers, Uc(cu,t, 0)/Uc(ce,t, le,t), is constant.

Lemma 1 shows that the dynamic properties of the MVCC determine how the aggregate
shocks affect aggregate quantities in the HA economy and how the dynamic responses of RA and
HA differ. When the MVCC is constant, ratios of marginal utilities are constant across states
of the world and across time, which a well-known feature of complete market economies. This
explains why in that case HA and RA economies share at the optimum a number of common
properties. In particular, since TFP shocks imply constant MVCC, TFP shocks do not affect the
ratio of marginal utilities. They play the same role in the HA economy as in the RA economy:
they scale allocations. Since the scaling is proportional in the two economies, allocations of HA
and RA economies are also proportional.3

Relation with the Discount Factor Wedge (DFW). Aggregate allocations in HA models
can be interpreted as the equilibrium outcome of a RA model, augmented by the appropriate
wedges . In particular, the discount factor wedge (DFW) scales the RA discount factor so that
the allocation and interest rate in the HA economy emerge as the equilibrium outcome of the RA
economy (Nakajima, 2005, Werning, 2015, Acharya and Dogra, 2021, and Berger et al., 2023).
Formally, the DWF, denoted DFWt, is defined through the Euler equation of a representative
agent as: Uc(CHAt , LHAt ) = DFWtβt(1 + rHAt+1)Uc(CHAt+1 , L

HA
t+1), or after some algebra:

DFWt = 1 + βt+1 + 2(1 + 1/φ)
1 + βt + 2(1 + 1/φ) × 1 + 2φ

1 + φ (1 + βt+1) . (16)

3We can show that the scaling of TFP shocks depends only on production technology and preference parameters,
which are identical in HA and RA economies.
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The DWF measures variations in the aggregate consumption of all agents, both constrained
and unconstrained, while the MVCC measures consumption variations when switching from
unemployment to employment. This explains the difference in the analytical expressions.
Although the proportional deviations of MVCC and DFW differ, both convey the same core
piece of information in this simple model: they vary only with discount factor shocks, not TFP.4

To summarize, this simple model delivers two main results. First, optimal instrument
dynamics and aggregate consumption in the HA model depend on the nature of the aggregate
shock. Second, the MVCC captures the effect of macroeconomic shocks, and hence whether HA
and RA models differ. These two results hold in the general model developed below.

3 A general framework with wage and price rigidities

We now explore the differences between optimal policy in HA and RA economies in a general
setting.5 The quantitative framework we consider relaxes the simplifying assumptions of the
previous section. We study environments with both prices and wages rigidities, along with a
rich fiscal structure and a monetary authority setting interest rates. The HA model features
incomplete markets for idiosyncratic risk and credit constraint.

We consider a discrete-time economy populated by a continuum of size one of ex-ante identical
agents. These agents are assumed to be distributed along a set J , with the non-atomic measure
ℓ: ℓ(J) = 1.6

3.1 Risk

Aggregate risks. Agents face an aggregate shock (St)t. The shock is persistent but known
at date 0 and should hence be considered as a MIT shock. The aggregate shock can affect the
economy through different channels: the TFP of firms’ production, Zt; agents’ discount factors,
βt; government public spending, Gt; or individual labor productivity levels, yit. We specify the
functional forms in the quantitative Section 5.

Idiosyncratic risk. Agents face idiosyncratic productivity risk. The productivity process,
denoted y, follows a first-order Markov chain with transition matrix (πyy′)y,y′ and takes value in
a finite set Y . With wage w and labor supply l, an agent with productivity y earns labor income
wyl. In each period, the fraction of agents with productivity y is constant and denoted by ny.
We normalize average productivity to 1, i.e.,

∑
y ny∈Yy = 1, where the y are the steady-state

productivity levels. The history of idiosyncratic productivity shocks up to date t for agent
i is denoted by yti = {yi,0, . . . , yi,t}, where yi,τ is the productivity at date τ . In the case of

4In Appendix A, we show that the deviations of DF Wt and MV CCt are proportional, i.e., D̂F W t ∝ M̂V CCt

iff labor supply is inelastic (φ = 0) or the steady-state discount factor is equal to 1 (β = 1). Thus, the statistics
generally convey different information, though the quantitative message is similar when β ≈ 1.

We report the MVCC in what follows because it provides a measure of the underlying friction in the economy,
which is the binding credit constraint. We checked that the DFW provides similar interpretation.

5In a previous version of this paper, we solved the general model with capital, at the cost of more algebra. The
qualitative results were the same and the quantitative results were very similar.

6We follow Green (1994) and assume that the law of large numbers holds.
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uncertainty shock, we assume that agents face a temporary mean-preserving increase in the
variance of idiosyncratic productivity level, explained in Section 5.

In the main text, we indeed primarily focus on two shocks: the TFP and the discount factors,
as in the theoretical section. These two cases are sufficient to contrast Ramsey policies in HA and
RA economies. Results for the public spending shock and the uncertainty shock are summarized
in Section 5.5.

3.2 Preferences

Households are expected-utility maximizers with time-separable preferences and possibly time-
varying discount factors. As in Section 2, the discount factor from t+1 to t is denoted βt ∈ (0, 1),
and the compounded discount factor from t to 0 by Θt = Πt−1

s=0βs. In each period, households
derive utility U(c, l) from consuming the economy’s unique consumption good c and experience
disutility from supplying labor l. We further assume that in each period, the instantaneous
utility is separable in consumption and labor: U(c, l) = u(c) − v(l), where u, v : R+ → R are
twice continuously differentiable and increasing. Furthermore, u is concave, with u′(0) = ∞, and
v is convex.

3.3 Taxes

We consider a rich fiscal system composed of four linear taxes, which can be viewed as a
theoretical device to understand differences between HA and RA economies with both price and
wage stickiness. Indeed, as shown in Section 3.8, this fiscal system is the minimal one required
to ensure no deviation from price and wage stability in all cases. Although these taxes have
empirical counterpart, they can also be seen as theoretical instruments to understand dynamic
distortions, as we will consider various subsets of these taxes below. The first tax is a capital
tax τKt , levied on the interest payment of all assets.

The three other taxes affect labor. The total labor cost of the firm by efficient unit is denoted
as W̃t. The firms are paying a labor tax τEt on this wage and this tax can be interpreted of as
an employer social contribution. The post-employer-social contribution wage is denoted Ŵt =
W̃t(1−τEt ). Second, workers pay additional social contribution τWt (for worker social contribution).
Their post-total-social contribution income is thus Ŵt(1 − τWt ) = W̃t(1 − τEt )(1 − τWt ). Finally,
an income tax τLt is levied on total labor income. The post-total tax labor tax, denoted Wt, is:

Wt = W̃t(1 − τEt )(1 − τWt )(1 − τLt ) = Ŵt(1 − τWt )(1 − τLt ). (17)

These three taxes operate on different margins and have different incidence. Based on
empirical literature, we assume that workers bargain over Ŵt.7 This bargained wage can be
sticky because of some adjustment cost, described below. As a consequence, the two social
contributions have different direct economic effect.8 Assume to simplify that Ŵt is fixed. τEt

7The assumption on the incidence of the taxes, τW , τE , τL is based on the empirical literature (e.g., Saez et al.,
2012 and Lehmann et al., 2013). An alternative specification would treat τL as a tax on all income, including
capital income, at the cost of more algebra. However, results would remain unchanged., as the set of feasible
optimal allocations would be identical.

8By direct effect, we refer to the partial equilibrium effect of each variable. In general equilibrium (with
endogenous income), these taxes affect all variables through price variations.
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has then a direct effect on employment for a given bargained wage Ŵt, but not on the wage
Wt, whereas τWt has a direct effect on the post-tax wage Wt for a given wage Ŵt, but no direct
effect on employment. Finally, the income tax τLt is not internalized by unions: It affects labor
income but not the bargained wage. Overall, the three labor instruments (τWt , τEt and τLt ) are
independent and non-redundant in the HA economy.

3.4 Production

The specification of the production sector follows the New-Keynesian literature on price stickiness,
adapted to the tax structure described above. The consumption good Yt is produced by a unique
profit-maximizing representative firm that combines intermediate goods (yfj,t)j from different
sectors indexed by j ∈ [0, 1] using a standard Dixit-Stiglitz aggregator with an elasticity of

substitution εP : Yt =
[´ 1

0 y
f
j,t

εP −1
εP dj

] εP
εP −1

. For any intermediate good j, the production yfj,t

is realized by a monopolistic firm and sold at price pj,t. Aggregate labor productivity Zt is
possibly affected by the aggregate shock St, where St will follow an AR(1) process. Intermediate
firms face quadratic price adjustment costs à la Rotemberg, proportional to the magnitude of
relative price changes: ψp

2

(
pj,t

pj,t−1
− 1

)2
. Denoting the price index by Pt, the price inflation rate

by πPt = Pt
Pt−1

− 1, the real marginal cost of labor by w̃t := W̃t/Pt, we obtain the standard
Phillips curve:9

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt
w̃t − 1) + βtEt

[
πPt+1(1 + πPt+1)Yt+1

Yt

]
, Yt = ZtLt. (18)

With sticky prices, firms’ profits, denoted Ωt, are in general non zero and can be expressed as:

Ωt =
(

1 − 1
Zt
w̃t − κ

2 (ΠP
t − 1)2

)
Yt. (19)

3.5 Labor market: Labor supply and union wage decision

Following the New Keynesian sticky-wage literature, labor hours are supplied monopolistically by
unions (Erceg et al., 2000; Chugh, 2006; Hagedorn et al., 2019; Auclert et al., 2024b among others).
We adapt this environment to introduce the three labor taxes τEt , τWt and τLt (see Appendix C
for the details of the derivation). There is a continuum of unions of size 1 indexed by k. Each
union k supplies Lkt hours of labor at date t with a nominal wage Ŵkt, which is set to maximize
the intertemporal welfare of union’s members internalizing the labor demand by firms. We
assume quadratic utility costs for the adjustment of the nominal wage: ψW

2 (Ŵkt/Ŵkt−1 − 1)2dk.
The objective of union k is the sum of unweighted household utilities:10

max
(Ŵks)s

Et
∞∑
s=t

Θs

ˆ
i

(
U(ci,s, li,s) − ψW

2

(
Ŵks

Ŵks−1
− 1

)2)
ℓ(di),

9As is standard we assume subsidies for intermediate firms—financed out of lump sum taxes—to focus on the
efficient steady state.

10We assume that unions are utilitarian. Considering alternative specifications (i.e. introducing additional
weights) have no first-order effect on aggregate dynamics.
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This maximization yields the New-Keynesian wage-Phillips curve:

πWt (πWt +1) = εW
ψW

(
v′(Lt)− εW − 1

εW
(1 − τWt )ŵt

ˆ
i
yi,tu

′(ci,t)ℓ(di)︸ ︷︷ ︸
labor gap

)
Lt+βtEt

[
πWt+1(πWt+1+1)

]
, (20)

where πWt = Ŵt−Ŵt−1
Ŵt−1

is the wage inflation rate, and ŵt := Ŵt/Pt is the real pre-tax wage.
Note that the unions bargain over ŵt, which is costly to adjust. They internalize the effect of
employees’ social contribution τWt , and the effect of employed social contribution τEt through its
effect on labor demand. The tax on total labor income appears in the budget constraint of the
agents, and thus in the equilibrium level of consumption level ci,t.

3.5.1 Real variables and inflation

To summarize, the net real interest rate and the real wages are defined as:

rt := (1 − τKt )r̃t, (21)

wt := (1 − τLt )(1 − τWt )ŵt = (1 − τLt )(1 − τWt )(1 − τEt )w̃t. (22)

Given that Ŵt/Pt = (Wt/(1 − τLt )(1 − τWt ))/Pt = wt/(1 − τLt )(1 − τWt ), we derive the law of
motion for the post-tax real wage as a function of inflation and taxes

(1 + πWt ) wt−1
(1 − τWt−1)(1 − τLt−1)

= wt
(1 − τWt )(1 − τLt )

(1 + πPt ). (23)

3.6 Assets

The only asset is nominal public debt, with supply Bt at date t, paying a pre-determined
before-tax nominal interest rate it−1. Public debt, issued by the government, is assumed to be
default free. The real before-tax (net) interest rate for public debt, denoted by r̃t, is defined by:

r̃t = 1 + it−1
1 + πPt

− 1. (24)

3.7 Agents’ program

Each agent enters the economy with an initial endowment of public debt ai,−1 and productivity
level yi,0. The joint initial distribution over public debt and productivity levels is Λ0. In
subsequent periods, agents learn their productivity yi,t, supply labor, and earn savings payoffs.
Since labor supply Lt is chosen by unions, post-tax labor income is wtyi,tLt. The post-tax real
financial payoff amounts to rtai,t−1.

The agent’s program can be finally be written as:

max
{ci,t,ai,t}∞

t=0

E0

∞∑
t=0

ΘtU(ci,t, Lt), (25)

ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt, ai,t, (26)

and subject to the credit constraint ai,t ≥ −a, and the consumption positivity constraint ci,t > 0.
The notation E0 represents the expectation operator over idiosyncratic risk (as we consider
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a MIT shock). The solution to the agent’s program is a sequence of functions, defined over
([−ā; +∞) × Y) × Yt × Rt and denoted by (ct, at)t≥0, such that:11

ci,t = ct((ai,−1, yi,0), yti , zt), ai,t = at((ai,−1, yi,0), yti , zt). (27)

For simplicity, we retain the i-index notation. Denoting by βtνi,t the Lagrange multipliers of the
credit constraint, the Euler equation corresponding to the agent’s program (25) is:

u′(ci,t) = βtEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t. (28)

with the complementary slackness condition:

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0. (29)

The Marginal Value of Cash Constraint (MVCC). As in Section 2, the MVCC for agent
i is defined as MVCCi,t = (1 − νi,t/u

′(ci,t))−1. The Euler equation (28) of agent i becomes:

u′(ci,t) = βtEt
[
MVCCi,t ×Rt+1u

′(ci,t+1)
]
.

When agents are unconstrained, MVCCi,t = 1; and MVCCi,t ≥ 1. In the HA economy, there is
a distribution of MVCC values. We will report the average MVCC which is defined as:12

MVCCt =
ˆ
i
MVCCi,tℓ(di).

3.8 Government and market clearing conditions

The financial market clearing condition and the economy’s resource constraints are:
ˆ
i
ai,tℓ(di) = Bt, (30)

ˆ
i
ci,tℓ(di) +Gt =

(
1 − ψP

2 (πPt )2
)
ZtLt. (31)

The government finances an exogenous public good expenditure Gt by raising the four taxes
of Section 3.3 and issuing public debt (Section 3.6). The government also taxes firms’ profits, Ωt,
which limits the distortions implied by profit distribution.13 The government budget constraint

11See e.g. Miao (2006), Cheridito and Sagredo (2016), and Açikgöz (2018) for a proof of the existence of such
functions.

12In this case with separable utility function, the DF Wt is defined as u′(Ct) = βtEt

[
DF Wt × Rt+1u′(Ct+1)

]
,

where Ct is the total consumption in the HA economy. The DF Wt is different from the MV CCt due to a
Jensen inequality, and the time-varying correlation between ci,t and MV CCi,t. We check that the difference is
quantitatively small.

13Alternative modeling strategies could involve distributing profits to agents or introducing a fund that receives
interest payments and profits (see LeGrand et al., 2025a for a discussion and references). We adopt the current
assumption to simplify the algebra, as these alternatives yield quantitatively similar results.
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can be expressed as:

Gt + 1 + it−1
1 + πPt

Bt−1 ≤ Ωt +Bt + τLt (1 − τWt )ŵtLt

+ τKt r̃t

ˆ
i
ai,t−1ℓ(di) + τWt ŵtLt + τEt w̃tLt.

Using the financial market clearing condition (30), the post-tax interest rate r̃t (24) and the
post-tax rate definitions (21), we simplify the government budget constraint to:

Gt + rtBt−1 + wtLt ≤
(
1 − ψP

2 (πPt )2
)
Yt +Bt −Bt−1, (32)

Equilibrium definition. We now formulate our definition of competitive equilibrium.

Definition 1 (Sequential equilibrium). For any exogenous paths of aggregate shocks (St), char-
acterizing TFP (Zt)t, public spending (Gt)t, discount factors (βt)t, and productivity levels, (Yt)t,
a sequential competitive equilibrium is a collection of individual allocations (ci,t, ai,t, νi,t)t≥0,i∈I ,
aggregate quantities (Lt, At, Yt,Ωt)t≥0, price processes (wt, rt, r̃t, ŵt, w̃t)t≥0, monetary policy
(it)t≥0, fiscal policies (τWt , τEt , τ

L
t , τ

K
t , Bt)t≥0, and inflation dynamics (πWt , πPt )t≥0 such that, for

an initial wealth and productivity distribution (ai,−1, yi,0)i∈I , and for an initial value of public
debt satisfying B−1 =

´
i ai,−1ℓ(di), we have:

1. given prices, the allocations (ci,t, ai,t, νi,t)t≥0,i∈I solve the agent’s optimization program
(25)–(26);

2. financial and goods markets clear at all dates: for all t ≥ 0, equations (30) and (31) hold;

3. the government budget is balanced at all dates: equation (32) holds for all t ≥ 0;

4. firms’ profits Ωt are consistent with firms profit maximization of equation (19).

5. the price inflation path (πPt )t≥0 is consistent with the price Phillips curve (18), while the
wage inflation path (πWt )t≥0 is consistent with the wage Phillips curve (20);

6. the real and nominal rates (r̃t, it)t≥0 verify (24);

7. post tax rates (wt, rt, r̃t, ŵt, w̃t)t≥0 are defined in equations (21)–(22).

Social Welfare Function. We assume that the planner maximizes a generalized Social
Welfare Function (SWF), where the weights ω on each period’s utility can depend on the agent’s
current productivity. The planner’s objective is:

W0 = E0

[ ∞∑
t=0

Θt

[ˆ
i
ω(yit)U(cit, lit)ℓ(di) − ψW

2 (πWt )2
]]
. (33)

This expression encompasses the utilitarian case, where ω(y) = 1 for all y. This generalization of
the standard SWF is now used either in both quantitative work (e.g., LeGrand and Ragot, 2025
and McKay and Wolf, 2022) and theoretical investigations as a deviation from the utilitarian
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case (see Dávila and Schaab, 2025). A theoretical foundation is provided in LeGrand et al.
(2025b). We use it here to facilitate simulations and comparisons of economies in Section 5.14

We assume that the economy starts from a steady-state situation where the fiscal system is
optimally determined. In period 0, the economy is hit by an aggregate shock affecting either Gt,
Zt, βt or the productivity levels yt. The entire path of these shocks is known in period 0, and
the planner optimally sets its available instruments under commitment.

We have introduced five fiscal instruments (τWt , τEt , τ
L
t , τ

K
t , Bt)t≥0. In what follows, we

consider different fiscal systems, where only some fiscal instruments, rather than all, are available
to the planner to smooth the effect of the aggregate shock. Specifically, we solve for opti-
mal monetary policy considering subsets I ⊂ {τW , τE , τL, τK} of available fiscal instruments.
Public debt is always optimally set, which is theoretically and empirically relevant in this
environment. The set I is fixed and does not change across periods. For all other instruments
I ∈ {τW , τE , τL, τK , B}\I, we assume that the instrument is constant and set to its steady-state
value: It = Iss at all dates.

Ramsey equilibrium definitions. We start with the definitions when all instruments are
available.

Definition 2 (Ramsey equilibrium). For a given path of aggregate shocks (St)t≥0, a Ram-
sey equilibrium with all instruments is the path of monetary policy (it)t≥0, fiscal instruments
(τWt , τEt , τ

L
t , τ

K
t , Bt)t≥0, which selects a sequential equilibrium following Definition 1 and maxi-

mizing the SWF (33).

We turn to the steady state.

Definition 3 (Ramsey steady state). A steady-state Ramsey equilibrium is a Ramsey equilibrium
where aggregate real variables (Lt, At, Yt,Ωt,mt)t≥0, prices (wt, rt, r̃t, ŵt, w̃t)t≥0, monetary policy
(it)t≥0, fiscal policies (τWt , τEt , τ

L
t , τ

K
t , Bt)t≥0, and inflation dynamics (πWt , πPt )t≥0 are constant.

The value of the instruments are denoted as (τWss , τEss, τLss, τKss , Bss).

We then turn to the case of a limited set of instruments.

Definition 4 (Ramsey equilibrium with limited instruments). For a given path of aggregate
shocks (St)t≥0 and a given set of available instruments I ⊂ {τW , τE , τL, τK}, a Ramsey equilib-
rium with a limited number of instruments is the path of monetary policy (it)t≥0, public debt
(Bt)t≥0, and fiscal instruments I, which selects a competitive equilibrium maximizing the SWF
(33) given that the unavailable instruments are set to their steady-state values: It = Iss for all
I ∈ {τW , τE , τL, τK} \ I.

We first solve the Ramsey model without aggregate shock to compute the steady-state values
of instruments, (τWss , τEss, τLss, τKss ), and then we solve for the optimal dynamics of the available
instruments. For the simulation of the dynamics for a given set of available instruments I,

14The existence and the properties of a Ramsey steady state depend on both the SWF and the period utility
function (Auclert et al., 2024a). Our specification ensures that a relevant Ramsey steady state exists. In LeGrand
and Ragot (2025) we compute the optimal deviations from the Ramsey steady state for small aggregate shocks, in
the GHH case. The effect of the nature of the SWF on these deviations is quantitatively very small.
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observe that unavailable instruments are set to their steady-state value. Therefore, regardless of
the choice of I, the Ramsey equilibrium will feature the same steady-state allocation, as the
aggregate shock is transitory.

4 Optimal policies with heterogeneous agents

4.1 Characterizing the Ramsey allocation

We derive optimal policies in HA economies for all aggregate shocks, given a set of available
fiscal instruments I. The Ramsey planner’s program is:

max
(It:I∈I)t≥0,(wt,rt,Lt,Bt,πP

t ,π
W
t ,(ci,t,ai,t,νi,t)i)t≥0

W0 (34)

where W0 is defined by (33), and subject to the government budget constraint (32), the individual
budget constraints (26), the individual Euler equations (28), the individual slackness conditions
(29), the individual positivity constraints cit, lit ≥ 0 (for given initial wealth ai−1), the price Phillips
curve (18), the wage Phillips curve (20), the real wage dynamics (23), and that unavailable
instruments verify It = Iss for all I /∈ I. We provide the full program in Appendix D, where
we also derive the FOCss of the planner. We use aspects of Marcet and Marimon (2019) to
write and factorize the Lagrangian. On a technical note, the factorization of the price and wage
Phillips curve is straightforward, as both can interpreted as Euler-like equations, for firms and
unions, respectively, what generalizes LeGrand and Ragot (2025).

We introduce the notion of social valuation of liquidity (SVL) for agent i, which represents
the value to the planner of transferring one additional unit of the consumption good to agent i
in period t.15 From the Lagrangian denoted L, we define the SVL ψi,t as ψi,t := ∂L

∂ci,t
, which can

also be expressed as:

ψi,t := ωitu
′(ci,t)︸ ︷︷ ︸

direct effet

− (λi,t − (1 + rt)λi,t−1)u′′(ci,t)︸ ︷︷ ︸
effect on savings

− εW − 1
ψW

γW,t
wtyi,tLt
1 − τLt

u′′(ci,t)︸ ︷︷ ︸,
effect on the bargained wage

(35)

where Θtλi,t is the discounted Lagrange multipliers of the Euler equations (28) of agent i at date
t—Θtis the compounded discount factor—and ΘtγW,t is the Lagrange multipliers on the wage
Phillips curve (20).

Equation (35) decomposes the SVL into three terms. The first term, ωitu′(ci,t), represents the
private valuation of liquidity for agent i scaled by the planner’s current weight for agent i. The
second term in (35) reflects the impact of an additional unit of consumption on saving incentives
from t− 1 to t and from t to t+ 1. The third term captures the effect of the transfer on the
unions’ marginal incentives to bargain over wages and is hence proportional to the Lagrange
multiplier γW .

This expression for ψi,t holds for all HA economies we consider, regardless of the set of
available instruments. We express all FOCs in terms of ψi,t to simplify the algebra. The planner’s
FOCs depend on the specific set of available instruments, and we detail them in Appendix D.

15In LeGrand and Ragot (2025), we show that this statistics is related to the Generalized Social Marginal
Welfare Weights (GSMWW) introduced by Saez and Stantcheva (2016).
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Unlike the simple model of Section 2, we cannot explicitly express the value of the instruments
as a function of the allocation. Instead, we derive general properties from the FOCs of the
planner in Proposition 2 below and simulate the model to obtain quantitative results.

4.2 The equivalence result

We now state our main equivalence result.

Proposition 2 (An equivalence result). In the HA economy, when all instruments (τL, τE , τW , τK)
are optimally chosen, the planner exactly implements πPt = 0 and πWt = 0, for every path of
aggregate shocks (St)t≥0.

Proposition 2 generalizes the equivalence result of Correia et al. (2008) and Correia et al.
(2013) for RA economies and LeGrand et al. (2025a) for HA economy, to environments with both
sticky prices and sticky wages. With this fiscal system, monetary policy only ensures stability
after all aggregate shocks (i.e., TFP, public spending, discount factors, or uncertainty shocks),
and the economy achieves the flexible price allocation. The proof is in Appendix D.2.

Relative to LeGrand et al. (2025a), we require two additional instruments (τLt , τEt ), while
introducing one additional nominal constraint, which is wage stickiness. The first labor tax τE

enables the planner to “isolate” the pre-tax rate w̃t from the union wage. Removing τE links
the factor price w̃t to the wage inflation path, forcing the planner to balance price inflation
(determining w̃t) against wage inflation (determining ŵt). The second labor tax τLt allows
the planner to set the labor supply optimally while closing the wage gap in the wage Phillips
curve. Without τL, the planner faces a tradeoff between inefficient labor supply (due to union
market power) and the cost of wage inflation. If either instrument is removed, Proposition 2
would no longer hold, and non-zero inflation in wages or prices would arise. Thus, Proposition
2 rationalizes our tax structure as the minimal tax system required for which optimal price
stability.16

4.3 Simulating optimal policies in HA economies

We now provide a quantitative investigation of economies in which we vary the set of available
fiscal instruments. We adapt the standard New Keynesian RA experiment to the HA case. We
first solve for the optimal Ramsey policy at the steady state. We then assume that the economy
starts from this Ramsey steady state and implement a period-0 transitory MIT shock to TFP or
to discount factor. The magnitude of the economy’s response to the shock depends both on the
nature of the shock and on the planner’s available instruments.

The steady state crucially depends on the SWF used in the Ramsey program and on the
tools available to the planner. To ensure that all simulations start from the same steady state,
we employ the inverse optimal taxation approach, as in Heathcote and Tsujiyama (2021) and
LeGrand and Ragot (2025). We fix the steady-state fiscal instruments—τE = τK = 0, τL = 1/εw
and τW > 0—and estimate the SWF weights that rationalize this fiscal system as a steady-state

16More precisely, while other tax systems could also achieve price and wage stability—such as introducing a
time-varying consumption tax, as in Correia et al. (2008)—the number of independent instruments would remain
unchanged. We consider our tax system to be more realistic.
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optimal Ramsey allocation. Each instrument generates a FOC, imposing a restriction on the
SWF.17 Nonetheless, because the number of weights exceeds the number of instrument FOCs, we
select the SWF weights closest to the utilitarian benchmark (where all weights are equal) that
satisfies these restrictions. We also verify that the choice of the SWF does not quantitatively
affect the first-order dynamics of the allocation. We compute the SWF weights once, based on the
full-instrument case, and hold them fixed across all fiscal sets. Setting unavailable instruments
to their steady-state values and keeping the SWF unchanged ensure the steady-state allocation
remains identical across cases.

Solving the Ramsey problem in HA models is computationally challenging because equilibrium
involves a high-dimensional joint distribution across wealth and Lagrange multipliers.18 To
address this complexity, we apply the truncation method developed by LeGrand and Ragot
(2022a) to approximate this joint distribution using finite idiosyncratic histories that are truncated
to a given length N .19 The accuracy of the method, both in the steady state and dynamics, has
been analyzed in LeGrand and Ragot (2023). In addition, LeGrand and Ragot (2022b) propose
an improvement to efficiently reduce the state space using a refined truncation. Further details
in the present setup are provided in Appendix F.

We determine the steady-state values and SWF weights using the following algorithm:

1. Compute the steady-state allocation of the full-fledged Bewley model (with standard
techniques) given realistic values of the fiscal instruments.

2. Construct the truncated representation of the economy by aggregating over truncated
histories of length N .

3. Solve the steady-state Ramsey problem in the truncated economy and compute the SWF
weights through the following steps:

(a) Derive the planner’s FOCs for each available instrument of I in the truncated
representation.

(b) If needed, estimate the SWF weights closest to unity that satisfy these FOCs.20

(c) Compute the associated Lagrange multipliers.

4. Compute the optimal dynamics in the truncated economy using the planner’s FOCs and
the estimated SWF (with standard finite state space methods).

17This strategy ensures the existence of a consistent steady-state. An alternative approach would involve
specifying a given SWF function and solving for the optimal Ramsey steady state. However, this method may
yield unrealistic steady-state allocations (Auclert et al., 2024a or LeGrand and Ragot, 2025 for a discussion). As
in standard New Keynesian models, optimal steady-state price and wage inflation rates are zero, regardless of the
SWF. Consequently, steady-state price stability does not impose any additional restriction on the SWF.

18Optimizing simple rules in the spirit of Krusell and Smith (1998) is also difficult to implement due to the
large number of independent instruments.

19For instance, we consider 10 idiosyncratic states, and the truncation length is N = 8. There are thus possibly,
108 different agents, as it is the number of idiosyncratic histories. The refined truncation of LeGrand and Ragot
(2022b) is an efficient way to reduce this number, considering only relevant histories.

20The steady-state being the same regardless of I, this step is only needed once. The SWF weights computed
for a given I can be used for another set of instruments I′.
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4.4 The representative agent economy

We solve the same problem with a representative agent instead of the HA structure. For brevity,
we present the problem and the FOCs in Appendix E, as the solution techniques are more
standard. However, to the best of our knowledge, this problem has not been solved with such a
rich fiscal structure.

5 Quantitative analysis of optimal policies

This section characterizes the differences between HA and RA allocations, as well as the deviations
from price and wage stability. In each case, the economies differ only by the set of time-varying
taxes available to the planner, while all other taxes remain at their steady-state values. The four
tax instruments (τL, τE , τW , τK) yield 15 subsets of time-varying tools (since 24 − 1 = 15, as at
least one tax must be adjustable to prevent public debt divergence). We examine the effects of
four shocks (Zt, βt, Gt, yt) in both RA and HA economies. Rather than presenting results for
all these 120 combinations, we restrict attention to the economies that best clarify the relevant
mechanisms.

Specifically, we contrast the implications of a TFP shock with those of a discount factor
shock, extending the theoretical investigation in Section 2. These two shocks yield distinct
implications for optimal policy. We analyze three policy environments: first, all fiscal instruments
are available, I(1) = (τK , τW , τE , τL); second, τW is held constant, I(2) = (τK , τE , τL); and
third economy, τE is the only time-varying labor tax, I(3) = (τK , τE). The rationale for this
selection will become clear in the interpretation of the results. Section 5.5 discusses the effects
of other missing instruments (notably τK) and of public spending and uncertainty shocks.

5.1 The calibration and steady-state distribution

The time period is a quarter. Table 1 summarizes the model parameters detailed below.

Aggregate shock. The aggregate shock (St) follows an AR(1) process, such that St = ρSt−1,
where we set ρ = 0.95 to ensure the same persistence across all channels of the aggregate shock.

Technology and TFP shock. The production function is: Y = ZL. The TFP process is
defined as Zt = exp(z0St), where z0 ≤ 0 represents the initial negative TFP shock.

Preferences. The steady-state discount factor is β = 0.99, and the period utility function
is: c1−σ−1

1−σ − χ−1 l1+1/φ

1+1/φ . The Frisch elasticity of labor supply is set to φ = 0.5, which is the
value recommended by Chetty et al. (2011) for the intensive margin in HA models. The scaling
parameter is χ = 0.01, which implies an aggregate labor supply of roughly one-third.

The process for βt verifies βt = β × exp(b0St), where b0 ≥ 0 is a period-0 positive shock to
the discount factor.

Idiosyncratic risk. We use a standard productivity process: log yt = ρy log yt−1 + εyt , with
εyt

iid∼ N (0, σ2
y). We calibrate the persistence of the productivity process as ρy = 0.994 and the
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standard deviation as σy = 0.06. These values are consistent with empirical estimates (Krueger
et al., 2018), and generate a steady-state Gini coefficient of wealth of 0.78, which aligns with the
data.21 Finally, we use the Rouwenhorst (1995) procedure to discretize the productivity process
into 10 idiosyncratic states {y1, . . . , y10} with a constant transition matrix.

The idiosyncratic uncertainty shock, analyzed in Section 5.5, is implemented through a time-
varying, mean-preserving change in idiosyncratic productivity. We define the date-t productivity
as yi,t := yi + (−1)1i≤5n−1

i Stv0, where v0 ≥ 0 is the initial variance shock, ni is the share of
agents with productivity yi and (−1)1i≤5 = −1 if i ≤ 5 and 1 otherwise (recall that there are
10 productivity levels). This specification leaves the average productivity level unchanged but
increases the variance. Low productivity levels decrease further, while high-productivity levels
increase.

Steady-state taxes, public debt, and public spending shock. We first solve the model
with constant exogenous taxes and explain the choice of the SWF below. We assume that
employer social contributions and capital taxes are 0, τE = τK = 0.22 The income tax τL is set
to 1

εW
to offset distortions on the labor market due to the monopoly power of unions. It ensures

that at the steady state, labor supply is determined by v′(L) = ŵ
´
i yiu

′(ci)ℓ(di). We assume
τW = 16%. This value, combined with the value of public debt level described below, implies
that public spending amounts to 18.8% of GDP, which is close to the US value in 2007. The
amount of public debt (which is the only asset in this economy) is set to an annual value of
122% of GDP. Since public debt is the sole asset, we calibrate this level to achieve an average
Marginal Propensity to Consume (MPC) of 0.3.23

The public spending shock, analyzed in Section 5.5, is defined as: Gt = G exp(g0St) where
g0 ≥ 0 is the period-0 positive shock to public spending, G the steady-state public spending and
St is the AR(1) aggregate shock defined above.

Monetary parameters. Following the literature, particularly Schmitt-Grohé and Uribe
(2005), we assume that the elasticity of substitution is εP = 6 across goods and εW = 21 across
labor types. The price adjustment cost is set to ψP = 100, such that the slope of the price
Phillips curve is εP −1

ψP
= 5% (see LeGrand et al., 2025a, for a discussion and references). The

wage adjustment cost is set to ψW = 2100, such that the slope of the wage Phillips curve is 1%,
reflecting the assumption that wages are stickier than prices.24 Since there is no steady-state
inflation in prices or wages: πP = πW = 0, these coefficients only affect the dynamics.

Simulation parameters. We use the refined truncation approach, setting the refinement
truncation length to N = 8. We check that the results do not depend on the choice of the

21The Gini coefficient of wealth is 0.78 using the SCF data in 2007, before the 2008 Great Recession.
22Setting a zero capital tax is necessary to facilitate the comparison between HA and RA models. In the latter,

the optimal steady-state capital tax is 0 (when it exists), which is not necessarily the case in HA framework. See
LeGrand and Ragot (2025) for a discussion.

23We thus adopt a liquid one-asset liquid wealth calibration to match a realistic MPC (Kaplan and Violante,
2022).

24Sensitivity analysis confirms that our qualitative results are robust to these values, although the volatility of
price and wage inflation obviously increases with the slopes of Phillips curves.
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truncation length. Consistent with LeGrand and Ragot (2022a), the truncation method provides
accurate results.

Parameter Description Value Target

Preference and technology

β Discount factor 0.99 Quarterly calibration
σ Curvature utility 2
ā Credit limit 0
χ Scaling param. labor supply 0.01 L = 0.36
φ Frisch elasticity labor supply 0.5 Chetty et al. (2011)

Shock process

ρy Autocorrelation idio. income 0.994 Krueger et al. (2018)
σy Standard dev. idio. income 6% Gini = 0.78
ρz Autocorrelation TFP shock 0.95

Tax system

τW Worker social contribution 16% G/Y = 18.8%
τL Income tax 4.76% 1/εw

τE , τK Other tax 0%
B/Y Public debt over yearly GDP 122% MPC = 0.3
G/Y Public spending over yearly GDP 18.78% Targeted

Monetary parameters

εp Elasticity of sub. between goods 6 Schmitt-Grohé and Uribe (2005)
ψp Price adjustment cost 100 Price PC 5%
εw Elasticity of sub. labor inputs 21 Schmitt-Grohé and Uribe (2005)
ψw Wage adjustment cost 2100 Wage PC 1%

Table 1: Parameter values for the baseline calibration. See the text for descriptions and
calibration targets.

Calibration of the RA economy. The calibration of the RA economy retains the same
preference parameters as in the HA economy. Allocations in the RA (resp., HA) economy are
denoted with a superscript RA (HA). In the RA economy, the first-best allocation is achieved at
the steady state. The steady-state labor supply, LRA (with πW = 0), is determined by the FOC:
v′(LRA) = u′(ZLRA −GRA). We set public spending in the RA economy, GRA, such that the
public-spending-to-GDP ratio is equalized across the two economies: GRA/Y RA = GHA/Y HA.

5.2 Economies with all instruments

We consider an economy where the planner has access to all fiscal instruments. Figure 1 displays
the Impulse Response Functions (IRFs) of allocations and planner’s instruments following either
a transitory negative TFP shock or a transitory positive discount factor shock. Solid blue
lines correspond to the HA economy and red dashed lines to the RA economy. We report
the IRFs for nine key variables over 40 periods. Panel 1 shows aggregate consumption as a
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percentage proportional deviation from the steady state. The remaining panels plot variables in
percentage level deviations in this order: price and wage inflation rates πP and πW , employer
social contribution τEt , the worker social contribution tax τWt , the labor tax τLt , the labor tax
revenue-to-GDP, which is the sum of all revenues raised by labor tax instruments and normalized
by GDP, defined as

(
τLt (1 − τWt )ŵt + τWt ŵt + τEt w̃t

)
Lt
Yt

, public debt-to-GDP, and the MVCC.
We report the MVCC only for the HA economy, as the deviation of the MVCC in the RA
economy is uniformly 0, because credit constraints never bind.

First, thanks to the availability of fiscal instruments, price and wage inflation rates remain
at zero throughout the dynamics (see Figures 1a and 1b). This stability holds regardless of the
shock origin, consistently with the equivalence result of Proposition 2. Second, the responses of
labor taxes to GDP and public debt to GDP differ markedly across shocks. For TFP shocks,
these variables remain virtually constant. In contrast, following a discount factor shock, both
labor tax instruments react strongly on impact, in opposite direction, before converging back to
zero in the HA economy. In the RA economy, labor taxes remain unchanged, but public debt
increases strongly on impact, exceeding the increase in the HA economy.25

The pattern for aggregate consumption is also contrasted in the two economies. The response
is identical in RA and HA economies after a TFP shock. However, following a discount factor
shock, aggregate consumption does not react in the RA economy, but falls on impact before
rapidly converging back to zero in the HA economy. The RA economy indeed implements the
first-best allocation, which is independent of agents’ discount factor; the interest rate adjusts to
satisfy the Euler equation without affecting the allocation, and the public debt, determined by
the government’s budget constraint, scales proportionally to GDP.

The results extend the insights from the simple model in Section 2. Under a TFP shock, the
HA and RA economies share similar patterns: total labor taxes and public debt stay constant
in proportion to GDP, and aggregate consumption responses are virtually identical. This
confirms that the TFP shock has mostly an homogeneous scaling effect, that makes allocations in
proportion to GDP almost unaffected by the shock. Under a discount factor shock, however, the
implications differ substantially. In the HA economy, agents increased patience encourage them
to save more. Because binding credit constraints make the economy non-Ricardian, these larger
individual savings translate into lower aggregate consumption, explaining the drop on impact
in Panel 1. Similarly, public debt must increase to accommodate the higher saving demand.
As explained in Section 2, the MVCC (panel 9) serves as a sufficient statistic for the effect of
the aggregate shock and thus for the divergence between HA and RA economies. The MVCC
measures the tightness of the credit constraints and, thus, the degree to which the economy is
non-Ricardian. For the TFP shock, the MVCC barely changes, explaining why it mostly has a
scaling effect and allocation responses in HA and RA models nearly identical. For the discount
factor shock, the MVCC responds strongly on impact, highlighting the quantitative importance
of the non-Ricardian dimension, and why the shock also affects quantities-to-GDP ratios. HA
and RA economies thus feature different responses.26

25Note that the debt-to-GDP panel features two different scales for HA and RA economies; the scale for the
HA economy is unchanged across graphs and we only adapt here the scale for the RA case.

26A properly rescaled dynamics of the DFW, which we also computed, closely track the MVCC. As in the
simple model, the two statistics convey quantitatively similar information.
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(a) TFP shock.

(b) Discount factor shock.

Figure 1: Dynamics of the economy when all instruments are available, after a TFP and discount
factor shock. The Heterogeneous-Agent economy (HA) is in blue and the Representative Agent
(RA) is in red. Variables are in percentage level change, except aggregate consumption, which is
in percentage proportional change.
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Finally, the reaction of fiscal tools differs across economies and shocks. After TFP shocks,
the planner substantially reduces the employer contribution (τE). This adjustment aligns the
marginal cost and marginal productivity of labor, closing the labor wedge: Subsidizing labor
demand mitigates the negative impact of the contraction. Conversely, the planner increases
the worker social contribution (τW ) by a comparable amount to prevent a change in the union-
targeted wage and to avoid heavily distorting labor supply. These two sizable movements occur
in both the HA and RA cases. Finally, the labor tax (τL) remains unaffected in the RA economy,
where it is a redundant instrument.27 After discount shocks, the employer social contribution
does not move as it is not needed to close the labor wedge: cost of labor and the union target
are constant here. However, ensuring price stability requires to decrease τW , which closes the
gap between the marginal rate of substitution (between labor and consumption) and wage.
Increasing τL allows to partly offset the sharp decrease of τW on households’ budget constraints.

5.3 Economies when social contributions τE and τW are constrained

Figure 2 plots the responses of the HA and RA economies to TFP and discount factor shocks,
when the planner is restricted to labor tax τL as its sole instrument. By construction, worker
and employer social contributions (τW , τE) remain unchanged. This scenario can be seen as a
standard case in the literature, as it is commonly assumed that the labor tax adjusts to balance
the government budget.

The outcomes differ across the two shocks. First, for the TFP shock (Figure 2a), the real
effects of the shock on aggregate consumption are similar in the HA and RA economies. This
similarly extends to the responses of instruments (total labor tax and debt to GDP), a result
corroborated by the negligible movement of the MVCC. Compared to the full-instrument case,
the planner generates an inflation response in both prices and wages, though it remains similar
across the HA and RA economies. Labor tax revenue to GDP also slightly responds on impact,
although this response remains small and identical in HA and RA economies. Unlike in the
full-instrument case, the labor tax τL sharply increases in the HA economy on impact, whereas it
slightly decreased when all instruments were available. Labor tax and price inflation – lowering
the real wage – substitutes for worker and employers social contribution τW and τE observed in
the full-instrument case

Second, the discount factor shock (Figure 2b) yields different results. As in the full-instrument
case, the responses differ between the HA and RA economies. This shock continues to have no
impact on the RA economy, as reflected by the MVCC (which is zero). In the HA economy,
however, consumption falls more steeply than in the full instrument case, highlighting the
absence of τW and τE . In the full-instrument case, the worker social contribution sharply
decreased, while the employer social contribution remained constant and the labor tax increased.
Here, the inability to vary worker social contribution forces the labor tax to act as a substitute.
Consequently, the planner must deviate from price and wage stability to compensate for the rigid
worker social contribution. Finally, the public debt increases both in the RA and HA economies

27In the RA framework, individual and government budget constraints combine into a resource constraint,
where the wage and the interest rates play no role. The wage rate w influences the Phillips curves (18)–(20) and
the inflation consistency equation (23), analogously to w/(1 − τL), making w and τL substitutes.
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to smooth the effect of the change in taxes. The increase in the HA economy is however one order
of magnitude smaller, as the demand for public debt is determined by self-insurance motives. In
the RA economy, where Ricardian equivalence holds, public debt adjusts only to balance the
budget of the government.

5.4 Economies when worker contribution τW and labor tax τL are constrained

Figure 3 displays the responses of the HA and RA economies to a TFP and a discount factor
shock, when the employer contribution (τE) is the sole labor fiscal instrument available to the
planner. By construction, worker social contribution (τW ) and labor tax (τL) remain unchanged
for both shocks.

The results differ markedly from the full-instrument case presented in Figure 1, and even
from the scenario with only the labor tax (τL) in Figure 2. For both shocks, the responses
differ between HA and RA economies, which is reflected in the MVCC. Additionally, the planner
deviates from price and wage stability—for both shocks in the HA economy and for the TFP
shock in the RA economy.

In response to the TFP shock, both price and wage inflations are used to implement a decline
in the real wage following a negative TFP shock, reflecting that τE is not an effective instrument
for the planner. This adjustment occurs in both the RA and HA economies, but the deviation
from price stability is more pronounced in the HA economy. This experience suggests that when
no efficient tax is available to reduce the labor wedge, i.e., the gap between the real wage and
the marginal productivity of labor, then the planner relies on monetary policy, using price and
wage inflations as substitutes for the missing instrument. This is corroborated by the slight
decrease on impact of labor taxes-to-GDP. Public debt to GDP does not react much in the HA
economy but it more volatile in the RA economy.

For the discount factor shock, both the allocation and the dynamics of price and wage
inflation differ between the HA and RA economies. The planner implements an increase in the
real wage, leveraging both price and wage inflation to achieve this adjustment. As for the TFP
shock, the departure from price and wage stability is more pronounced in the HA economy,
thereby illustrating that the absence of τW or τL is costlier. The labor taxes to GDP remain
persistently below their long-term values, unlike the public debt to GDP that raises on impact
to absorb this lower tax receipts. In the RA economy, the increase in public debt is again much
higher than in the HA one.

In summary, we find that allocations, instruments, and price dynamics differ most significantly
in response to the discount factor shock (which directly affects the MVCC), and also when no
efficient labor tax is available to reduce the labor wedge.

5.5 The effect of missing instruments and other shocks

We now present results from additional simulations. To save some space, we summarize key
findings and refer to the IRFs in the Appendix.

First, we consider an economy in which the capital tax is held constant (τKt = τKss ), while
the remaining labor fiscal instruments (τEt , τWt , τLt ) are optimally time-varying (see Figure 4 in
Appendix G). In the RA economy, optimal inflation remains zero, while, for the given calibration,
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(a) TFP shock.

(b) Discount factor shock.

Figure 2: Dynamics of the economy when the labor tax τL is the only available fiscal instrument,
following a TFP and a discount factor shock. The HA economy is represented in blue and the
RA one in red. Variables are in percentage level change, except aggregate consumption, which is
in percentage proportional change.
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(a) TFP shock.

(b) Discount factor shock.

Figure 3: Dynamics of the economy when the employer social contribution τE is the only
available labor fiscal instrument, following a TFP and a discount factor shock. The HA economy
is represented in blue and the RA one in red. Variables are in percentage level change, except
aggregate consumption, which is in percentage proportional change.
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inflation in the HA economy moves slightly on impact. When we further reduce the coefficient
of price stickiness from 100 to a low value of ψp = 10, the inflation – as expected – increases
significantly on impact for one period. This spike in inflation acts as a substitute for the missing
capital tax, as it lowers the real interest rate for one period through the Fisher effect, given its
unexpected nature. Thus, inflation can substitute for the unavailable capital tax on impact,
provided that prices are sufficiently flexible. This result aligns with the findings of LeGrand
et al. (2025a).

Second, we implement the two other aggregate shocks: a public spending shock and a pure
idiosyncratic uncertainty shock. The allocations after a public spending shock closely resemble
those resulting from negative TFP shocks. This can be seen in Figure 5 of Appendix G.2.
Conversely, the effects of the uncertainty shock mirror those of a discount factor shock, as
both operate through the mechanism of a time-varying MVCC.28 In the RA economy, this
shock has no effect by construction, while in the HA economy, this shock induces time-varying
precautionary saving, which directly affects the MVCC. This explains why the optimal paths
of labor tax to GDP and of public debt to GDP, as well as of aggregate consumption, depart
from their steady state values. A particularity of this aggregate shock is it is the sole aggregate
risk for which public debt is more volatile in the HA economy than in the RA one. This comes
from the fact that the uncertainty risk is completely mute in the RA economy: no RA variable,
including public debt, reacts to this shock. Results are reported in Figure 6 of Appendix G.3.

6 Main lessons and conclusion

We have derived the optimal fiscal and monetary policy in an economies with both sticky prices
and sticky wages. We compare RA and HA frameworks, considering a large range of fiscal
systems, and aggregate shocks: TFP, discount factor, public spending, and idiosyncratic risk.
As a benchmark, we first establish a complete fiscal system, where both price and wage inflation
are optimally zero for any of those shocks. Our main result is that HA economies offer new
insights into optimal stabilization policy, which are highly dependent on the nature of the shock
and the set of available fiscal instruments.

More specifically, we derive four main lessons from our simulations. First, when the fiscal
toolkit is sufficiently rich, allocations in HA and RA economies are very similar for both TFP and
public spending shocks, but differ substantially in response to discount factor and idiosyncratic
risk shocks. This is explained by MVCC – our sufficient statistics on the tightness of the credit
constraint – differing accross shocks. Second, price and wage inflation responses act as imperfect
substitutes for missing labor taxes to close the labor wedge. Third, optimal public debt response
is always less volatile in HA economies than in RA ones, while being always more persistent.
Debt plays very different roles in the two economies: in the HA economy, it provides a liquidity
instrument and facilitate self-insurance, without no such role in RA economies. Finally, labor
tax and worker social contribution are substitute instruments and are both reasonably effective
in maintaining price and wage stability, as well as keeping the HA allocation close to the RA

28The effects of shocks affecting directly the credit constraint, as in Guerrieri and Lorenzoni (2017), would also
have a similar direct effect on the MVCC.
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one—at least for TFP shocks. Conversely, when those instruments are constrained, HA and RA
allocations markedly differ for all shocks, and they depart from price and wage stability.

Our main policy take-away is that time-varying labor subsidies are valuable policy tools
for reducing the labor wedge and act as non-Keynesian stabilizers. Indeed, these taxes help to
stabilize the economy, but they do not affect aggregate demand, but instead reduce the wedge
between the marginal productivity of labor and the real wage. Notably, such policies have
been recently implemented in Europe, for instance, with Germany’s kurzarbeit program and
France’s activité partielle scheme functioned as wage subsidies aimed at reducing layoffs during
the Covid-19 crisis.
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Online Appendix

A Proof of Proposition 1

A.1 The HA case

The program of the planner in the economy with credit constraint (presented in Section 2)
is—where U(c, l) = log(c− l1+1/φ

1+1/φ) is of the GHH form:

max
(ce,t,cu,t,ae,t,au,t,le,tBt,At,Rt,wt)

∞∑
t=0

Θt

(
U(ce,t, le,t) + U(cu,t, 0)

)
(36)

s.t. ce,t + ae,t = (1 + rt)au,t−1 + wtle,t, (37)

cu,t + au,t = (1 + rt)ae,t−1, (38)

Uc(ce,t, le,t) = βt(1 + rt+1)Uc(cu,t+1, 0), (39)

Uc(cu,t, 0) ≥ βt(1 + rt+1)Uc(ce,t+1, le,t+1), with equality if au,t > 0, (40)

−Ul(ce,t, le,t) = wtUc(ce,t, le,t), (41)

(1 + rt)Bt−1 + wtle,t = Ztle,t +Bt. (42)

At = Bt = ae,t + au,t, (43)

ae,t, au,t ≥ 0, ce,t, cu,t > 0 and le,t, lu,t ≥ 0. (44)

We guess-and-verify that the equilibrium with a binding credit constraint for unemployed
agent exists. We thus set au,t = 0. The Euler conditions (39) and (40) imply that this is
equivalent to βR < 1 at the steady state. We show below that it is indeed the case.

If au,t = 0, using the GHH property, the FOC for labor supply is lt = wφt . The Euler equation
(39) of employed agents implies the following optimal savings:

ae,t = βt
1 + βt

1
1 + φ

w1+φ
t . (45)

Combining the savings and labor expressions with the budget constraints (37) and (38) yields:

ce,t = (1 − ηt)xt, cu,t = (1 + rt)ηt−1xt−1, ce,t −
l
1+1/φ
e,t

1 + 1/φ =
( 1

1 + φ
− ηt

)
xt, Lt = x

φ
1+φ

t . (46)

where we have defined ηt := 1
1+φ

βt

1+βt
and xt := w1+φ

t . Using Bt = ae,t—coming from (43)—,

the government budget constraint (42) becomes: (1 + rt)ηt−1xt−1 = Ztx
φ

1+φ

t − xt + ηtxt. Using
the above relationships, we deduce that the Ramsey program (36)–(44) becomes:

max
(Rt,xt)

∞∑
t=0

Ξt
(

log xt + log(1 + rt) + log xt−1

)
(47)

−
∞∑
t=0

Ξtµt
(

(1 + rt)ηt−1xt−1 − Ztx
φ

1+φ

t + xt − ηtxt

)
,

where Ξtµt is the Lagrange multiplier on the government budget constraint. The Ramsey
allocation is characterized by the two FOCs associated to the Lagrangian (47) and the budget

1



constraint (42), forming a system with three unknowns:

(1 + βt+1) 1
xt

= µt

(
−Zt

φ

1 + φ
x

− 1
1+φ

t + 1 − ηt

)
+ βt+1(1 + rt+1)µt+1ηt, (48)

1 = (1 + rt)µtηt−1xt−1, (49)

(1 + rt)ηt−1xt−1 = Ztx
φ

1+φ

t − (1 − ηt)xt. (50)

Shifting (49) by one period and using it with (50) and (46) yields:

cu,t = (1 + rt)ηt−1xt−1 = xt
1 − ηt
1 + 2φ,

ce,t
cu,t

= 1 + 2φ. (51)

We also deduce that the aggregate consumption CHAt := ce,t+cu,t verifies: CHAt = 1+φ
1/2+φ(1−ηt)xt.

Using the resource constraint stating that in the absence of public spending, we have: CHAt =
ZtLt, or using the previous expression of CHAt and the expressions in (46):

xt =
( 1 + φ

1/2 + φ

)−(1+φ)
(1 − ηt)−(1+φ)Z1+φ

t . (52)

This gives in turn aggregate consumption:

CHAt =
(1/2 + φ

1 + φ

)φ
(1 − ηt)−φ Z1+φ

t . (53)

Steady-state interest rate. At the steady state, Zt = 1 and equation (51) readily implies:
1 + r = 1+(1+β)φ

1+2φ × 1
β <

1
β : Credit constraints are binding at the steady state.

Path of the instruments. We can recover the path of τLt , from the definition xt = w1+φ
t =

Z1+φ
t (1− τLt )1+φ and from the expression (52). One finds τLt = 1

2
1−βt

1+φ(1+βt) . The dynamics of the

public debt to GDP ratio is defined by Bt
Yt

= ae,t

Ztx

φ
1+φ
t

= ηtxt

Ztx

φ
1+φ
t

= ηt

Zt
x

1
1+φ

t , or Bt
Yt

= 1/2+φ
1+φ

βt

1+φ(1+βt) .

The path of post tax real interest rate is, from equations (51) and (52):

1 + rt = 1
1 + 2φ

1 + φ(1 + βt−1)
βt−1

(1 + φ(1 + βt−1)
1 + φ(1 + βt)

1 + βt
1 + βt−1

)φ Z1+φ
t

Z1+φ
t−1

.

Expressions of the MVCC and DFW. The MVCC uses the expression of the Lagrange mul-

tiplier on the credit constraint of unemployed agents: νt = c−1
u,t −βt(1 + rt+1)

(
ce,t+1 − l

1/φ+1
e,t+1

1+1/φ

)−1
.

With (46), (51), and (52), we have: νt

c−1
u,t

= 1 − 1
(1+2φ)2

1−ηt+1
1

1+φ
1

1+βt+1

1−ηt

ηt/βt
. Since MVCCt =(

1 − νt

c−1
u,t

)−1
, we find the expression (15) of the main text. Since βt ∈ (0, 1), MVCCt > 1.

The discount factor wedge (DFW) is defined as: DFWt = 1
βt(1+rHA

t+1)
CHA

t+1−
l
1+1/φ
e,t+1
1+1/φ

CHA
t −

l
1+1/φ
e,t
1+1/φ

(since

LHAt = le,t). With (39), (46), (51)–(53), we obtain after some algebra the expression (16).

Relationship between MVCC and DFW. We have the following result.
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Result 1. We assume the steady-state value of the discount factor is positive: β > 0. We have
the following results regarding the comparison between MVCC and DFW.

1. The steady-state values of MVCC and DFW are equal to each other iff φ = 0 or β = 1,

2. The log deviations of MVCC and DFW are proportional to each other iff φ = 0 or β = 1.

Proof. We start with the steady-state values. We have from (15) and (16) that MVCC = DFW

iff 1+φ(1+β)
1+2φ = 1, or φ(1 − β) = 0. This proves the first point.

For log-deviations, we have: M̂V CCt = − φβ
1+φ(1+β)(β̂t+1 + β̂t), and:

D̂FWt = −
(

φβ

1 + φ(1 + β) − φβ

2(1 + φ) + φ(1 + β)

)
β̂t+1 − φβ

2(1 + φ) + φ(1 + β) β̂t.

Thus, M̂V CCt and β̂wedget are proportional when φβ = 0 or when (assuming φ, β > 0) 1
1+φ(1+β) −

1
2(1+φ)+φ(1+β) = 1

2(1+φ)+φ(1+β) ,which corresponds to β = 1.

Optimal allocation in the RA economy In the RA economy, the planner can implement
the first-best allocation, as the Euler equation only pins down the interest rate. For the sake of
comparison with the HA economy, we assume that the RA economy is composed of a homogeneous
population of size 2 endowed with a average productivity of 1

2—which is the average productivity
in the HA economy. We denote by CRAt and LRAt the aggregate consumption and labor supply.
Note that CRAt is twice the individual consumption, while LRAt is the individual labor supply.
The planner’s program writes then as:

max
(CRA

t ,LRA
t )

2
∞∑
t=0

Ξt log
(
CRAt

2 − L
RA,1+1/φ
t

1 + 1/φ

)
, s.t. CRAt = ZtL

RA
t .

Denoting by µRAt the Lagrangian multiplier on the resource constraint, the FOCs are:

(
CRAt

2 − L
RA,1+1/φ
t

1 + 1/φ

)−1
= µRAt , 2LRA,1/φt

(
CRAt

2 − L
RA,1+1/φ
t

1 + 1/φ

)−1
= Ztµ

RA
t ,

which imply LRA,1/φt = Zt
2 or with the resource constraint: CRAt = 1

2φZ
φ+1
t . Using the expression

of CHAt in (53), we deduce CHA
t

CRA
t

of Proposition 1.

B Proof of Lemma 1

With constant MVCC, combining (14) and employed agents’ Euler equation implies:

Uc(cu,t, 0) = MVCC × βtRt+1Uc(ce,t+1, le,t+1),

Uc(ce,t, le,t) = βtRt+1Uc(cu,t+1, 0),

or Uc(ce,t,le,t)
Uc(cu,t,0) = 1

MVCC
1

Uc(ce,t+1,le,t+1)
Uc(cu,t+1,0)

. Because (i) the model’s equations are identical in every

period, (ii) only current technology Zt enters production at time t, and (iii) the two agent types
e, u at time t carry preference parameters (βt, βt−1), the date-t equilibrium conditions form a
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stationary system, whose solution yields time-homogeneous policy functions (ce,t, cu,t, le,t) =
(ce(Zt, βt, βt−1), cu(Zt, βt, βt−1), le(Zt, βt, βt−1)).

We denote m(Zt, βt, βt−1) := Uc(ce,t,le,t)
Uc(cu,t,0) , verifying: m(Z2t, β2t, β2t−1) = m(Z2t+2, β2t+2, β2t+1)

and m(Z2t−1, β2t−1, β2t−2) = m(Z2t+1, β2t+1, β2t). Thus, m(Z2t, β2t, β2t−1) = m(Z0, β0, β−1) and
m(Z2t+1, β2t+1, β2t) = m(Z1, β1, β0). Since the limits of (Zt)t≥0 and (βt)t≥0 exist, m is constant.

C Derivation of the wage-Phillips curve

There is a continuum of unions of size 1 indexed by k and each union k supplies Lkt hours of
labor with nominal wage Ŵkt. Union-specific labor supplies are then aggregated into aggregate
labor supply by a competitive technology featuring a constant elasticity of substitution εW :

Lt =
(ˆ

k
L

εW −1
εW

kt dk

) εW
εW −1

. (54)

The competitive aggregator demands the union labor supplies (Lkt)k that minimize the total
labor cost

´
k ŴktLk,tdk subject to the aggregation constraint (54), where Ŵkt is the bargained

nominal wage of the members of union k. The demand for labor of union k depends on the total
labor cost paid by the firm W̃kt: Lkt =

(
W̃kt

W̃t

)−εW , where W̃t =
(´

k W̃
1−εW
kt dk

) 1
1−εW is the total

nominal wage index. Total labor demand can be expressed as:

Lkt =
(
Ŵkt

Ŵt

)−εW

Lt, (55)

where Ŵt =
(´

k Ŵ
1−εW
kt dk

) 1
1−εW is the bargained nominal wage index. Each union k sets its

wage Ŵkt so as to maximize the intertemporal welfare of its members subject to fulfilling the
demand of equation (55). Due to the presence of quadratic utility costs related to the adjustment
of the nominal wage, ψW

2 (Ŵkt/Ŵkt−1 − 1)2dk, the objective of union k is thus:

max
(Ŵks)s

Et
∞∑
s=t

βs
ˆ
i

(
u(ci,s) − v(li,s) − ψW

2

(
Ŵks

Ŵks−1
− 1

)2)
ℓ(di),

subject to (55) and where ci,t and li,t are the consumption and labor supply of agent i. The
FOC with respect to Wkt thus writes as:

πWt (πWt + 1) = Ŵkt

ψW

ˆ
i

(
u′(ci,t)

∂ci,t

∂Ŵkt

− v′(li,t)
∂li,t

∂Ŵkt

)
ℓ(di) + βEt

[
πWt+1(πWt+1 + 1)

]
, (56)

where the wage inflation rate is denoted by: πWt = Ŵk,t

Ŵk,t−1
− 1. The labor supply lit of agent i

is the sum of her hours likt supplied to union k, summed over all unions: lit =
´
k liktdk. Each

union is assumed to request uniform number of hours: likt = Lkt. We thus have from (55):

Ŵkt
∂li,t

∂Ŵkt

= Ŵkt

∂
(´
k

(Ŵkt

Ŵt

)−εWLtdk
)

∂Ŵkt

= −εWLkt. (57)
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To compute the derivative of consumption ∂ci,t

∂Ŵkt
, it should observed that it is equal to the

derivative of its net total income, (1 − τWt )Ŵktyi,tli,t/Pt, where τWt is the labor tax. Formally:

Ŵkt
∂ci,t

∂Ŵkt

= (1 − εW )(1 − τWt )Ŵktyi,tli,t/Pt (58)

We focus on the symmetric equilibrium Ŵkt = Ŵt, hence lit = Lt. Combining (56) with (57)
and (58) yields the Phillips curve for wage inflation of equation (20).

D Ramsey program for HA models

D.1 The HA economy with all instruments

As in the RA case, we express the Ramsey program in post-tax terms. We begin with the general
case, in which all instruments are available to the planner: If = (τLt , τSt , τEt , τKt , Bt, πPt , πWt , wt, rt,
Lt, (ci,t, ai,t, νi,t)i)t≥0. We turn to missing tools below.

max
If

∞∑
t=0

βt
ˆ
i
ω(yi,t) (u(ci,t) − v(Lt)) ℓ(di) − ψW

2 (πWt )2, (59)

βtµt:Gt + (1 + rt)
ˆ
i
ai,t−1ℓ(di) + wtLt + Tt ≤

(
1 − ψP

2 (πPt )2
)
ZtLt +

ˆ
i
ai,tℓ(di), (60)

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt, (61)

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0, (62)

βtλi,t: u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t, (63)

βtγW,t:πWt (1+πWt )= εW
ψW

(
v′(Lt)− εW − 1

εW

wt
1 − τLt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt + βπWt+1(1+πWt+1), (64)

βtγP,t:πPt (1+πPt )= εP − 1
ψP

( wt
Zt(1 − τLt )(1 − τWt )(1 − τEt )

−1)+βπPt+1(1 + πPt+1)Zt+1Lt+1
ZtLt

, (65)

βtΛt: (1 + πWt ) wt−1
(1 − τLt−1)(1 − τWt−1)

= wt
(1 − τLt )(1 − τWt )

(1 + πPt ), (66)

Ξ0: (1 + πP0 )r0 = (1 − τK0 )
(
i−1 − πP0

)
, (67)

where we specify the associated Lagrange multiplier at the beginning of the line. The constraint
(67) on the capital tax is explicit, for date 0 only. As for t ≥ 1, capital tax τKt and nominal
interest rate it−1 are redundant the constraint has been removed from the program for t ≥ 1.

We write the Lagrangian with all constraints and factorize it following LeGrand and Ragot
(2022a). In all FOCs of the planner, we take the derivatives of ci,t as a function of the relevant
variables. We thus use the SVL, ψi,t := ∂L

∂ci,t
, defined in (35) and ψ̂i,t := ψi,t − µt, equal to the

SVL of agent i net of the cost of the resource for the planner. As discussed in LeGrand and
Ragot (2025), if the government had a complete set of tools, it would set ψ̂i,t = 0, for all i and
all t ≥ 0. The FOCs are (1t=0 = 1 if t = 0, 0 otherwise).

(πWt ) 0 = −ψWπWt − (γW,t − γW,t−1)(2πWt + 1) + Λt
wt−1

(1 − τLt−1)(1 − τWt−1)
, (68)
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(πPt ) 0 = (γP,t − γP,t−1)(2πPt + 1) + µtψPπ
P
t + Λt

ZtLt

wt
(1 − τLt )(1 − τWt )

(69)

− Ξ0(r0 + 1 − τK0 )1t=0,

(ai,t) ψ̂i,t = β(1 + rt+1)ψ̂i,t+1 for unconstrained agents, λi,t = 0 otherwise, (70)

(rt) 0 =
ˆ
i
ai,t−1ψ̂i,tℓ(di) +

ˆ
i
λi,t−1u

′(ci,t)ℓ(di) + Ξ0(1 + πP0 )1t=0, (71)

and(wt) 0 =
ˆ
i
yi,t

(
ψ̂i,t − γW,t

εW − 1
ψW

1
1 − τLt

u′(ci,t)
)
ℓ(di) (72)

+ 1
Lt(1 − τLt )(1 − τWt )

(
εP − 1
ψP

γP,t
Lt

1 − τEt
− Λt(1 + πPt ) + βΛt+1(1 + πWt+1)

)
,

(Lt) v′(Lt) = wt

ˆ
i
yiψ̂i,tℓ(di) + µt

(
1 − ψP

2 (πPt )2
)
Zt (73)

+ εW
ψW

γW,t

(
v′′(Lt)Lt + v′(Lt) − εW − 1

ψW

1
1 − τLt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)

− (γP,t − γP,t−1)πPt (1 + πPt )Zt+
εP − 1
ψP

γP,t

(
wt

(1 − τW )(1 − τLt )(1 − τEt )
−Zt

)
,

( 1
1−τW

t
) 0 = εP − 1

ψP
γP,t

1
1 − τEt

Lt − Λt(1 + πPt ) + βEt
[
Λt+1(1 + πWt+1)

]
, (74)

( 1
1−τE

t
) 0 = εP − 1

ψP
γP,t

wt
(1 − τW )(1 − τLt )

Lt, (75)

( 1
1−τL

t
) 0 =γW,t

εW − 1
ψW

ˆ
i
yi,tu

′(ci,t)ℓ(di) (76)

− 1
Lt(1 − τWt )

(
εP − 1
ψP

γP,t
Lt

1 − τEt
− Λt(1 + πPt ) + βEt

[
Λt+1(1 + πWt+1)

])
,

(τK1 ) 0 = Ξ1. (77)

D.2 Proof of Proposition 2

With all instruments, (74)–(76) yield γW,t = γP,t = 0. In words, wage and price Phillips curves are
not constraints of the planner’s program anymore. Consider an allocation (τWt , τLt , Bt, π

P
t , π

W
t , wt,

rt, Lt, (ci,t, ai,t, νi,t)i)t≥0 with non-zero inflation rates (for a set T of time indices: πPt ̸= 0 and
πWt ≠ 0 for t ∈ T , with (1 + πWt ) wt−1

(1−τW
t−1)(1−τL

t−1) = wt

(1−τW
t )(1−τL

t )(1 + πPt )). Note that tax rate
τE plays no role, since Phillips curves are not constraints any more. Consider the allocation
(τ̃Wt , τLt , Bt, π

P
t , π̃

W
t , wt, rt, Lt, (ci,t, ai,t, νi,t)i)t≥0, differing only along the inflation rate π̃W and

tax rate τ̃W . We define: π̃Wt = 0 for all t, τ̃W0 = 0 and 1 − τ̃Wt = (1 − τ̃Wt−1)1−τL
t−1

1−τL
t

wt
wt−1

(1 + πPt )
for t ≥ 1. This allocation is feasible and implies a strictly larger welfare than the initial one
(because of the zero wage inflation). We thus deduce that for any optimal allocation, πWt = 0.
The FOC (68) on πW implies Λt = 0, which in turn gives using the FOC (69) on πP that πPt = 0.

D.3 The HA economy with missing instruments

When some instruments from {(τEt , τWt , τLt )t, τK0 } are missing, the corresponding Ramsey FOCs
is dropped and replaced by an equality stating the missing instrument is set to its steady-state
value. All other FOCs are identical to their counterpart in the full-instrument case.
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E Characterization of the Ramsey allocation in the RA case

E.1 First-best allocation

The first-best allocation is simply characterized by: maxLt u(ZtLt −Gt) − v(Lt), or:

Ztu
′(ZtLt −Gt) = v′(Lt). (78)

At the steady state with u′(c) = c−σ and v′(L) = χ−1L1/φ, we have χ(L−Gt)−σ = L1/φ or with
g := G/Y = G/L: χ(1 − g)−σ = L1/φ+σ.

E.2 FOCs with all tools

Using the resource constraint instead of the government budget, the Ramsey program is:

max
(τE

t ,τ
W
t ,τL

t ,Bt,πP
t ,π

W
t ,wt,rt,Lt,ct,at)t≥0

∞∑
t=0

βt (u(ct) − v(Lt)) − ψW
2 (πWt )2, (79)

Gt + ct ≤
(
1 − ψP

2 (πPt )2
)
ZtLt, (80)

ct + at = (1 + rt)at−1 + wtLt, (81)

u′(ct) = β(1 + rt+1)u′(ct+1), (82)

πWt (πWt + 1) = εW
ψW

(
v′(Lt) − εW − 1

εW

wt
1 − τLt

u′(ct)
)
Lt + βπWt+1(πWt+1 + 1), (83)

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1 − τWt )(1 − τLt )(1 − τEt )

− 1
)

+ βπPt+1(1 + πPt+1)Zt+1Lt+1
ZtLt

, (84)

(1 + πWt ) wt−1
(1 − τWt−1)(1 − τLt−1)

= wt
(1 − τWt )(1 − τLt )

(1 + πPt ), (85)

where we have used the financial market clearing condition at = Bt. Observe that (at)t and
(rt)t only play a role in equations (81) and (82) and are thus determined by the allocation
(wt, Lt, ct)t≥0—independently of which fiscal instrument is available.

More precisely, (rt)t≥1 is pinned down by the Euler equation from (ct)t. Then public
debt (Bt)t (equal to savings (at)t) is deduced from the budget constraint (81): for all t ≥ 0,
Bt =

∑∞
s=t+1

cs−wsLs∏s

τ=t+1(1+rτ ) . The date-0 interest rate (or the capital tax rate) adjusts to balance

the date-0 constraint (B−1 is given): 1 + r0 = c0−w0L0+B0
B−1

.

We can thus drop equations (81) and (82) from the constraints of the Ramsey program,
as well as (at)t and (rt)t from the planner’s instruments. It is then apparent that the tax τL

and the wage w only play a role in the Ramsey program through w
1−τL , meaning that both

instruments are redundant. We will thus drop the tax τL from planner’s instrument set.
We denote by βtµt, βtγWt , βtγPt , and βtΛt the Lagrange multipliers on the resource constraint

(80), the wage and price Phillips curves (83)–(84), and the price-wage inflation relationship (85),
respectively. We define the SVL ψt in the context of the RA economy as:

ψt := dL
dct

= u′(ct) − εW − 1
ψW

γW,t
wt

1 − τLt
Ltu

′′(ct), (86)

whose expression is much simpler than in the HA case because the Euler equation has been
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dropped from the constraints of the Ramsey program. The expressions of the Lagrangian and
the SVL hold regardless of the set of available labor taxes.

When all instruments are available (but τL, which is redundant with w), we deduce the
following set of FOCs. We report for each FOC the relevant instrument at the start of the line.

(πWt ) 0 = −ψWπWt − (γW,t − γW,t−1)(2πWt + 1) + Λt
wt−1

(1 − τLt−1)(1 − τWt−1)
, (87)

(πPt ) 0 = −(γP,t − γP,t−1)(2πPt + 1) − µtψPπ
P
t − Λt

ZtLt

wt
(1 − τLt )(1 − τWt )

, (88)

(rt) 0 = ψt − µt, (89)

(wt) 0 = −εW − 1
ψW

γW,t
1

1 − τLt
u′(ct) (90)

+ 1
Lt

1
(1 − τLt )(1 − τWt )

(
εP − 1
ψP

γP,t
Lt

1 − τEt
−Λt(1 + πPt ) + βΛt+1(1 + πWt+1)

)
,

(Lt) v′(Lt) = µt
(
1 − ψP

2 (πPt )2
)
Zt + εW

ψW
γW,t

(
v′′(Lt)Lt + v′(Lt) − εW − 1

εW

wt
1 − τLt

u′(ct)
)

(91)

− (γP,t − γP,t−1)πPt (1 + πPt )Zt+
εP − 1
ψP

γP,t

(
wt

(1 − τWt )(1 − τLt )(1 − τEt )
−Zt

)
,

( 1
1−τW

t
) 0 = εP − 1

ψP
γP,t

1
1 − τEt

Lt − Λt(1 + πPt ) + βEt
[
Λt+1(1 + πWt+1)

]
, (92)

( 1
1−τE

t
) 0 = εP − 1

ψP
γP,t

wt
(1 − τW )(1 − τLt )

Lt. (93)

E.3 Analysis when all instruments are available

The analysis follows the same steps as in the HA case. The FOCs with respect to taxes τW , τE ,
wage w and inflation rates πW , πP imply γP,t = γW,t = 0. Then any allocation with non-zero
wage inflation can be replaced by a feasible allocation with zero wage inflation and strictly larger
welfare. The FOCs on πW and πP then yield Λt = 0 and πPt = 0.

The FOCs (89)–(91) with respect to rt and Lt imply, with (86): ψt = u′(ct) = µt and
v′(Lt) = Ztu

′(ct), which, with ct = ZtLt −Gt, corresponds to the first-best allocation of (78).
Combining zero inflation πPt = πWt = 0 with Phillips curves (83)–(84) and equation (85) we can
recover the taxes τEt , τWt , and the ratio wt

1−τL
t

as a function of w0
(1−τW

0 )(1−τL
0 ) and Z0.

E.4 Analysis some labor tax instruments are missing

When some labor tax instruments are missing, FOC (92) or (93) (or both) may not hold—but
others do—and the outcome depends on the type of the shock. For a Z-shock, inflation rates
generally differ from zero, the extent to which depending on the missing fiscal instrument. For a
β-shock, all labor tax instruments can remain at their steady state values, which implements
the first-best allocation (and zero inflation).

E.5 Analysis the capital tax is missing

When the capital tax is missing, the interest rate r0 (or equivalently the tax τK0 ) cannot adjust
to balance the date-0 government budget constraint, 1 + r0 = c0−w0L0+B0

B−1
. However, since τL
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and w are redundant, w0 will balance this budget constraint, while τL0 ensures that FOC (90)
holds. The absence of the capital tax breaks the substitutability of w and τL – at date 0 only.
The planner still implements the first-best allocation with zero price-wage inflation.

F The truncation method

We decompose the presentation of truncation method into four steps: (i) solving the full Bewley
model and aggregating it to obtain the truncated model; (ii) solve the Ramsey program in this
truncated model; (iii) using the inverse optimal-approach at the steady state to compute the
SWF weights; (iv) computing the dynamics of the Ramsey model.

Aggregating the Bewley model. Constructing the truncated model requires to solve the
Bewley model at the steady state and then express the solution in terms of truncated histories
rather than individual agents.

In the first step, we compute the steady-state solution of the model of Section 3 for a
given fiscal policy. Using standard methods such as EGM, we obtain the steady-state wealth
distribution, Λ : R+ × Y → R+, as well as policy functions (defined over R+ × Y), denoted by
ga, gc, gl and gν for savings, consumption, labor, and the Lagrange multiplier ν.

Second, to construct the truncated model, we consider a set of truncated histories H, the
associated transition matrix (πhh̃)h,h̃∈H, and the corresponding vectors of history sizes (Sh). The
construction of the truncated model aims at attributing to each history h ∈ H an allocation
that verifies budget constraints and FOCs at the truncated-history level. Consider an history
h = (yh,Nh−1, . . . , yh,0). To construct the distribution over asset choices and histories (and not
productivity level only), we We start from the distribution Λ(·, yh,Nh−1) and apply the policy
rule ga(·, yh,Nh−2) to obtain the distribution of agents with history (yh,Nh−1, yh,Nh−2). We then
proceed recursively by applying the policy rules corresponding to the following productivity
levels of h and derive the steady-state wealth distribution of agents with history h – denoted as
Λ(·, h). This distribution allows us to aggregate the steady-state model. The mass of agents
with history h ∈ H is Sh =

´∞
0 Λ(da, h). The per-capita consumption ch, beginning-of-period

saving ãh, end-of-period saving ah, and Lagrange multiplier value can be defined as follows:

zh := 1
St

ˆ ∞

0
gz(a, yh,0)Λ(da, h), for z = c, a, l, ν, ãh := 1

St

ˆ ∞

0
aΛ(da, h). (94)

We define the set of credit constrained histories CH as the histories in H such that: the measure of
credit-constrained histories is positive and as close as possible to the measure of credit-constrained
agents in the Bewley model; and the credit-constrained histories have the largest νh.

From the individual budget constraint, we construct history-specific budget constraints:

ct,h + at,h. = wty
h
0Lt + (1 + rt)ãt,h, (95)

We also define an history-specific aggregation parameter: ξuh :=
´∞

0 u(gc(a,yh,0))Λ(da,h)
u(ch) , such that

the aggregate period utility of agents having a history h is the period utility of the aggregate
consumption and labor multiplied by ξuh . This parameter captures the interaction between the
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non-linearity of the function u and the heterogeneity within h.
We similarly define history-specific Euler-equation parameters ξEh :

ξEh u
′(ch) = β(1 + r)

∑
h′∈H

Πhh′ξEh′u′(ch′)

+ νh, (96)

that guarantee that Euler equations hold for truncated histories.
The allocation (ch, lh, ah, ãh, νh)h given by equations (94), the budget constraint (95), the

Euler equation (96) characterize together with the set of credit-constrained histories CH and the
parameters (ξuh)h the truncated model for a given fiscal policy. Every history h in the truncated
model acts a “representative agent” with their own budget constraint and their own Euler
equation. The history-wise allocation is a solution of the truncated model (with parameters ξuh
and ξEh ). Although the distinction between ξuh and ξEh are conceptually important, it less so from
a quantitative standpoint. For this reason, in the remainder, we consider only ξEh .

Ramsey problem. We now use the truncation to solve the Ramsey program. See LeGrand
and Ragot (2023) for the ability of the method to compute optimal policies.

We express the Ramsey program with given SWF weights (ωh) and given within-heterogeneity
parameters (ξuh , ξEh )h, and then derive the FOCs. We then compute the SWF weights for which
our target fiscal policy is an optimal choice of the Ramsey planner—which is the inverse optimal
approach in our HA setting. The Ramsey problem can be expressed as follows:

max
(τL

t ,τ
S
t ,τ

E
t ,τ

K
t ,Bt,πP

t ,π
W
t ,wt,rt,Lt,(ci,t,ai,t,νi,t)i)t≥0

∞∑
t=0

βt
[ ∑
h∈H

(
Shξ

E
h u(ct,h) − v (Lt)

)
−ψW

2 (πWt )2
]

(97)

µt : Gt + (1 + rt)
∑
h∈H

Shãt,h + wtLt ≤
(
1 − ψP

2 (πPt )2
)
ZtLt +

∑
h∈H

Shat,h, (98)

for all h ∈ H: ct,h + at,h = wty
h
0Lt + (1 + rt)ãt,h, (99)

λh,t : ξEh u
′(ct,h) = β(1 + rt+1)

∑
h′∈H

Πhh′ξEh′u′(ct+1,h′)
]
+νt,h, (100)

at,h ≥ 0, νt,h(at,h + ā) = 0, νt,h ≥ 0, ct,h ≥ 0, (101)

ãt,h =
∑
h̃∈H

Πh̃h

Sh̃
Sh
at−1,h̃, (102)

γW,t : πWt (1+πWt )= εWLt
ψW

(
v′(Lt)− (εW − 1)wt

εW (1 − τLt )
∑
h∈H

Shy
h
0 ξ
E
h u

′(ch,t)
)

+ βπWt+1(1 + πWt+1), (103)

γP,t : πPt (1 + πPt )= εP − 1
ψP

( wt
Zt(1 − τWt )(1 − τLt )(1 − τEt )

−1)+βπPt+1(1+πPt+1)Zt+1Lt+1
ZtLt

, (104)

Λt : (1 + πWt ) wt−1
(1 − τLt−1)(1 − τWt−1)

= wt
(1 − τLt )(1 − τWt )

(1 + πPt ), (105)

Ξ1 : (1 + πP0 )r0 = (1 − τK0 )
(
i−1 − πP0

)
. (106)

FOCs of the planner. We define at the bin level ψ̂h,t := ψh,t − µt and:

ψh,t := ωh,tξ
h
t u

′(ch,t) −
(
λh,t − (1 + rt)λ̃h,t

)
ξEh,tu

′′(ch,t) − εW − 1
ψW

γW,t
wtyh,tLt

1 − τLt
ξht u

′′(ch,t).
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Similarly to ã, we also define λ̃t,h := 1
St,h

∑
h̃∈H St−1,h̃Πh̃hλt−1,h̃, which the per-capita average

value of the Lagrange multiplier in the previous period. We finally define any per capita variable
xh,t, the bin level quantity: x̄h,t := Shxh,t (e.g., c̄h,t for total consumption in bin h).

ψ̂h,t = −Shµt+ω̄h,tξEh,tu′(ch,t)−(λ̄h,t−(1 + rt)¯̃λh,t)ξEh,tu′′(ch,t)− εW −1
ψW

γW,t
wtyh,tLt

1 − τLt
Shξ

E
h,tu

′′(ch,t),

¯̃λt,h =
∑
h̃∈H

Πh̃hλ̄t−1,h̃,

ψ̂h,t = Sh(1 + rt+1)
∑
h′∈H

Πhh′

Sh′
ψ̂h′,t+1, for h /∈ CH,

λ̄t,h = 0, for h ∈ CH,

0 = ψWπ
W
t + (γW,t − γW,t−1)(2πWt + 1) − Λt

wt−1
(1 − τLt−1)(1 − τWt−1)

,

0 = −v′(Lt) + µt
(
1 − ψP

2 (πPt )2
)
Zt + εW

ψW
γW,t

(
v′′(Lt)Lt + v′(Lt)

)
− (γP,t − γP,t−1)πPt (1 + πPt )Zt + εP − 1

ψP
γP,t

(
wt

(1 − τL)(1 − τEt )(1 − τWt )
− Zt

)

− wt
Lt

1
(1 − τLt )(1 − τWt )

(
εP − 1
ψP

γP,t
1

1 − τEt
Lt − Λt(1 + πPt ) + βΛt+1(1 + πWt+1)

)
,

0 =
∑
h∈H

yh

(
¯̂
ψh,t − γW,t

εW − 1
ψW

1
1 − τLt

Shξ
E
h,tu

′(ch,t)
)

+ 1
Lt

1
(1 − τLt )(1 − τWt )

(
εP − 1
ψP

γP,t
1

1 − τEt
Lt − Λt(1 + πPt ) + βΛt+1(1 + πWt+1)

)
,

0 =
∑
h∈H

(
ãh,t

¯̂
ψh,t + ¯̃λh,tξEh,tu′(ch,t)

)
,

0 = εP − 1
ψP

γP,t
1

1 − τEt
Lt − Λt(1 + πPt ) + βΛt+1(1 + πWt+1),

0 = γW,t
εW − 1
ψW

∑
h∈H

yhShu
′(ch,t)− 1

Lt(1 − τWt )

(
εP − 1
ψP

γP,tLt
1 − τEt

−Λt(1 + πPt )+βΛt+1(1 + πWt+1)
)
,

0 = εP − 1
ψP

γP,t
wt

(1 − τL)(1 − τWt )
Lt.

Matrix representation of the steady state. When all fiscal tools are available, Z = 1,
inflation rates are zero: πP = πW = 0, and γP = γW = Λ = 0. We consider a given indexing
of histories over H of cardinal Ntot (total number of histories). We denote with a bold letter
the Ntot-vector associated to a given variable: e.g., S = (Sh)h∈H is the vector of history sizes.
Similarly, a, c, l, and ν are the vectors of end-of-period wealth, consumption, labor supply,
and Lagrange multipliers, respectively. These vectors can be derived from the steady-state
equilibrium of the Bewley model. The vector of bin level variables is denoted as x̄ := S ◦ x
(◦ is the Hadamard product). We also define I as the (Ntot ×Ntot)-identity matrix, Π as the
transition matrix across histories, P as the diagonal matrix having 1 on the diagonal at h if h
is not credit-constrained (i.e., h ∈ CH), and 0 otherwise, and Dx the Ntot ×Ntot-matrix with
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x ∈ RNtot on the diagonal. The steady state can be characterized by the following equations:

c̄+ ā = (1 + r)Π⊤ā+ wLȳ, (107)

ξE ◦ u′(c) = β(1 + r)Π(ξE ◦ u′(c)) + ν, (108)

v′(L) = w(S ◦ y)⊤u′(c), (109)
¯̃λ = Π⊤λ̄, (110)

ψ̄ = −µS +Dξu,0◦u′(c)ω̄ −DξE◦u′′(c)(I − (1 + r)Π⊤)λ̄, (111)

Pψ̄ = β(1 + r)P (S ◦ Π ◦ (1./S))ψ̄, (112)

(I − P )λ̄ = 0, (113)

v′(L) = µ, (114)

y⊤ψ̄ = 0, (115)

ã⊤ψ̄ = −
(
ξu,E ◦ u′(c)

)⊤
Π⊤λ̄. (116)

Steady-state allocation. The inverse optimal approach starts from an observed fiscal system,
computes the associated Bewley allocation and determines the SWF weights that guarantee that
the observed fiscal system is indeed a solution of a Ramsey problem.

The allocation c,ν, L,a,y and prices w, r are computed with the aggregation of the Bewley
model; Π and S from the set H of truncated histories. The Euler equation (108) gives ξE :

u′(c) ◦ ξE = (I − β(1 + r)Π)−1ν. (117)

We thus need to compute ψ̄ and λ̄ as a function of ω̄ (µ is directly given by (114)) and then
deduce the restrictions implies by the FOCs on ω̄. Combining (111) and (112) yields:

M1λ̄c = M0(−Sv′(L) +Dξu,0◦u′(c)ω̄),

where: M0 = P (I − β(1 + r)(S ◦ Π ◦ (1./S))), and M1 = M0DξE◦u′′(c)(I − (1 + r)Π⊤) (M
typically denoting a Ntot ×Ntot-matrix). Using (113), we deduce:

λ̄ = x2 +M2ω̄,

where: x2 = −(I−P +M1)−1M0Sv
′(L), and M2 = (I−P +M1)−1M0Dξu,0◦u′(c) (x typically

denoting a Ntot-vector). We thus deduce from (111):

ψ̄ = x3 +M3ω̄,

where: x3 = −v′(L)S −DξE◦u′′(c)(I − (1 + r)Π⊤)x2, and M3 = Dξu,0◦u′(c) −DξE◦u′′(c)(I −
(1 + r)Π⊤)M2. Finally, FOCs (115) and (116) imply:

x⊤
4 ω̄ = κ4, x⊤

5 ω̄ = κ5, (118)

where: x⊤
4 = y⊤M3, x⊤

5 = ã⊤M3 +
(
ξu,E ◦ u′(c)

)⊤
Π⊤M2,

κ4 = −y⊤x3, κ5 = −ã⊤x3 −
(
ξu,E ◦ u′(c)

)⊤
Π⊤x2.
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Our resolution implies that the weights are restricted by (118) and the normalization 1⊤ω̄ = 1.
To tackle underdeterminacy, we select the weights respecting the three constraints which have
the lowest variance.

Dynamics. The difficult part is the derivation of the Ramsey program is to compute the
steady-state allocation. The dynamics equations are given by the FOCs of the Ramsey planner.
As there is a finite number of equations (the number of which is determined by the number of
bins), we can rely on standard solvers, such as Dyanre to compute the IRFs.

G The dynamics for other shocks

G.1 Constant capital tax

Figure 4: Dynamics of the economy when the capital tax τK is constant, and other tools are
time-varying, following discount factor shock. The HA economy is represented in blue and the
RA one in red. All variables are expressed in relative deviations from their steady-state values,
except for tax and inflation rates which are presented in level deviations from their steady-state
values.
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G.2 Public spending shock

Figure 5: Dynamics of the economy when all instruments are available, after a public spending
shock. The Heterogeneous-Agent economy (HA) is in blue and the Representative Agent (RA)
is in red. Variables are in percentage proportional change, except tax rates and inflation rates
which are in percentage level change.

G.3 Idiosyncratic uncertainty shock

Figure 6: Dynamics of the economy when all instruments are available, after an idiosyncratic
uncertainty shock. See the 5.5 for a description of the shock. The Heterogeneous-Agent economy
(HA) is in blue and the Representative Agent (RA) is in red. Variables are in percentage
proportional change, except tax rates and inflation rates which are in percentage level change.
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