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Uncertainty and the Inequality of Climate Change

Introduction

Introduction – Motivation
Global warming is caused by greenhouse gas emissions (GHG) generated by human
economic activity :
• Unequal causes : Developed economies account for over 65% of cumulative GHG

emissions (∼ 25% each for the EU and the US)
• Unequal consequences : Increase in temperatures disproportionately affects developing

countries where the climate is already warm
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Uncertainty and the Inequality of Climate Change

Introduction

Introduction – Uncertainty
I However, the impact of climate change is uncertain for several reasons :

(i) Climate forecasts : temperature trajectories for a given path of emissions
(ii) Future growth : levels of future output for given damages

(iii) Path of emissions : Likelihood that pledges/mitigation policies will be implemented.
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Uncertainty and the Inequality of Climate Change

Introduction

Introduction – this project

I Which countries will be the most affected by climate change and climate risk?
• Is the price of carbon heterogeneous across regions? and why?
• Is the impact of climate risk quantitatively important ?

I Develop a simple and flexible model of climate economics
• Standard Neoclassical – IAM model with heterogeneous regions

I Provide a new numerical methodology to :
• Simulate globally – and sequentially – models with heterogeneous agents/countries
• Handle aggregate shocks and different trajectories of temperatures

◦ Evaluate the heterogeneous welfare costs of global warming
• Local Social Cost of Carbon can vary tenfold across countries
• ... and > 50% across states of the world (within countries).
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Uncertainty and the Inequality of Climate Change

Introduction

Introduction – related literature

I Classic Integrated Assessment models (IAM), without or with country heterogeneity :
• Nordhaus’ Multi-regions DICE (2016), Golosov Hassler Krusell Tsyvinski (2014), Dietz

van der Ploeg, Rezai, Venmans (2021), among others
• Kotlikoff, Kubler, Polbin, Scheidegger (2021), Hassler, Krusell, Olovsson, Smith

(2019-2021), Cruz, Rossi-Hansberg (2022), Rudik et al (2022)
– This project : Studies uncertainty with heterogeneity

I Climate models with risk & uncertainty :
• Cai, Lontzek, Judd (2019), Barnett, Brock, Hansen (2022), Bilal, Rossi-Hansberg (2023)
– This project : Includes heterogeneity and redistribution effects of climate & carbon taxation

I Heterogeneous Agents models with Aggregate Risk
• Krusell-Smith (1998), Bhandari, Evans, Golosov, Evans (2018-), Proehl (2020), Schaab

(2020), Fernandez-Villaverde et al (2022), Bilal (2022)
Proba. approach to MFG : Carmona, Delarue (2018) and many more

– This project : Studies climate externalities and Pigouvian taxation
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Uncertainty and the Inequality of Climate Change

Climate model – IAM

Model
I Neoclassical economy, in continuous time

– countries/regions i ∈ I : ex-ante heterogeneous : productivity zi

– ex-post heterogeneity in capital and temperature xi = {ki, τi}
– Aggregate variable : carbon Stock in atmosphere : X = {S}

I Household problem in country i :

max
{ci,t,e

f
i,t,e

r
i,t}

∫ ∞
t0

e−ρt u(ci,t)dt

I Dynamics of capital in every country i :

dki,t =
(
Dy(τi,t)zi,tf (ki,t, e

f
i,t, e

r
i,t)− δ̄ki,t − qf

t e
f
i,t − qr

t e
r
i,t − ci,t

)
dt

• Damage function Dy(τt) affect country’s production
• Energy mix : fossil ef

t – emitting carbon – vs. renewable er
t

• Prices, fossil qf
t and non-carbon qr

t , exogenous (energy firms with linear production fct)
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Uncertainty and the Inequality of Climate Change

Climate model – IAM

Climate model :
I Fossil energy input ef

t causes climate externality

Et =

∫
I
ξ ef

i,t di

I World climate – cumulative GHG in atmosphere St leads to increase in temperature

dSt =
(
Et − δsSt

)
dt

I Impact of climate on country’s local temperature :

dτi,t = ζ(∆iχSt − τi,t)dt + ∆iσdB0
t

I Aggregate risk σdB0
t

I Simple model :
• Climate sensitivity to carbon χ, Climate reaction/inertia ζ, Carbon content of fossils ξ,

Country scaling factor ∆i, Carbon exit for atmosphere δs
• Possibility of a more detailed Climate model : Detailed climate model
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Uncertainty and the Inequality of Climate Change

Mathematical theory

Model Solution :

I Global method :
• Aggregate risk pushes the equilibrium far away from steady state
• Impossibility to use first/second order Taylor (local) approximations

I Sequential approach
• Relying on Pontryagin Maximum Principle (PMP)
• Extension to the stochastic case and mean-field / heterogeneous agents

I Numerical method :
• Shooting algorithm

I Possibility to handle Optimal Policy and Ramsey Problem Social Planner
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Uncertainty and the Inequality of Climate Change

Mathematical theory

Model solution – general formulation
I States variables : Even more general formulation

• Individual : xi,t ∈ X ⊂ Rd (possibly with state-constraints), with distribution Px,t
• Aggregate : Xt ∈ X ⊂ Rd, and controls c?(·) ∈ C

dxi,t = b(xi,t,Xt, c?i,t)dt + σdB0
t

dXt = b̄(Xt,Px,t)dt + σ̄dB0
t

I Hamiltonian :
H(x, y,X ,Y) = max

c∈C

(
u(x, c) + b(x,X , c) · y

)
+ b̄(Xt,Px,t) · Y

I Optimal control c? ∈ argmaxc∈C
(
u(x, c) + b(x,X , c) · y

)
I Using the Stochastic PMP :

dyi,t = −DxH(xi,t,yi,t,Xt,Yi,t)dt + zi,tdB0
t

dYi,t = −DXH(xi,t,yi,t,Xt,Yi,t)dt + Zi,tdB0
t
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Uncertainty and the Inequality of Climate Change

Mathematical theory

Application to Climate models

Application to climate models
I States xi,t = (ki,t, τi,t) and Xt = St
I Costates (yi,t,Yi,t) = (λk

i,t, λ
τ
i,t, λ

S
i,t)

I Controls ci,t = (ci,t, e
f
i,t, e

r
i,t)

Hi(x,X , {c, ef , er}, {λk, λτ , λS}) = u(ci) + λk
i,t

( =b1(xi,t,Xi,c?i,t)︷ ︸︸ ︷
D(τit)f (kt, e

f
it, e

r
it)− δ̄kt − qf

t e
f
it − qr

ite
r
it − ct

)

+ λτi,t

b2(xi,t,Xi,c?i,t)︷ ︸︸ ︷
ζ
(

∆i χSt − (τit − τi0)
)

+λS
i,t

( =b̄(Px,Xi,t)︷ ︸︸ ︷
Et − δsSt

)
I Optimal controls :

λk
i,t = u′(ci,t) qf

t = MPef
it qr

it = MPer
it

I Dynamics of costates
• More details : More details PMP

Thomas Bourany (UChicago) Uncertainty and the Inequality of Climate Change Mar 2023 10 / 23



Uncertainty and the Inequality of Climate Change

Mathematical theory

Application to Climate models

Model solution : FBSDE system for MFG systems
I Coupled FBSDE system for each agent{

dxi,t = DyH(xi,t,yi,t,Xt,Yi,t)dt + σdB0
t

dyi,t = −DxH(xi,t,yi,t,Xt,Yi,t)dt + zi,tdB0
t

I Question : What else do we need?

• The initial condition y0
• A boundary condition on yT or transversality limt→∞ e−ρtxtyt = 0
• The individual risk loading in the costate zi,t :

– Expectation error in the law of motion of yi,t

zi,t = Eε
[ yi,t+dt(ε)− yi,t + DxH(xi,t,yi,t,Xt,Yi,t)dt

dB0
t

]
– BSDE theory : keep the co-state measurable w.r.t. dB0

t , despite running backward.
⇒ Intuition : even if agents are forward-looking, they can’t know the future.

– Advantage : Numerically Feasible via Monte Carlo or Tree Methods
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Uncertainty and the Inequality of Climate Change

Numerical method

Method – Shooting algorithm
I Deterministic case / Representative agent :

1. Start from initial condition Xt0 and the guess Yt0

2. Simulate the sequence (Xt,Yt) for t ∈ [t0,T] using the forward ODE system + finite diff.

3. Update the guess Yt0 to match the terminal condition YT

– In practice, simulate the backward Ỹt for t ∈ [t0, T] and minimize
∫ T

t0
(Ỹt − Yt)

2dt

I Heterogeneity : the same method works !
• Difficulty : guess yi,t0 for the (large?) set of agents, ∀i ∈ I
– Leverage optimization routines (and automatic differentiation)
– Could couple that with Monte Carlo and Deep Learning

I Aggregate shocks : Complexity and Infinite dimensionality
• The number of sequences of states/costates ({xi,t, yi,t,Yi,t},Xt) grows with the number of

trajectories, i.e. states of the world t→ dB0
t
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Uncertainty and the Inequality of Climate Change

Numerical method

Method – Aggregate shocks

I Idea & Solution :
Approximate & discretize dB0

t using a tree to follow the model/ODEs on each trajectory

– Consist of a finite set of M “waves”, at dates t1, t2, . . . , tM
– Each wave consist of K “states of the world” ε for dB0

t

– Complexity (B0
t )t is approximated with sequences of KM values

Brownian motion approximated with a tree
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Numerical method

Method – Shooting on a tree
I Stochastic case : for a “wave” k = 1 to M

1. Simulate the sequence (Xt,Yt) for t ∈ [tk−1, tk] using the forward ODE

2. Simulate the sequence of costate Ỹt(ε) for t ∈ [tk,T] after the realization of the shock – and
for future waves – using the backward ODE.

3. Update the initial condition Ytk−1 to match the terminal condition :

Y tk = E
(

Ỹtk (ε) | Ftk−1

)
– In practice, simulate the backward Ỹt for t ∈ [tk−1, tk] starting from Y tk and minimize

min
Ytk

∫ tk

tk−1

(Ỹt − Yt)
2dt

– The expectation error is expressed : Zt(ε) = Eε

[ Ỹtk (ε)−Y tk
ε

]
4. Redo the Forward-Backward steps 1-3 for all the waves until convergence.
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– In practice, simulate the backward Ỹt for t ∈ [tk−1, tk] starting from Y tk and minimize

min
Ytk

∫ tk

tk−1
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[ Ỹtk (ε)−Y tk
ε

]
4. Redo the Forward-Backward steps 1-3 for all the waves until convergence.

Thomas Bourany (UChicago) Uncertainty and the Inequality of Climate Change Mar 2023 14 / 23



Uncertainty and the Inequality of Climate Change

Numerical method

Method – Shooting on a tree
I Stochastic case : for a “wave” k = 1 to M

1. Simulate the sequence (Xt,Yt) for t ∈ [tk−1, tk] using the forward ODE
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[ Ỹtk (ε)−Y tk
ε

]
4. Redo the Forward-Backward steps 1-3 for all the waves until convergence.

Thomas Bourany (UChicago) Uncertainty and the Inequality of Climate Change Mar 2023 14 / 23



Uncertainty and the Inequality of Climate Change

Results

Business as Usual

The Business as Usual is the standard neoclassical economy

I Using PMP above, we obtain the costates More details

λk
i,t = u′(ci,t) = c−ηi,t

dλk
i,t = λk

i,t(ρ̄− ri,t)dt + zk
i,tdB0

t

dci,t = 1
η ci,t(ri,t − ρ̄)dt − ci,tzc

i,tdB0
t + 1

2 cit(1 + η)zc
i,t

2dt

I What is the impact of aggregate risk?
1. Direct effect : Saving/consumption on impact zi,t
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Results

Business as Usual

Impact of increase in temperature

I Using Nordhaus’ Damage function Dy(τi,t) = e−
1
2γi(τi,t−τ?i )2

I Marginal values of the climate variables : λS
i,t and λτi,t

dλτi,t =
[
λτi,t(ρ̃+ ζ) +

−∂τDy(τi,t)︷ ︸︸ ︷
γi(τi,t − τ?i )Dy(τi,t) f (ki,t, ei,t)λ

k
i,t

]
dt + zτi,tdB0

t

dλS
i,t =

[
λS

i,t(ρ̃+ δs)− ζ χ∆i λ
τ
i,t

]
dt + zS

i,tdB0
t

I Costate λS
i,t : marg. cost of 1Mt carbon in atmosphere, for country i. Increases with :

• Temperature gaps τi,t − τ?i & damage sensitivity of TFP γi
• Development level f (ki,t, ei,t)
• Climate params : χ climate sensitivity, ∆i “catching up” of τi and ζ reaction speed
• Aggregate risk zτi,t and zS

i,t
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Results

Local Social Cost of Carbon

Local Social cost of carbon

I The marginal “externality damage” or “local social cost of carbon” (SCC) for region i :

LSCCi,t := − ∂Vi,t/∂St

∂Vi,t/∂ci,t
= −

λS
i,t

λk
i,t

• Ratio of marg. cost of carbon vs. the marg. value of consumption/capital

• Theorem : Stationary LSCC :
When t→∞ and for a BGP with Et = δsSt and τt → τ∞, the LSCC is proportional to
climate sensitivity χ, marg. damage γ, temperature, and output.

LSCCi,t ≡
χ ∆i

ρ̃+ δs γi (τi,∞ − τ?i ) yi,∞

– More general formula : Here , Proof : Here + What determine temperatures? Details Temperature
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Results

Global Social Cost of Carbon

Global Social cost of carbon
I The social planner considers a “Global SCC” as the marg. damage for all regions :

SCCt := −λ
S
t

λ̄k
t

= −
∫

i∈I

λk
i,t

λ̄k
t

LSCCi,tdi

• Question : which util’ unit λ̄k
t to compute the SCC? Average marg. utils ?

λ̄k
t =

∫
I λ

k
j,tdj

• Inequality measure :

λ̂k
i,t :=

λk
i,t

λ̄k
t

=
ωiu′(ci,t)∫

I ωju′(cj,t)dj
≶ 1

I This, Global SCC becomes :

SCCt ≡ EI[LSCCi,t
]

+ CovI
(
λ̂k

i,t,LSCCi,t

)
> EI[LSCCi,t

]
=: SCCt

⇒ If damages are concentrated in high-λ̂k
i,t / poorer countries, it exacerbates the global SCC!

i.e. higher than the representative agent SCCt > Ej[LSCCit]
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Results

Uncertainty and SCC

Climate uncertainty and the Cost of Carbon :
I Stochastics : for any shock ε with distribution ε ∼ ϕ(ε)

I New measure for inequalities :

̂̂
λ

k

it(ε) =
λk

it(ε)

Ek,ε[λ
k
i,t(ε)]

=
ωiu′(ci,t(ε))∫

ε

∫
j ωju′(cj,t(ε)) dj dϕ(ε)

I Uncertainty-adjusted SCC writes :

Eε[SCC] =

∫
E

∫
I

̂̂
λ

k

it(ε)LSCCit(ε)dϕ(ε)

= Ej

[
Covε

(̂̂
λ

k

it(ε),LSCCjt(ε)

)
︸ ︷︷ ︸

=effect of aggregate risk ε

]
+ Covj

[
Eε

(̂̂
λ

k

it(ε)
)
,Eε

(
LSCCjt(ε)

)]
︸ ︷︷ ︸

=effect of heterogeneity across j

+ Ej,ε[LSCCjt(ε)]︸ ︷︷ ︸
=average exp. damage

> Eε[SCC(ε)] & > SCCt

⇒ Climate uncertainty reinforces the unequal costs of climate change !
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Results

Uncertainty and SCC

Numerical Application
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Results

Uncertainty and SCC

Numerical Application
I Data : 40 countries
I Temperature (of the largest city), GDP, energy, population
I Calibrate z to match the distribution of output per capita at steady state
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Results

Uncertainty and SCC

Distribution of carbon prices without and with uncertainty
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Results

Uncertainty and SCC

Conclusion

I Climate change has redistributive effects
• Cost of carbon very heterogeneous across countries
• Climate risk amplifies the impact on inequality

I New methodology to simulate aggregate risk globally
• Rely on the Sequential method and shooting algorithm
• Adapt it to aggregate risk using discretization with a tree

I Future plans :
• More developed climate model
• Different sources of uncertainty,
– growth in TFP z
– fossil/renewable price difference gf vs gr.
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Climate model : Extension
I Future : more sophisticated climate block – Nordhaus (2016), Cai, Lontzek, Judd (2018)

– Emissions come from Land and Fossil

Et = E`,t(T ) + Ef ,t

– World divided in “boxes” : AT : atmosphere, UO Upper Ocean+Biosphere, LO Lower
Ocean

Mt = (MAT,t,MUO,t,MLO,t) Tt = (TAT,t,TLO,t)

• Carbon Cycle, Radiative forcing and Temperature dynamics

dMt =
(

ΦMMt + (Et, 0, 0)T
)

dt

Ft = η log
{MAT,t

M̄AT

}
+ Fex,t

dTt =
(

ΦTTt + (ζFt, 0)T
)

dt

with ΦM and ΦT Markovian matrices
I Adding 5-6 states variables : No challenge for the sequential method at hand ! back
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Temperature dynamics

Linear temperature model – IPCC report / Dietz, van der Ploeg, Rezai, Venmans (2021)
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Cost of carbon / Marginal value of temperature
I Solving for the cost of carbon and temperature⇔ solving ODE

λ̇τi,t = λτt (ρ̃+ ∆ζ) + γ(τ − τ?)Dy(τ)f (k, e)λk
t + φ(τ − τ?)Du(τ)u(c)

λ̇S
t = λS

t(ρ̃+ δs)−
∫
I
∆iζχλ

τ
i,t

I Solving for λτt and λSt , in stationary equilibrium λ̇S
t = λ̇τt = 0

λ
τ
i,t = −

∫ ∞
t

e−(ρ̃+ζ)u
(τu − τ?)

(
γDy

(τu)yτλ
k
u + φDu

(τu)u(cu)
)

du

λ
τ
i,t = −

1

ρ̃ + ∆ζ
(τ∞ − τ?)

(
γDy

(τ∞)y∞λ
k
∞ + φDu

(τ∞)u(c∞)
)

λ
S
t = −

∫ ∞
t

e−(ρ̃+δs)u
ζχ

∫
I
∆jλ

τ
j,udj du

=
1

ρ̃ + δs
ζχ

∫
I
∆jλ

τ
j,∞

= −
χ

ρ̃ + δs

ζ

ρ̃ + ζ

∫
I
∆j(τj,∞ − τ

?
)
(
γDy

(τj,∞)y∞λ
k
j,∞ + φDu

(τj,∞)u(cj,∞)
)

dj

λ
S
t −−−−→ζ→∞

−
χ

ρ̃ + δs

∫
I
∆j(τj,∞ − τ

?
)
(
γDy

(τj,∞)yj,∞λ
k
j,∞ +Du

(τj,∞)u(cj,∞)
)

dj
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Cost of carbon / Marginal value of temperature

I Closed form solution for CC :
• In stationary equilibrium : λ̇S

t = λ̇T
t = 0

• Fast temperature adjustment ζ →∞
• no internalization of externality (business as usual)

LSCCi,t ≡
∆iχ

ρ− n + ḡ(η − 1) + δs (τ∞ − τ?)
(
γDy(τ∞)y∞ + φDu(τ∞)

c∞
1− η

)
I Heterogeneity + uncertainty about models Back
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Social cost of carbon & temperature
I Cost of carbon depends only on final temperatures and path of emissions :

τT − τt0 = ∆χ ξ ω

∫ T

t0
e(n+ḡ)t−δs(T−t)qf −σe

t

∫
j∈I

(
zjze

j,tD(τj,t)
)σ−1yj,t qσe−σ

j,t dj dt

• Geographical factors determining warming ∆i• Climate sensitivity χ & carbon exit from atmosphere δs• Growth of population n, aggregate productivity ḡ
• Deviation of output from trend yi & relative TFP zj• Directed technical change ze

t , elasticity of energy in output σ
• Fossil energy price qe,f and Hotelling rent gqf ≈ λ̇R

t /λ
R
t = ρ

• Change in energy mix, renewable share ω, price qr
t & elasticity of source σe

I Approximations at T ≡ Generalized Kaya (or I = PAT) identity More details

τ̇T

τT
∝ n + ḡy − (1− σ)

(
gze − γ̃

)
+ (σe − σ)(1− ω)gqr − (σe(1− ω) + σω)gqf

Back
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FBSDE for MFG systems – general formulation
I States variables :

• Individual : xi,t ∈ X ⊂ Rd (possibly with state-constraints), with distribution Px,t
• Aggregate : Xt ∈ X ⊂ Rd, and controls c?(·) ∈ C

dxi,t = b(xi,t,Xt, c?i,t)dt + σ(xi,t,Xt)dB0
t

dXt = b̄(Xt,Px,t)dt + σ̄(Xt,Px,t)dB0
t

I Hamiltonian :
H(x, y, z,X ,Y,Z) = max

c∈C

(
u(x, c) + b(x,X , c) · y + σ(x,X ) ∗ z

)
+ b̄(Xt,Px,t) · Y + σ̄(Xt,Px,t) ∗ Z

I Optimal control c? ∈ argmaxc∈C
(
u(x, c) + b(x,X , c) · y

)
I Using the Stochastic PMP :

dyi,t = −DxH(xi,t,yi,t,zi,t,Xt,Yi,t,Zi,t)dt + zi,tdB0
t

dYi,t = −DXH(xi,t,yi,t,zi,t,Xt,Yi,t,Zi,t)dt + Zi,tdB0
t
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Model solution : FBSDE system for MFG
I Coupled FBSDE system for each agent{

dxi,t = DyH(xi,t,yi,t,zi,t,Xt,Yi,t,Zi,t)dt + σ(xi,t,Xt)dB0
t

dyi,t = −DxH(xi,t,yi,t,zi,t,Xt,Yi,t,Zi,t)dt + zi,tdB0
t

I Question : What else do we need?

• The individual risk loading in the costate zi,t :
– Expectation error in the law of motion of yi,t

zi,t(x,X , y) = Eε
[ yi,t+dt(ε)− yi,t + DxH(xi,t,yi,t,zi,t,Xt)dt

dB0
t

]
– BSDE theory : keep the co-state measurable w.r.t. dB0

t , despite running backward.
⇒ Intuition : even if agents are forward-looking, they can’t know the future.

– Advantage : Numerically Feasible via Monte Carlo or Tree Methods
• The initial condition y0 as a function of y0
• A boundary condition of yT or transversality limt→∞ e−ρtxtyt = 0

back
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FBSDE for McKean Vlasov systems – general formulation

I Let us consider the Social Planner :

Wt0 = max
{ci}i

∫ ∞
t0

e−ρt
∫

i∈I
ωi ui(xi,t, ci,t)di dt

s.t. individual and aggregate dynamics, and controlling ci, ∀i ∈ I.

I Set up the Social Planner Hamiltonian :

H̄SP({x, y, z},X ,Y,Z,Px) = max
c∈C

∫
x∈X

[
ωu(x, c) + b(x,X , c) · y + σ(x,X ) ∗ z

]
Px(dx)

+ b̄(X ,Px) · Y + σ̄(X ,Px) ∗ Z

I Optimal control c? ∈ argmaxx∈C H̄(·)
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c∈C

∫
x∈X

[
ωu(x, c) + b(x,X , c) · y + σ(x,X ) ∗ z

]
Px(dx)

+ b̄(X ,Px) · Y + σ̄(X ,Px) ∗ Z

I Optimal control c? ∈ argmaxx∈C H̄(·)
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Uncertainty and the Inequality of Climate Change

FBSDE for McKean Vlasov systems – general formulation

I Using the Stochastic Pontryagin maximum principle :

dyi,t = −DxH̄SP({x, y, z},X ,Y,Z,Px)dt + z̃i,tdB0
t − Ẽ

[
DµH̄SP({x̃, ỹ, z̃},X ,Y,Z,Px)(xi,t)

]
dt

dYt = −DXH̄SP({x, y, z},X ,Y,Z,Px)dt + ZtdB0
t

Two effects internalized by the social planner :
1. Effect on Aggregate variables Xt
2. Effect on the distribution Px :

• Intuition : shifting the distribution of states x for all other agents x̃

• DµH is the L-derivative w.r.t the measure µ ≡ Px,t
• Idea : lifting of the function H(x, µ) = Ĥ(x, X̂) where X̂ ∼ µ and hence

DµH(x, µ)(X̂) = Dx̂H̃(x, X̂)
• Probabilistic approach : easy to compute Ẽ[DµH(x̃t, µ)] = Ẽ[Dx̂H(x̃t, X̂)]
• Here : effects are homogeneous for all agents : interaction with measure Px is non-local !
• Back
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Uncertainty and the Inequality of Climate Change

More details – PMP – Competitive equilibrium
I Household problem : State variables xi,t = (ki, τi) Back summary , Back explanation

I Pontryagin Maximum Principle

H(x, {c, ef , er}, {λk, λτ , λs}) = u(ci, τi) + λk
i,t

(
D(τit)f (kt, et)− (n + ḡ + δ)kt − qf

t e
f
it − qr

ite
r
it − ct

)
+ λτi,tζ

(
∆i χSt − (τit − τi0)

)
+ λS

i,t

(
Et − δsSt

)

u′(cit) = λk
i,t

[ef
t ] MPef

it = D(τi,t)z ∂ef (ki,t, ei,t)
( ef

i,t

ωei,t

)− 1
σe = qf

t

[er
t ] MPer

it = D(τi,t)z ∂ef (ki,t, ei,t)
( er

i,t

(1− ω)ei,t

)− 1
σe = qr

it

[ki,t] λ̇k
t = λk

t
(
ρ− ∂kf (ki,t, ei,t)

)
[τi,t] λ̇τi,t = λτi,t(ρ̃+ ζ) +

−∂τDy︷ ︸︸ ︷
γi(τi,t − τ?i )Dy(τi,t) f (ki,t, ei,t)λ

k
i,t +

∂τDu︷ ︸︸ ︷
φi(τi,t − τ?i )Du(τi,t) u(ci,t)

[St] λ̇S
i,t = λS

i,t(ρ̃+ δs)− ζ χ∆i λ
τ
i,t

Thomas Bourany (UChicago) Uncertainty and the Inequality of Climate Change Mar 2023 11 / 14



Uncertainty and the Inequality of Climate Change

More details – PMP – Competitive equilibrium
I Household problem : State variables xi,t = (ki, τi) Back summary , Back explanation

I Pontryagin Maximum Principle

H(x, {c, ef , er}, {λk, λτ , λs}) = u(ci, τi) + λk
i,t

(
D(τit)f (kt, et)− (n + ḡ + δ)kt − qf
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Uncertainty and the Inequality of Climate Change

More details – PMP – Ramsey Optimal Allocation

I Hamiltonian :

Hsp(s, {c}, {ef }, {er}, {λ}, {ψ}) =

∫
I
ωiDu(τit)u(ci)pidi+

+ ψk
i,t

(
D(τit)f (kt, et)− (n + ḡ + δ)kt + θiπ(Ef

t , It,Rt)− qf
t e

f
it − qr

ite
r
it − ct

)
+ ψS

t

(
Et − δsSt

)
+ ψτit ζ

(
∆i χSt − (τit − τi0)

)
+ ψRit

(
− Ef

t + δRIt

)
+ ψλk

i,t

(
λk

t

(
ρ− rt

))
+ ψλR

t

(
ρλR

t + C f
R(Ef

t , It,Rt)
)

+ φc
it

(
Du(τit)u′(ci)− λk

it

)
+ φef

it

(
MPef

it − qf
t

)
+ φr

it

(
MPer

it − qr
it

)
+ φEf

t
(
qf

t − C
f
E(·)− λRt

)
+ φIf

t
(
δλRt − C

f
I(·)

)
I Back
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Uncertainty and the Inequality of Climate Change

Ramsey Optimal Allocation - FOCs

I FOCs

[cit] ψk
it = ωiDu(τit)u′(ci)pi︸ ︷︷ ︸

=direct effect

+φc
itDu(τit)u′′(ci)︸ ︷︷ ︸
=effect on savings

Define : φ̂e
it = φf

itMPef
t + φr

itMPer
t

[ef
it] ψk

i,t

(
MPef

it − qf
t

)
+ ξitpiψ

S
t + pi∂Eπ

f (·)
∫
I
θjψ

k
jtdj + ∂ef φ̂e

it − piφ
Ef
t ∂EEC(·) = 0

[er
it] ψk

i,t

(
MPer

it − qr
it

)
+ ∂er φ̂e

it = 0

[It] δ ψRt + ∂2
RI C(·)ψ

λ,R
t − φIt ∂2

II C(·) = 0

[qf
t ] φEf

t =

∫
I
ef

itψ
k
jtdj +

∫
I
φf

jtdj− ∂qf πf (·)
∫
I
θjψ

k
jtdj

I Back
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Uncertainty and the Inequality of Climate Change

Ramsey Optimal Allocation - FOCs

I Backward equations for planner’s costates

[ki] ψ̇k
it = ψk

it(ρ̃− rit + ∂kMPki
)
ψk

it − ∂kφ̂
e
it

[Si] ψ̇St =
(
ρ̃+ δs)ψSt − ∫

I
∆jζχψ

τ
jt dj

[τi] ψ̇τt =
(
ρ̃+ ζ

)
ψτt −

(
ωiD′(τit)u(cit) + ψk

itD′(τit)f (kit, eit) + φc
itD′(τit)u′(ci) + ∂τ φ̂

e
it

)
[R] ψ̇Rt = ψRt

(
ρ̃− ∂2

RRC(·)
)
− φEf

t ∂
2
REC(·)

[λk
i ] ψ̇λ,kt = ρ̃ψλ,kt − (ρ− ri,t)ψ

k
t + φc

i,t

[λRi ] ψ̇λ,Rt = ψλ,Rt (ρ̃− ρ) + φEf
t − δφ

If
t

I Back
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