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Uncertainty and the Inequality of Climate Change
LInlroduction

Introduction — Motivation

Global warming is caused by greenhouse gas emissions (GHG) generated by human
economic activity :
® Unequal causes : Developed economies account for over 65% of cumulative GHG
emissions (~ 25% each for the EU and the US)
® Unequal consequences : Increase in temperatures disproportionately affects developing
countries where the climate is already warm

Per capita CO2 emissions, 2021

Carbon dioxide (CO;) emissions from fossil fuels and industry'. Land use change is not included.
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Uncertainty and the Inequality of Climate Change
L Introduction

Introduction — Uncertainty
» However, the impact of climate change is uncertain for several reasons :

(i) Climate forecasts : temperature trajectories for a given path of emissions
(ii) Future growth : levels of future output for given damages
(iii) Path of emissions : Likelihood that pledges/mitigation policies will be implemented.
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Uncertainty and the Inequality of Climate Change
|—Im_roduction

Introduction — this project

» Which countries will be the most affected by climate change and climate risk ?
® [s the price of carbon heterogeneous across regions ? and why ?
® [s the impact of climate risk quantitatively important ?
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Introduction — this project

» Which countries will be the most affected by climate change and climate risk ?
® [s the price of carbon heterogeneous across regions ? and why ?
® [s the impact of climate risk quantitatively important ?

» Develop a simple and flexible model of climate economics
e Standard Neoclassical — IAM model with heterogeneous regions

» Provide a new numerical methodology to :

® Simulate globally — and sequentially — models with heterogeneous agents/countries
¢ Handle aggregate shocks and different trajectories of temperatures
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Uncertainty and the Inequality of Climate Change
L Introduction

Introduction — this project

» Which countries will be the most affected by climate change and climate risk ?
® [s the price of carbon heterogeneous across regions ? and why ?
® [s the impact of climate risk quantitatively important ?

» Develop a simple and flexible model of climate economics
e Standard Neoclassical — IAM model with heterogeneous regions

» Provide a new numerical methodology to :

® Simulate globally — and sequentially — models with heterogeneous agents/countries
¢ Handle aggregate shocks and different trajectories of temperatures

o Evaluate the heterogeneous welfare costs of global warming

® Local Social Cost of Carbon can vary tenfold across countries
e ... and > 50% across states of the world (within countries).
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Uncertainty and the Inequality of Climate Change
Llnlmducti(m

Introduction — related literature

» Classic Integrated Assessment models (IAM), without or with country heterogeneity :
® Nordhaus’ Multi-regions DICE (2016), Golosov Hassler Krusell Tsyvinski (2014), Dietz
van der Ploeg, Rezai, Venmans (2021), among others
® Kotlikoff, Kubler, Polbin, Scheidegger (2021), Hassler, Krusell, Olovsson, Smith
(2019-2021), Cruz, Rossi-Hansberg (2022), Rudik et al (2022)
— This project : Studies uncertainty with heterogeneity
» Climate models with risk & uncertainty :

® Cai, Lontzek, Judd (2019), Barnett, Brock, Hansen (2022), Bilal, Rossi-Hansberg (2023)
— This project : Includes heterogeneity and redistribution effects of climate & carbon taxation
» Heterogeneous Agents models with Aggregate Risk
® Krusell-Smith (1998), Bhandari, Evans, Golosov, Evans (2018-), Proehl (2020), Schaab
(2020), Fernandez-Villaverde et al (2022), Bilal (2022)

Proba. approach to MFG : Carmona, Delarue (2018) and many more
— This project : Studies climate externalities and Pigouvian taxation
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Uncertainty and the Inequality of Climate Change
LClimate model — IAM

Model

» Neoclassical economy, in continuous time
— countries/regions i € I : ex-ante heterogeneous : productivity z;
— ex-post heterogeneity in capital and temperature x; = {k;, 7;}

— Aggregate variable : carbon Stock in atmosphere : X = {S}
» Household problem in country i :

oo
max / e " u(ci,)dt
{ci’,,e[ el )

0,77t

» Dynamics of capital in every country i :
dki; = (DY (7i2)2if (ki €, €)= ki — gl€], — ahef, — ci)dt

® Damage function D”(7;) affect country’s production
® Energy mix : fossil e{ — emitting carbon — vs. renewable e;
® Prices, fossil q{ and non-carbon ¢g;, exogenous (energy firms with linear production fct)
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Uncertainty and the Inequality of Climate Change
L Climate model - IAM

Climate model :

» Fossil energy input e’; causes climate externality

&= / g, di
I
» World climate — cumulative GHG in atmosphere S; leads to increase in temperature
dS; = (5’, — 5s8t) dt
» Impact of climate on country’s local temperature :
dri; = C(AixS — i )dt + A,-UdB?

> Aggregate risk odB?
» Simple model :
® Climate sensitivity to carbon y, Climate reaction/inertia ¢, Carbon content of fossils &,
Country scaling factor A;, Carbon exit for atmosphere d;
® Possibility of a more detailed Climate model :
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Uncertainty and the Inequality of Climate Change
L Mathematical theory

Model Solution :

» Global method :

® Aggregate risk pushes the equilibrium far away from steady state
® Impossibility to use first/second order Taylor (local) approximations

» Sequential approach
® Relying on Pontryagin Maximum Principle (PMP)
® Extension to the stochastic case and mean-field / heterogeneous agents

» Numerical method :
® Shooting algorithm

» Possibility to handle Optimal Policy and Ramsey Problem
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Uncertainty and the Inequality of Climate Change
|—Manhema\tical theory

Model solution — general formulation

> States variables :

® Individual : x;;, € X C R4 (possibly with state-constraints), with distribution P, ,
e Aggregate : X; € X C RY, and controls ¢*(-) € C

i, = b(xiy, &, cl)di + odB
dX, = b(X,, Py ,)dt + GdB,
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Uncertainty and the Inequality of Climate Change
L Mathematical theory

Model solution — general formulation

> States variables :

® Individual : x;;, € X C R4 (possibly with state-constraints), with distribution P, ,
e Aggregate : X; € X C RY, and controls ¢*(-) € C

dxiy = b(xiy, X, c},)dt + 0dB]
dX, = b(X,, Py,)dt + 5dB}

» Hamiltonian :
H(x,y, X,Y) = max (u(x, c)+b(x,X,c) -y) + b( X, Prs) - Y

ceC

> Optimal control ¢* € argmax.cc (u(x,c) + b(x, X, c) - y)
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L Mathematical theory

Model solution — general formulation

> States variables :

® Individual : x;;, € X C R4 (possibly with state-constraints), with distribution P, ,
e Aggregate : X; € X C RY, and controls ¢*(-) € C

dxiy = b(xiy, X, c},)dt + 0dB]
dX, = b(X,, Py,)dt + 5dB}

» Hamiltonian :
M3, X, ) = max (u(x,) + b(x, X,¢) 3) + b Pr) - Y
c
> Optimal control ¢* € argmax.cc (u(x,c) + b(x, X, c) - y)
» Using the Stochastic PMP :

dyi,t = —DyH (i1, V1,0)dt + Zi,de?
dYiy = —DxH (xipyinXeYi)dt + Zi,tdB?
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Uncertainty and the Inequality of Climate Change
L Mathematical theory

L Application to Climate models

Application to climate models
> States Xit = (kt 15 Ti t) and Xt St
» Costates (yj, y,,t) = ()\k Ao )\S 0

1,1
» Controls ¢;; = (ciy, e’; ” el.J)

=b; (xi,ty)(izczt)

Hi(xa X, {C, ef7 er}, {)‘ka /\T7 )‘S}) = M(C,‘) + )‘{c,t ( D(Tit)f(kta e):t’ zt 5kt qf qgtet(t - Ct)

bz(Xi,hXivcifz) —l_J(P Xir)
N = Xyt

+ )\Zt2<AiXSt — (T — Ti0)5+Ait(8’ N 6S8t>

» Optimal controls :
/\;C,t = u/(cm) qf MPef qi; = MPe;,

» Dynamics of costates
® More details : @D

Thomas Bourany (UChicago) Uncertainty and the Inequality of Climate Change Mar 2023 10/23



Uncertainty and the Inequality of Climate Change
I—Mathematical theory

LApplication to Climate models

Model solution : FBSDE system for MFG systems

» Coupled FBSDE system for each agent

dxi,t = DyH(xi,lvyi,tathi,t)dt + (J'dB(t)
dyiy = —DxH(xiyinXYi0dt + ZinB?

» Question : What else do we need ?
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L Application to Climate models

Model solution : FBSDE system for MFG systems

» Coupled FBSDE system for each agent

dxiy = DyH(xeyiniVis)dt + odBY
dyi,t = _DxH(xi,t:Yi,nXt,yi,t)dt + ZinB?

» Question : What else do we need ?

® The initial condition yg
® A boundary condition on yz or transversality lim; o, e~ 'x,;y, = 0
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Uncertainty and the Inequality of Climate Change
L Mathematical theory

L Application to Climate models

Model solution : FBSDE system for MFG systems

» Coupled FBSDE system for each agent

dxi; = DyH (v XV )dt + odB?
dyiy = —DxH(xiyinXYi0dt + ZinB?

» Question : What else do we need ?

® The initial condition yg
® A boundary condition on yz or transversality lim; o, e~ 'x,y, = 0
® The individual risk loading in the costate z; ; :

— Expectation error in the law of motion of y; ;

Zig = Ee [Yi,t+dt(€) — Yip + DXH(Xi,tv)’i,hXtayi,r)dt]

dB}
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L Mathematical theory

L Application to Climate models

Model solution : FBSDE system for MFG systems

» Coupled FBSDE system for each agent

dxi; = DyH (v XV )dt + odB?
dyiy = —DxH(xiyinXYi0dt + ZinB?

» Question : What else do we need ?

® The initial condition yg
® A boundary condition on yz or transversality lim; o, e~ 'x,y, = 0
® The individual risk loading in the costate z; ; :

— Expectation error in the law of motion of y; ;

Zig = Ee [)’i,r+dt(€) — Yip + DXH(Xi,tvyi,thtayi,r)dt]

dB}
— BSDE theory : keep the co-state measurable w.r.t. dB?, despite running backward.
= Intuition : even if agents are forward-looking, they can’t know the future.

— Advantage : Numerically Feasible via Monte Carlo or Tree Methods
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Uncertainty and the Inequality of Climate Change
LNumerical method

Method — Shooting algorithm
» Deterministic case / Representative agent :
1. Start from initial condition X,, and the guess Y,
2. Simulate the sequence (X, ¥;) for t € [fy, T] using the forward ODE system + finite diff.

3. Update the guess Y;, to match the terminal condition Yr

— In practice, simulate the backward Y, for € [to, T] and minimize ftOT(I?, — Y,)dt
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LNumericul method

Method — Shooting algorithm
» Deterministic case / Representative agent :
1. Start from initial condition X,, and the guess Y,
2. Simulate the sequence (X, ¥;) for t € [fy, T] using the forward ODE system + finite diff.

3. Update the guess Y;, to match the terminal condition Yr

— In practice, simulate the backward Y, for € [to, T] and minimize ftOT(f/, — Y,)dt

» Heterogeneity : the same method works !
¢ Difficulty : guess y;;, for the (large ?) set of agents, Vi € I
— Leverage optimization routines (and automatic differentiation)
— Could couple that with Monte Carlo and Deep Learning
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Uncertainty and the Inequality of Climate Change
LNumerical method

Method — Shooting algorithm

» Deterministic case / Representative agent :
1. Start from initial condition X,, and the guess Y,

2. Simulate the sequence (X, ¥;) for ¢ € [fy, T] using the forward ODE system + finite diff.

3. Update the guess Y;, to match the terminal condition Y7

— In practice, simulate the backward ¥, for € [to, T] and minimize ftOT(I?, — Y,)dt

» Heterogeneity : the same method works !
¢ Difficulty : guess y; ,, for the (large ?) set of agents, Vi € I
— Leverage optimization routines (and automatic differentiation)
— Could couple that with Monte Carlo and Deep Learning

» Aggregate shocks : Complexity and Infinite dimensionality

® The number of sequences of states/costates ({xi, Y, Vi }, X:) grows with the number of
trajectories, i.e. states of the world t — dB?
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Uncertainty and the Inequality of Climate Change
|—Numerica1 method

Method — Aggregate shocks

» Idea & Solution :
Approximate & discretize dBY using a tree to follow the model/ODEs on each trajectory
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Uncertainty and the Inequality of Climate Change
I—Numerical method

Method — Aggregate shocks

» Idea & Solution :
Approximate & discretize dB? using a tree to follow the model/ODEs on each trajectory
— Consist of a finite set of M “waves”, at dates t1, 5, ...,y
— Each wave consist of K “states of the world” € for dB?
— Complexity (BY), is approximated with sequences of K™ values

o 25 50 75 100 o 50

Brownian motion approximated with a tree
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Uncertainty and the Inequality of Climate Change
|—Numerica1 method

Method — Shooting on a tree

» Stochastic case : for a “wave” k = 1to M
1. Simulate the sequence (X;,Y;) for ¢t € [t;_1, #] using the forward ODE
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Method — Shooting on a tree

» Stochastic case : for a “wave” k= 1to M
1. Simulate the sequence (X;,Y;) for ¢t € [t;_1, #] using the forward ODE

2. Simulate the sequence of costate Y,(e) fort € [#x, T] after the realization of the shock — and
for future waves — using the backward ODE.
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LNumerical method

Method — Shooting on a tree
» Stochastic case : for a “wave” k =1to M
1. Simulate the sequence (X;, ¥;) for ¢t € [tx_1, #] using the forward ODE

2. Simulate the sequence of costate Y,(e) fort € [#x, T] after the realization of the shock — and
for future waves — using the backward ODE.

3. Update the initial condition Y;, , to match the terminal condition :
Ytk = E(Ytk(e) | ‘F}kfl)
— In practice, simulate the backward Y; for t € [t_1, #] starting from ¥,, and minimize

T
min / (Y, — Y,)’dt
Yo Sy,

— The expectation error is expressed : Z;(e) = Ee [M]
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LNumericul method

Method — Shooting on a tree
» Stochastic case : for a “wave” k =1to M
1. Simulate the sequence (X;, ¥;) for ¢t € [tx_1, #] using the forward ODE

2. Simulate the sequence of costate Y,(e) fort € [#x, T] after the realization of the shock — and
for future waves — using the backward ODE.

3. Update the initial condition Y;, , to match the terminal condition :
Ytk = E(Ytk(e) | ‘F}kfl)
— In practice, simulate the backward Y; for t € [t_1, #] starting from ¥,, and minimize

oo
min / (Y, — Y,)’dt
Yo Sy,

. . . _ ?’k (6)77%
— The expectation error is expressed : Z;(e) = Ee [f]

4. Redo the Forward-Backward steps 1-3 for all the waves until convergence.
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Uncertainty and the Inequality of Climate Change
[ Results

L Business as Usual

The Business as Usual is the standard neoclassical economy

» Using PMP above, we obtain the costates

Aﬁ, =u'(ciy) = ci_’;7

dXf, = N (p — riy)dt + 2} dBY
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[ Results

L Business as Usual

The Business as Usual is the standard neoclassical economy

» Using PMP above, we obtain the costates

deiy = %ci’t(ri,t — p)dt — ci7,z£tdB? + %ci,(l + n)zi,zdt
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Uncertainty and the Inequality of Climate Change
L Results

L Business as Usual

The Business as Usual is the standard neoclassical economy

» Using PMP above, we obtain the costates

deiy = %ci,t(r,-,t — p)dt — ci7,z£,dB? + %ci,(l + n)zﬁ,zdt

» What is the impact of aggregate risk ?

1. Direct effect : Saving/consumption on impact z; ;
2. Indirect effect : Precautionary saving motive : z;, and prudence 1 + 1)
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Uncertainty and the Inequality of Climate Change
L Results

L Business as Usual

Impact of increase in temperature

1 *
» Using Nordhaus’ Damage function D¥(7; ;) = e 2 (7 =77)?
» Marginal values of the climate variables : )\i and A7,

—07D¥(7i,r)
dXj, = [AL(M ¢) +7il7ip — Ti*)Dy(Ti,tjf(ki,t» ei,t)Aﬁt] dt + ZZ,dB?

N = [ X5+ 8) = XA, |di + 2 B

» Costate Ai , - marg. cost of 1Mt carbon in atmosphere, for country i. Increases with :
® Temperature gaps 7;, — 7 & damage sensitivity of TFP ~;

Development level f(k; , e; ;)

Climate params : y climate sensitivity, A; “catching up” of 7; and ( reaction speed

Aggregate risk z/, and Zi,
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Uncertainty and the Inequality of Climate Change
L Results
LLocal Social Cost of Carbon

Local Social cost of carbon

» The marginal “externality damage” or “local social cost of carbon” (SCC) for region i :

Vi /oS N,
LSCCyy = — B0 =
d aV,"t/aci,t )\ﬁt

® Ratio of marg. cost of carbon vs. the marg. value of consumption/capital

® Theorem : Stationary LSCC :
When ¢t — oo and for a BGP with &, = §,S; and 7; — 7, the LSCC is proportional to
climate sensitivity x, marg. damage -y, temperature, and output.

X A

LSCC;; = <
Tt

Yi (TIOO - T;*) yi,oo

— More general formula : @D, Proof : + What determine temperatures ?
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Uncertainty and the Inequality of Climate Change
L Results
LGlobal Social Cost of Carbon

Global Social cost of carbon

» The social planner considers a “Global SCC” as the marg. damage for all regions :

x i
wq:-%:-/-%mamﬁ
At iel Af

® Question : which util’ unit A¥ to compute the SCC ? Average marg. utils ?

N k ;.
xzhﬁy
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Global Social cost of carbon
» The social planner considers a “Global SCC” as the marg. damage for all regions :

x i
SCCy = —28 = — / <LLSCC; di
At iel Af

® Question : which util’ unit A¥ to compute the SCC ? Average marg. utils ?
Nk _ k .
. A= j;l )\j’ A
® Inequality measure : L
Tk )‘i,t wiu/(ci,t)
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L Results
LGlobal Social Cost of Carbon

Global Social cost of carbon

» The social planner considers a “Global SCC” as the marg. damage for all regions :

AS X .
SCC; = —ﬁ = _/ S\k j’tdl
t el N

® Question : which util’ unit A¥ to compute the SCC ? Average marg. utils ?
Nk k .
A= fﬂ )\j’ A

S M wad(eid)

PN fiwi (i) d

® Inequality measure :

» This, Global SCC becomes :

scc, = E'Lscc;,] + Covt (X, LSCCy,) > B[LSCC, ) = SCC,

= If damages are concentrated in high- )\ , / poorer countries, it exacerbates the global SCC'!
i.e. higher than the representative agent SCC, > E;[LSCCy]
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Uncertainty and the Inequality of Climate Change
L Results
LUncertaimy and SCC

Climate uncertainty and the Cost of Carbon :

» Stochastics : for any shock e with distribution e ~ (e)
» New measure for inequalities :

SR 1 it (e, t<6))
T EreNa] S e (Gu0) di dete)
» Uncertainty-adjusted SCC writes :

E.[SCC] = / / W(OLSCCy(edi(e)
—k

—E [(Cove()\ (),Lsccj,<e>)] + Cov; [E (@), Ee (LSCCi0)| + By e[LSCCii(e)]
L. —_—

~
=effect of aggregate risk €

N~ =average exp. damage
=effect of heterogeneity across j

> E[SCCe)] & > 8CC,

= Climate uncertainty reinforces the unequal costs of climate change !
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L Results
LUncerta.inty and SCC

Numerical Application
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Uncertainty and the Inequality of Climate Change

L Results

LUncertainty and SCC

1 Application
» Data : 40 countries

1Ca

Numer

» Temperature (of the largest city), GDP, energy, population

» (Calibrate z to match the distribution of output per capita at steady state

Temperature Scenarios

CO2 Emissions (Tons of CO2 per capita, 2011)
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Uncertainty and the Inequality of Climate Change
L Results
LUncertaimy and SCC

Distribution of carbon prices without and with uncertainty
LSCC with Climate Risk
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Uncertainty and the Inequality of Climate Change
L Results
LUncertaimy and SCC

Conclusion

» Climate change has redistributive effects

® Cost of carbon very heterogeneous across countries
® Climate risk amplifies the impact on inequality

» New methodology to simulate aggregate risk globally

® Rely on the Sequential method and shooting algorithm
® Adapt it to aggregate risk using discretization with a tree

» Future plans :

® More developed climate model

® Different sources of uncertainty,

growth in TFP z

fossil/renewable price difference g vs g’
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Uncertainty and the Inequality of Climate Change

Climate model : Extension
» Future : more sophisticated climate block — Nordhaus (2016), Cai, Lontzek, Judd (2018)
— Emissions come from Land and Fossil
E=C(T)+ &,

— World divided in “boxes” : AT : atmosphere, UO Upper Ocean+Biosphere, LO Lower
Ocean
M; = (Mur,:, Myo 1, Mro,;) T, = Tars; Troy)

® (Carbon Cycle, Radiative forcing and Temperature dynamics
dM, = <<I>MM, + (&0, O)T) dt

ATt

}'z—nlog{ }+]:ext

a7 = (®r T+ (¢F, 0)7 )

with ®,, and ®7 Markovian matrices
> Adding 5-6 states variables : No challenge for the sequential method at hand !
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Temperature anomaly relative to 1861-1880 (°C)

Temperature dynamics

Cumulative total anthropogenic CO, emissions from 1870 (GtCO,)
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+

GHKT14 [
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Linear temperature model — IPCC report / Dietz, van der Ploeg, Rezai, Venmans (2021)
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Cost of carbon / Marginal value of temperature

» Solving for the cost of carbon and temperature < solving ODE
AL = N (9 + AQ) +(m = TP (1)f (k, )7 + é(7 — ) D" (7)u(c)
58 = X7+ 8) - / AN,

» Solving for A\] and At , in stationary equilibrium )\S AT =0

)\[-T)t = —/ e7(5+C)"(Tu — T*)('yDy(Tu)yq-/\’; + qSD"(TM)u(cu))du
t

T 1 * U
N = = 5 ag (oo = T (1P (Fao e Xog + 0D (oo Ju(ce)

Af=—/ (P8 )HCX/A] AT i
t

= CX / \j jToo
P+
X

=i p+< (7,00 = ) (YD (7,00 o0 X o + D" (75,00 (6, 00) ) di

N

== /HA,-<T,~,oo - r*)(wy(r,-,w)y,-,ooxf,oo + D (77,00 (6], 00) )
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Cost of carbon / Marginal value of temperature

» Closed form solution for CC :
® In stationary equilibrium : AS = \7 = 0
® Fast temperature adjustment { — oo
® no internalization of externality (business as usual)

AiX Co
LSCC,‘ = oo * DY 00 ) Yoo D" 00
ety s 1 ™) (YD (7o )yoo + D" (7 >1_n)

» Heterogeneity + uncertainty about models
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Social cost of carbon & temperature

» Cost of carbon depends only on final temperatures and path of emissions :

T — Tiy= Axéw/ (k=T g =0 [ (28 D(13.0) )y a7 dr

1o jel

Geographical factors determining warming A;

Climate sensitivity x & carbon exit from atmosphere Jg

Growth of population n, aggregate productivity g

Deviation of output from trend y; & relative TFP %

Directed technical change z{, elasticity of energy in output o

Fossil energy price ¢°/ and Hotelling rent g9 = )\R /AR =p

Change in energy mix, renewable share w, price g; & elasticity of source o,

» Approximations at 7 = Generalized Kaya (or [ = PAT) identity

i—; xn+ g —(1-0)(§ —7) + (0 — )1 —w)g? — (0e(l — w) + ow)g?
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FBSDE for MFG systems — general formulation

» States variables :

® Individual : x;, € X C R? (possibly with state-constraints), with distribution Py,
® Aggregate : X; € X C RY, and controls ¢*(-) € C

dxl'yt = b(xi7t, ‘)(ta C:t)dt + U(x,-J, Xt)dB?
dX; = b(X,, P, ,)dt + (X, Py ,)dB?
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FBSDE for MFG systems — general formulation

» States variables :

® Individual : x;, € X C R? (possibly with state-constraints), with distribution Py,
® Aggregate : X; € X C RY, and controls ¢*(-) € C

dxiy = b(xis, X, ¢}, )dt + 0(xi, X,)dBY)
dX; = b(X,, P, ,)dt + (X, Py ,)dB?

» Hamiltonian :
H(x,y,2,X,¥, Z) = max (u(x, ) +b(x, X, ) -y + o (x, X) *2)
+ B(Xtapx,t) Y+ 5'(Xtan,t) * Z

> Optimal control ¢* € argmax.cc (u(x,c) + b(x, X, c) - y)
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FBSDE for MFG systems — general formulation

» States variables :
® Individual : x;, € X C R? (possibly with state-constraints), with distribution Py,

® Aggregate : X; € X C RY, and controls ¢*(-) € C
dxiy = b(xis, X, ¢}, )dt + 0(xi, X,)dBY)
dX, = b(X,, P, ,)dt + 5(X,, Py,)dB’
» Hamiltonian :

Hx,y,2. X, 2) = max (u(x,6) + b, X,¢) -y + 05, ) )
+ B(Xtapx,t) -V + 5'(Xtan,t) * Z

> Optimal control ¢* € argmax.cc (u(x,c) + b(x, X, c) - y)

» Using the Stochastic PMP :
dyi,t = - xH(xi,tyyi,taZi,hXtayi,tazi,t)dt + Zi,ldB9
dyi,t = _DX%(XI',I»}’i,taZi,hXt,yi,tazi,t)dt + Zi,ldB?
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Model solution : FBSDE system for MFG
» Coupled FBSDE system for each agent

dxi,t = DyH(xi,t7)’i,t7Zi,t7Xt,yi,nZi,t)dt + O'(Xi,t, s)(t)dB?
in,t = _Dx?'l(xi,nyi,t7Zi,t,Xt,yi,t,Zi,t)dt + Zi,tdB?

» Question : What else do we need ?
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Model solution : FBSDE system for MFG
» Coupled FBSDE system for each agent

d-xi,t - DyH(xi,th,t,Zi,hXt7yi,tazi,t)dt + O'(Xi,t, ‘)(z)dB?
dyi,t = _DxH(xi,t:yi,t»Zi,tth,yi,t»Zi,t)dt + Zi,tdB?

» Question : What else do we need ?
® The individual risk loading in the costate z; ; :
— Expectation error in the law of motion of y; ;

Z (x X y) — ¢ [Yi,t+dt(€) — Vi + DXH(xi,r7}’i,uzi,tvxt)dt:|
11\ ) -

dB}

— BSDE theory : keep the co-state measurable w.r.t. dB?, despite running backward.
= Intuition : even if agents are forward-looking, they can’t know the future.
— Advantage : Numerically Feasible via Monte Carlo or Tree Methods
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Model solution : FBSDE system for MFG
» Coupled FBSDE system for each agent

d-xi,t - DyH(xi,th,r,Zi,hXt7yi,tazi,t)dt + O'(Xi,t, ‘)(z)dB?
dyi,t = _DxH(xi,t:yi,t»Zi,tth,yi,t»Zi,t)dt + Zi,tdB?

» Question : What else do we need ?
® The individual risk loading in the costate z; ; :

— Expectation error in the law of motion of y; ;

Z (x X y) — ¢ [Yi,t+dt(€) — Vi + DXH(xi,r7Yi,uzi,hxt)dt:|
11\ ) -

dB}
— BSDE theory : keep the co-state measurable w.r.t. dB?, despite running backward.

= Intuition : even if agents are forward-looking, they can’t know the future.
— Advantage : Numerically Feasible via Monte Carlo or Tree Methods

® The initial condition y, as a function of y,
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Model solution : FBSDE system for MFG
» Coupled FBSDE system for each agent

d-xi,t - DyH(xi,th,r,Zi,tth7yi,tazi,t)dt + O'(Xi,t, ‘)(z)dB?
dyi,t = _DxH(xi,t:yi,t»Zi,tth,yi,t»Zi,t)dt + Zi,tdB?

» Question : What else do we need ?
® The individual risk loading in the costate z; ; :

— Expectation error in the law of motion of y; ;

Z (x X y) — ¢ [Yi,t+dt(€) — Vi + DXH(xi,r7Yi,uzi,hxt)dt:|
11\ ) -

dB}
— BSDE theory : keep the co-state measurable w.r.t. dB?, despite running backward.

= Intuition : even if agents are forward-looking, they can’t know the future.
— Advantage : Numerically Feasible via Monte Carlo or Tree Methods

® The initial condition y, as a function of y,
® A boundary condition of yr or transversality lim; . e~ " x;y, = 0
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FBSDE for McKean Vlasov systems — general formulation

» et us consider the Social Planner :

—max/ e ’”/ wj ui(Xi g, ¢ig)di dt
{ci}i icl

s.t. individual and aggregate dynamics, and controlling ¢;, Vi € 1.
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FBSDE for McKean Vlasov systems — general formulation

» et us consider the Social Planner :

—max/ e ’”/ wj ui(Xi g, ¢ig)di dt
{ci}i icl

s.t. individual and aggregate dynamics, and controlling ¢;, Vi € 1.

» Set up the Social Planner Hamiltonian :

F (13,2}, Y. 2P = max [ [l + bl ¥,¢) 3+ o, ) x 2] Pa(d)
eX

ceC

+b(X,P) - V+5(X,P)* 2

» Optimal control ¢* € argmax, ¢ H (")
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FBSDE for McKean Vlasov systems — general formulation
» Using the Stochastic Pontryagin maximum principle :

dyis = =D ({x,y,2}, X, Y, Z, Po)di + %3,dB) — E[D,HY ({%,5.2}, X, Y. 2, Po) (xiy) | dr
dyt = _DX,}:lSP({xayvz}a X’ y? Z,Px)dl + thB?
Two effects internalized by the social planner :

1. Effect on Aggregate variables &;
2. Effect on the distribution P, :
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FBSDE for McKean Vlasov systems — general formulation
» Using the Stochastic Pontryagin maximum principle :

dyi,t = _DfoSP({x7y’ Z}a Xa y7 Za Px)dt + zi,tdB? - IE[DH’]:[SP({)}’S;’ Z}v Xa y7 Za Px)(xi,f)] dt
dY; = —DxH ({x,y,2}, X, Y, Z,P,)dt + Z,dB’

Two effects internalized by the social planner :
1. Effect on Aggregate variables X;
2. Effect on the distribution P, :

® Intuition : shifting the distribution of states x for all other agents X

® D, H is the L-derivative w.r.t the measure pi = P,
® Idea : lifting of the function H (x, 1) = H(x,X) where X ~  and hence
Dy, H(x, j1)(X) = DzH(x,X) N -
® Probabilistic approach : easy to compute E[D, H(X;, )] = E[D:H (%;, X )]
Here : effects are homogeneous for all agents : interaction with measure P, is non-local !
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More details — PMP — Competitive equilibrium
» Household problem : State variables x; ; = (ki, 7;) { Back summary X

» Pontryagin Maximum Principle
Hlx, e e e F AN N = ulen )+ M (D (s e) = (n+ 8 + ki — gl — gl — i)
+ )‘ZtC (Ai XS — (Tit - Tio)) + )\is,t (gt - 5sSr>
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More details — PMP — Competitive equilibrium
» Household problem : State variables x; ; = (ki, 7;) [ Back summary 3

» Pontryagin Maximum Principle
Hx, {c, ef’ e}, {)‘ka AT} = ulei i) + Af,t (D(ﬁt)f(kta e) — (n+g+ o)k qf — qqe; — t)
+ AZ:C (Ai XS — (Tit - Tio)) + Ait (& - 5sSt)

' (i) = )\f,,

b\~
] MPe, = Dir)e 0f (i) () ™ =l
r 1

, o ] ] . €t T oe _
le] MPé;, = D(7:,)z f (ki €i.) (7(1 m— ) g
(ki M= N (p— af (kis, i)

—9,D" o, D"
. —_—— —_——NN—
[7i.:] N =N+ Q) + 71 — 7)YD (700) ki, €)Xy + G170 — 77 )D" (i) (i)
[S1] A=A+ — Cx AN,
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More details — PMP — Ramsey Optimal Allocation

» Hamiltonian :
M Ak AT AT A (0D = [ D" (uleopdi+
+ 0L (Dl (ki ) = (0 + &+ )k + O (EL T, Ry) — gl — diel, — )
+ 08 (& = 88, + ¢ (Aix S = (7 —70)) + 0 (— B + 6°T,)
ok (/\"( - r,)) R (pAf + (BT, R,))
+ 65 (D"(ru (i) = M) + o] (MPe], = ] ) + &3, (MPe;, — )
P (ol = CL() = AR) + 67 (AR = ()

>
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Ramsey Optimal Allocation - FOCs

» FOCs
[cir] tt = wD"(Tir)u (C,)p, + ¢CDM(7'1I) (C,-)
=direct effect —effect on savings
Define : Af, = q&fitMPef + ¢ MPe;
CA ﬁt(MP e}, — ‘If) + &upity + pidem () /H Opidj + O &5, — pidsy OpeC(-) =
1] £ (MPe, — ;) + 008, =0
7] SUf + 0 C() U™ — 67 077C() =0

] ?=A%%W+A%w—@ﬂoééww
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Ramsey Optimal Allocation - FOCs

» Backward equations for planner’s costates

ki) i = 0P — 1 + OMPI) U — 04,
) 0 = (5 8)05 - [ A
7] U7 = (5 Q)uy — (D (ru)ulen) + WD (1) (ki i) + 95D (mu (i) + 015
R] ¢? = R (5~ ORrC()) — 6 OeC(’)
[)‘ﬂ t = Pthk ( - ri’,)l/)f + ¢1?,l
A =0 p) + ¢ —der
>
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