Energy shocks and aggregate fluctuations

WORK IN PROGRESS

Thomas Bourany THE UNIVERSITY OF CHICAGO

Econ Dynamics

October 2022

Motivation

- \blacktriangleright How important is energy for economic fluctuations ?
	- Energy e.g. oil or electricity is complementary in production
	- Contribute to output growth, industrial production, transportation ...
- \blacktriangleright Large literature on Oil price shocks...
	- Controversies (J. Hamilton vs. L. Kilian) about the sources of shocks to explain oil prices
	- Is it supply disruptions (e.g. instability in the Middle East)
	- ... or demand shocks (e.g. US business cycles/rise of China)
	- Are these insights a general feature of the energy sector or specific to oil ?
- \triangleright Quantitative question :
	- What impact of such a sectoral shock?
	- Are energy shocks important drivers of business cycles?
	- What are the transmission channels and propagation mechanisms?

Introduction – Motivation

 \triangleright Oil price shocks : large & persistent effects on industrial production

Introduction – This project

- \triangleright Build a quantitative model to assess the importance of energy
- \triangleright Theoretical contribution : simple RBC framework with energy
	- Energy as a complementary factor and non-linearity in the production process
	- Micro-founded "Hotelling-type" energy sector in the spirit of Bornstein, Krusell, and Rebelo (2021)
	- DSGE model with multiple wedges in the spirit of Chari Kehoe McGrattan (2007-2016)
- \blacktriangleright Empirical contribution :
	- Business cycle accounting and shock decompositions

Introduction – This project

- \blacktriangleright Business cycle accounting :
	- Introduce 4 "reduced form" shocks (efficiency wedge, labor wedge, investment wedge, market clearing wedge)
	- In addition, 4 structural shocks specific to the energy sector (demand vs. supply)
		- Energy demand shock : directed technical change (=energy augmenting demand shifter)
		- Supply and reserve extraction shocks (supply shifter)
		- Energy wedge-markup and demand shock (development of the RoW)
	- Filter the shocks and estimate the parameters
- \triangleright Some counterfactual analysis
	- What are the effects of reducing energy use/carbon emissions by 35% by 2030?
	- Effects on reallocation, labor/capital, fossil/non-fossil

Model - RBC - Production

 \blacktriangleright Production process :

$$
Y = \mathcal{F}(M, L) = Z_t \left[\alpha^{\frac{1}{\epsilon_y}} M^{\frac{\epsilon_y - 1}{\epsilon_y}} + (1 - \alpha)^{\frac{1}{\epsilon_y}} L^{\frac{\epsilon_y - 1}{\epsilon_y}} \right]^{\frac{\epsilon_y}{\epsilon_y - 1}}
$$

$$
M = \mathcal{M}(E, K) = \left[\eta^{\frac{1}{\epsilon_\ell}} (Z_t^e E)^{\frac{\epsilon_e - 1}{\epsilon_e}} + (1 - \eta)^{\frac{1}{\epsilon_\ell}} K^{\frac{\epsilon_e - 1}{\epsilon_\ell}} \right]^{\frac{\epsilon_e}{\epsilon_e - 1}}
$$

- Special case : if ε*^e* → 0, M ∼ Leontieff,
	- if $\varepsilon_e \to 1$, *M* \sim Cobb-Douglas
- Shocks : TFP Z_t and Energy augmenting technological shock Z_t^e both with trend γ / γ^e
- \triangleright Price of energy as the marginal product (demand curve) :

$$
Q_t^E=\frac{\partial \mathcal{F}(M,L)}{\partial M}\frac{\partial \mathcal{M}(E,K)}{\partial E}=\alpha Y^{1/\varepsilon_y}M^{(1/\varepsilon_e)-(1/\varepsilon_y)}\eta(Z_t^e)^{\frac{\varepsilon_e-1}{\varepsilon_e}}E^{-1/\varepsilon_e}
$$

Model – Energy sector - 1

 \triangleright Total energy use E_t is a combination of two sources :

$$
E_t = \left(\omega^{\frac{1}{\varepsilon_f}}(E_t^f)^{\frac{\varepsilon_f-1}{\varepsilon_f}} + (1-\omega)^{\frac{1}{\varepsilon_f}}(E_t^{nf})^{\frac{\varepsilon_f-1}{\varepsilon_f}}\right)^{\frac{\varepsilon_f}{\varepsilon_f-1}}
$$

- Fossil fuel E_t^f oil, gas or coal produced by a foreign monopoly facing a finite resource problem a la Hotelling (next slide ´
	- In Face an exogenous demand from the rest of the world :

$$
E_t^{f,us}+E_t^{row}=E_t^{w}
$$

 \blacktriangleright E_t^{row} is exogenous and follow an AR(1) process : *Energy demand shock*

• A cleaner energy E_t^{nf} – nuclear, hydroelectric, solar, wind – is produced by a competitive (static) supplier facing the convex cost function $C(E_t^{nf})$

$$
\mathcal{Q}_t^{\textit{nf}} = \bar{C} \big(E_t^{\textit{nf}} \big)^{\nu_{\textit{nf}}}
$$

Model – Energy sector - 2

- \triangleright World fossil fuel production problem :
	- Microfunded as in : *"A World Equilibrium Model of the Oil Market", Bornstein, Krusell and Rebelo (2021)*

$$
V_0^E = \max_{\{I_t^E, E_t^w\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \left[\xi_t^p Q_t^f E_t^w - I_t^E - \bar{C} \left(\frac{E_t^w}{\mathcal{R}_t^E} \right)^v \mathcal{R}_t^E \right]
$$

s.t.

• Evolution of "Exploration capital" K_t^E

$$
K_{t+1}^{E} = (1 - \lambda)K_{t}^{E} + \xi_{t}^{e} \Theta (I_{t}^{E})^{\theta} (L^{E})^{1-\theta}
$$

• Reserves of fossil fuels are discovered with a lag \mathcal{R}^E_t

$$
\mathcal{R}_{t+1}^E = \mathcal{R}_{t}^E - E_t + \lambda K_t^E
$$

• AR(1) shock on the cost of exploration – *Energy supply shock*

$$
\log \xi_t^e = \rho^r \log \xi_t^e + \omega_t^e \qquad \qquad \log \xi_t^p = \rho^p \log \xi_t^p + \omega_t^p
$$

T. Bourany [Energy shocks and aggregate fluctuations](#page-0-0) October 2022 8 / 23

Model – Energy sector - 3

- \blacktriangleright This allows for lags λ in a model *a la Hotelling*
	- FOCs : optimal decisions for $s_t^E = \frac{E_t^w}{\mathcal{R}_t^E}$ and \mathcal{R}^E

$$
Q_{t+1}^f \xi_{t+1}^p = \nu \bar{C} (s_{t+1}^E)^{\nu-1} + \mu_{t+1}^{\mathcal{R}}
$$

$$
\mu_t^{\mathcal{R}} = \mathbb{E}_t \Big[\Lambda_{t+1} \big(Q_{t+1}^f \xi_{t+1}^p s_{t+1}^E + (1 - s_{t+1}^E) \mu_{t+1}^{\mathcal{R}} - \bar{C} (s_{t+1}^E)^{\nu} \big) \Big]
$$

Model – RBC

- Rest of model : standard RBC :
	- Representative HH, preferences a la *King Plosser Rebelo*

$$
U(C, L) = \frac{1}{1 - \sigma} (C_t^{1 - \sigma} v(L_t)^{\sigma} - 1)
$$

\n
$$
\Rightarrow 1 = \mathbb{E}_t[\Lambda_{t, t+1} (1 + r_{t+1}^k) \frac{1 + \tau_{t+1}^i}{1 + \tau_t^i}] \qquad \& \quad \mathit{MRS}_{c/\ell} = (1 - \tau_t^{\ell}) W_t
$$

- LoM for capital and investment with adjustment cost
- Market clearing for output $C_t + I_t + \varphi(I_t) + G_t = Y_t$
- \triangleright Business cycle accounting exercise with set of shocks :
	- TFP shock Z_t and ω^z
	- Labor wedge τ_t^{ℓ} and ω^{ℓ}
	- Investment wedge τ_t^i and ω^i
	- Government wedge G_t and ω^g

Shocks to the energy sectors

- Intermediate The wedges in the RBC model are ad hoc/*reduced form* shocks
	- Assumption that these shocks are structural from the point of view of the energy sector.

 \blacktriangleright For now :

- Match log deviation from growth trend
- Shocks : $\tau_t^i = \rho_i \tau_{t-1}^i + \sigma^i \omega_t^i, \forall i$, with $\omega_t^i \sim \mathcal{N}(0, 1)$
- This assumption is used for out identification

 \blacktriangleright In practice :

- Kalman filtering for processes of shocks
	- \blacktriangleright 4 macro shocks, 4 energy shocks
	- \triangleright 3 macro times series, 3 energy time series
- MCMC/Bayesian inference for parameters variances of shocks and structural parameters

Result : Demand shocks – TFP

Result : Demand shocks - DTC

Result : Energy wedge – Market power

Data - Sample : U.S. data 1949-2020

\blacktriangleright Energy consumed vs. Prices

Price and Reserves

Shocks decomposition - energy shocks and output

Case study – Second Oil price shock of 1979-1980

T. Bourany **[Energy shocks and aggregate fluctuations](#page-0-0) Cerober 2022** 19/23

Shock decomposition and estimation

- \triangleright Energy shocks : important drivers of business cycles fluctuations :
	- Contribute to $> 30\%$ of variance of aggregate production
	- Elasticity of energy < 0.2 : Production function is close to Leontieff.
	- Mostly through firm energy and investment decisions

- \triangleright Energy shocks : important drivers of business cycles fluctuations :
	- Contribute to $> 30\%$ of variance of aggregate production
	- Elasticity of energy < 0.2 : Production function is close to Leontieff.
	- Mostly through firm energy and investment decisions

 \triangleright Representative Agent model may not yield empirically relevant predictions :

- Energy shocks: Right qualitative implications, but not the right magnitude
	- IRF : shocks lead to large reactions of quantities (but not prices)
	- Taken to the data : shocks are a too large contributor to business cycles.
- \triangleright Question : what the most relevant transmission mechanisms ?
	- Nominal rigidities and aggregate demand channel
	- Energy shocks distort prices, causing inflation

- \triangleright Energy shocks : important drivers of business cycles fluctuations :
	- Contribute to $> 30\%$ of variance of aggregate production
	- Elasticity of energy < 0.2 : Production function is close to Leontieff.
	- Mostly through firm energy and investment decisions

 \triangleright Representative Agent model may not yield empirically relevant predictions :

- Energy shocks: Right qualitative implications, but not the right magnitude
	- IRF : shocks lead to large reactions of quantities (but not prices)
	- Taken to the data : shocks are a too large contributor to business cycles.
- Question : what the most relevant transmission mechanisms?
	- Nominal rigidities and aggregate demand channel
	- Energy shocks distort prices, causing inflation
	- Large share of TFP/efficiency wedge : may imply that sectoral allocation matters
	- Chari Kehoe McGrattan (2007) : generate efficiency wedge from input/output frictions

- \triangleright Energy shocks : important drivers of business cycles fluctuations :
	- Contribute to $> 30\%$ of variance of aggregate production
	- Elasticity of energy < 0.2 : Production function is close to Leontieff.
	- Mostly through firm energy and investment decisions

 \triangleright Representative Agent model may not yield empirically relevant predictions :

- Energy shocks: Right qualitative implications, but not the right magnitude
	- IRF : shocks lead to large reactions of quantities (but not prices)
	- Taken to the data : shocks are a too large contributor to business cycles.
- \triangleright Question : what the most relevant transmission mechanisms ?
	- Nominal rigidities and aggregate demand channel
	- Energy shocks distort prices, causing inflation
	- Large share of TFP/efficiency wedge : may imply that sectoral allocation matters
	- Chari Kehoe McGrattan (2007) : generate efficiency wedge from input/output frictions
	- Direct effect on consumption
	- Heterogeneous effects on Households

Sectoral Reallocation – Future extensions

Data from EIA : energy shock have heterogeneous effects across sectors

T. Bourany **[Energy shocks and aggregate fluctuations](#page-0-0)** Corober 2022 22/23

Conclusion and future paths

- \blacktriangleright How important is energy for economic fluctuations ?
	- With complementarity in production the energy shocks can be amplified
	- ... However, with reallocation toward the energy sector : the effects are smoothed dramatically
- \blacktriangleright In our quantitative exercise :
	- energy shocks increasing prices but not quantity can be important
	- Small effects of carbon taxes on reduction in energy use and emissions
- \blacktriangleright Future plans :
	- Multisector model and energy network with nested-CES
	- Investigate reallocation channels and policy counterfactual at the sector/source level (carbon tax/oil shock)

Sectoral data

- \blacktriangleright Data from EIA :
	- Input volumes (quantity !!) for 5 larges sectors :
	- Transportation, Industry, Residential, Commercial, Electricity sector
	- Sources and prices (!) for energy input : petroleum products, natural gas, coal, etc.
	- Yearly 1949-1973, Monthly 1973-2021.
- \blacktriangleright More granular surveys :
	- Survey for manufacturing (3 digits NAICS data), every 3-4 years, 1991,94,98,2002,06,10,14,18
	- Other surveys for residentials/commercial sector
	- All that need extensive cleaning :'(

Sectoral data

 \blacktriangleright Several facts :

- Energy inputs are inelastic in sectoral production
	- Oil/gas matter mostly for transportation (95%)
	- In industrial processes, little reallocation across sources
- Electrification
	- Slow + create a large gap between total energy and primary energy
	- Possibility of reallocation (from coal to gas)

Network model

- The economy is composed of $I + I^E$ sectors :
	- *I* economic sectors typically production sectors taken from the BEA 2 digits NAICS
	- *I E* (wholesale) energy sectors Oil, Natural gas, Nuclear, Coal, Renewables and Electricity.

$$
Y_i = A_i \left[(1 - \theta_i)^{\frac{1}{\epsilon_y}} \left(K_i^{\alpha} L_i^{(1-\alpha)} \right)^{\frac{\epsilon_y - 1}{\epsilon_y}} + \theta_i^{\frac{1}{\epsilon_y}} M_i^{\frac{\epsilon_y - 1}{\epsilon_y}} \right]^{\frac{\epsilon_y}{\epsilon_y - 1}}
$$

$$
M_i = \left(\sum_{j=1}^{I+1} (\omega_{ij}^m)^{\frac{1}{\epsilon_m}} M_{ij}^{\frac{\epsilon_m - 1}{\epsilon_m}} + \eta_i^{\frac{1}{\epsilon_m}} E_i^{\frac{\epsilon_m - 1}{\epsilon_m}} \right)^{\frac{\epsilon_m}{\epsilon_m - 1}}
$$

$$
E_i = \left(\sum_{k=1}^{I^E} (\omega_{ik}^e)^{\frac{1}{\epsilon_e}} E_{ik}^{\frac{\epsilon_e - 1}{\epsilon_e}} \right)^{\frac{\epsilon_e}{\epsilon_e - 1}}
$$

$$
Y_i = \left(\sum_{k=1}^{I^E} (\omega_{ik}^e)^{\frac{1}{\epsilon_e}} E_{ik}^{\frac{\epsilon_e - 1}{\epsilon_e}} \right)^{\frac{\epsilon_y}{\epsilon_e - 1}}
$$

Network model

 \blacktriangleright Final demand from Household

$$
C = \Big(\sum_{j=1}^{N} \xi_j^{\frac{1}{\varepsilon_c}} C_j^{\frac{\varepsilon_c - 1}{\varepsilon_c}}\Big)^{\frac{\varepsilon_c}{\varepsilon_c - 1}}
$$

\n
$$
\max_{\{C_j, L_j, E_r, E_d\}_j} \mathbb{E}_{t_0} \sum_{t} \beta^t \Big(\log(C) + V(R, E_r) + V(D, E_d) - \psi\big(\sum_j L_j\big)^{\frac{\varphi}{\varphi + 1}}\Big)
$$

Investment sector as in the old literature on multisectors RBC.

Shocks decomposition - energy shocks and output

Shocks decomposition - energy shocks and investment

Shocks decomposition - energy shocks and labor

Shocks decomposition - energy shocks and energy use of fossils

Shocks decomposition - energy shocks and fossil price

