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Abstract

What is the optimal policy to fight climate change? Taxation of carbon and fossil fuels has
strong redistributive effects across countries: (i) curbing energy demand is costly for developing
economies, which are the most affected by climate change in the first place (ii) carbon taxation
has strong general equilibrium effects through energy markets and fossil fuel rents. Through the
lens of an Integrated Assessment Model (IAM) with heterogeneous countries, I show that the
optimal taxation of carbon depends crucially on the availability of redistribution instruments.
After characterizing the Social Cost of Carbon (SCC), I provide formulas for the Second-Best
carbon tax in the presence of inequalities in incomes and climate damages, and redistributive and
distortionary effects on energy markets. I show that a uniform carbon tax should be increased
by approximately 45% in the presence of inequality compared to First-Best where cross-country
transfers are available. If country-specific carbon taxes are available, the distribution of carbon
prices is proportionally related to the level of income: poor and hot countries should pay lower
energy taxes than rich and cold countries. These qualitative results are general, and I propose a
dynamic quantitative model to provide recommendations for the optimal path of carbon taxes.
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1 Introduction

Greenhouse gas emissions generated by economic activity are causing climate change, and
global atmospheric temperatures have increased by almost 1.5◦C since the Industrial Revolution.
The sources of these emissions are unequally distributed: developed economies account for over
65% of cumulative greenhouse gas (GHG) emissions with ∼ 25% each for the European Union
countries and the United States, while some developing countries have barely emitted anything
compared to their population level. Moreover, carbon emissions and energy consumption tend to
correlate highly with development and income (e.g. GDP per capita).

Moreover, the consequences of global warming are also unequal: the increase in temperatures
disproportionately affects developing countries where the climate is already warm. Most emerging
and low-income economies lie geographically closer to the tropics and the equator and tend to be
most vulnerable to global warming, e.g. Burke et al. (2015), Carleton et al. (2022).

Finally, implementing climate policy in the form of Pigouvian carbon taxation has strong
redistributive effects as well. Countries that consume a large share of their energy mix in oil, gas,
and coal will be affected more by distortionary carbon taxation. Moreover, phasing out fossil fuels
reduces energy prices, lowering energy rents and hurting disproportionally exporters of fossil fuels.

These three layers of inequalities raise the following question: what is the optimal carbon
policy in the presence of climate externality and inequality? Should the optimal tax on carbon
and fossil fuels account for these different dimensions of heterogeneity?

To answer this question, I develop a simple yet general Integrated Assessment Model with
countries’ heterogeneity. Individual countries are heterogeneous in many dimensions, including
(i) income, (ii) damages from climate change, and (iii) exposure to energy markets through dif-
ferences in energy mix and fossil-fuel exports. Since the quantitative framework is very general,
I first provide an extremely simple model to provide the main theoretical intuitions, keeping the
same features regarding climate externalities and energy markets.

In both models, I study the design of optimal taxation of carbon and the characterization of
the Social Cost of Carbon (SCC), which summarizes the costs of climate change for one additional
ton of carbon emitted. I show that the optimal policy depends crucially on the availability of
redistributive instruments – such as lump-sum transfers – across countries. In the First-Best, the
optimal tax follows the Pigouvian benchmark and equals the Social Cost of Carbon. However,
when cross-country transfers are not allowed, the optimal tax needs to account for inequality and
redistributive considerations and adjust the level of the uniform carbon tax. Moreover, when
choosing country-specific carbon taxes, the optimal policy is to lower the carbon tax for poorer
countries, and higher for more advanced economies.

I first show these two main results in a simple “toy model”, where I summarize these lessons
in a four-equations static model. Differences in TFP, and thus income, in the impacts of climate
change, and in the costs of extracting fossil fuels provide a rationale for redistribution. The
unconstrained planner – in the First-Best – uses transfers to offset the redistributive effects of the
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carbon tax itself. However, in the Second-Best, when these transfers are assumed away, we see that
the uniform carbon should account for three effects: (i) the climate externality represented by the
Social Cost of Carbon (SCC), (ii) a supply redistribution that summarizes the equilibrium effect on
the price of fossil-fuel energy which redistribution between exporter and importers, scaled by the
inverse elasticity of the energy supply, and (iii) a demand distortion term that scale with energy
inputs choices, shares, and demand elasticity. Moreover, (iv) these three terms are the aggregation
of these effects for each country, weighted by the “social welfare weights”, which is the product
of the marginal utility of consumption and the Pareto weights. The planner puts more weight on
poorer countries than on more advanced ones. To summarize, the world’s optimal carbon policy
differs from the standard Carbon tax = Social Cost of Carbon, and the taxation should be adapted
to the specific situation of each country.

Second, in this static model, I show how to choose country-specific carbon taxes. In that
case, two motives – the Social Cost of Carbon and Supply Redistribution – remain, and Demand
Distortion disappears thanks to the ability of the planner to act independently in each country.
However, the carbon itself is now inversely proportional to the social welfare weights: the planner
strongly reduces the carbon tax required for countries with high Pareto weights or high marginal
utility of consumption – i.e. relatively poorer countries. I show in this simple setting how to
implement such policies in emission trading systems or cap-and-trade. Moreover, I demonstrate
that a direct mapping exists between price instruments – like carbon taxes or carbon prices – and
quantity regulations – as discussed in Weitzman (2003), and Weitzman (2015).

I then build a quantitative dynamic model to provide policy recommendations to these
questions. I consider an Integrated Assessment Model extending the standard Neoclassical Growth
Model with multiple countries and many dimensions of heterogeneity. First, in each country, a
representative firm produces a final good using capital, labor, and energy inputs. Countries differ
in total productivity and energy efficiency, which implies differences in incomes or GDP/capita
and total energy demand. Second, a representative household makes consumption, capital, and
borrowing decisions over time. Third, there are three energy firms in each country: oil-gas, coal,
and renewable, which are energy inputs used in the final good production. Countries differ in
energy mix due to differences in costs of energy production. Moreover, differences in endowments
in oil-gas – and dynamically depleting reserves – lead to countries being exporters or importers
of fossil fuels. Finally, global fossil-fuel consumption – from oil-gas and coal – emits carbon into
the atmosphere, which then feeds back into the climate system. This affects temperatures across
regions and has heterogeneous damages across countries for firms and households. I calibrate the
model to economic, climate, and energy data for a sample of 68 countries to match the dimensions
of heterogeneity at the heart of countries’ vulnerability to climate change and climate policies.

Despite the richness of the model and the many market forces and general equilibrium effects,
the main result on the optimal carbon policy carries through. First, relying on the continuous time
formulation of the model, I provide an analytical characterization of the Social Cost of Carbon
(SCC) – which depends on the climate system and damage parameters but also the differences in
social welfare weights. I show that in the First-Best allocation, in the absence of redistributive
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motives, the Social Cost of Carbon is the sum of the Local Costs of Carbon for each country,
weighed by the planner’s Pareto weights. This result aligns with models that can be perfectly
aggregated where redistribution motives are absent. However, in the Second-Best, in cases where
the planner cannot undermine preexisting inequality or offset redistributive effects, the Social Cost
of Carbon is the sum of Local Costs of Carbon for each country, weighed by the social welfare
weights which now integrate differences in marginal utility of consumption. If poorer countries are
the most affected by climate change, the Social Cost of Carbon would be higher. However, in this
class of models, the Local Costs of Carbon scale with consumption and income, which implies that
the Social Cost of Carbon is lower than in the First-Best or the Representative Agent economy.

Then, I characterize the optimal carbon policy. In the First-Best allocation, we recover the
Pigouvian benchmark, where the carbon tax equals the Social Cost of Carbon. This is because
the planner redistributes across countries using lump-sum transfers, for example, taxing lump-sum
European and American countries and transferring to South Asian and African economies. In the
Second-Best Ramsey policy, when the planner is unable to redistribute freely across countries due
to limitations on lump-sum transfers, the world optimal carbon tax needs to be adjusted. As before,
it needs to account for Supply Redistribution – depending on energy supply curve elasticities –
and Demand Distortion – which is a function of the energy demand elasticities. Finally, I also
show that country-specific carbon taxes are scaled by the inverse of the social welfare weights,
such that the poorer or warmer the country, the lower the carbon tax it needs to pay. Moreover,
in the quantitative model, these terms are slightly more involved as they depend on the path of
temperature – as the Social Cost of Carbon increases over time, as is common in carbon taxation
in IAM – and the substitution patterns between energy sources and change dynamically. Similarly,
the social welfare weights used for aggregating these effects across countries also change over time.

In addition, this framework is general, and I develop a method inspired by the Heterogeneous
Agents literature and Mean-Field Games to solve this class of model globally in continuous time.
This relies on the sequential formulation of the optimal control problem, which allows to follow
the trajectories of each country/agent. As a result, it allows us to consider an arbitrary number
of dimensions of ex-ante heterogeneity and a larger number of dimensions of time-varying states
than what is typically covered in the literature using dynamic programming methods.

The main quantitative result is that accounting for inequality implies changing the optimal
carbon tax in three ways. First, computing the Social Cost of Carbon with the social welfare
weights results in a SCC of $50/tCO2 instead of $100/tCO2 when simply doing the simple sum
of Local Cost of Carbon. Second, implementing the carbon mitigation does reduce the Social
Cost of Carbon – which is an equilibrium object depending on climate damage. I show that in
the First-Best, the planner would use large transfers to offset inequality. In the Second Best,
when redistribution instruments are absent, the optimal uniform carbon tax is approximately 45%
higher, from $75 to $110. This results from the fact that the carbon tax puts more weight on poorer
countries that have a higher marginal value of wealth which. Finally, it accounts for redistribution
motives in the energy markets – supply redistribution and demand distortion. It implies, on the
one hand, a lower carbon tax to avoid hurting fossil-fuel exporters and, on the other hand, a higher
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tax since the richest countries are the major consumers of fossil fuels. Quantitatively, the second
effect on demand dominates largely. This implies a carbon tax slightly above 110, which is in
the range of estimates for the optimal carbon tax. Forthcoming results would show how these
effects would change over time with climate change dynamics, the change in the valuation of fossil
reserves, and the growth dynamics of developing economies.

Related literature

This paper stands at the intersection of several subfields of macroeconomics, climate eco-
nomics, and computational and mathematical economics.

First, I develop an Integrated Assessment model (IAM) with heterogeneous countries, and
this naturally relates to the classical approach of IAM by Nordhaus. I use a neoclassical model
with a climate system and damage of temperatures, as in the DICE model, Nordhaus (1993, 2017),
recently revisited in Barrage and Nordhaus (2024). In this representative agent framework, as in
the rest of the literature, the standard Pigouvian result holds: the optimal taxation of carbon
equals the Social Cost of Carbon (SCC). As a result, it is enough to measure the marginal cost of
climate change to know the full path of the carbon tax. Golosov, Hassler, Krusell and Tsyvinski
(2014) develop a complete study of the optimal taxation of fossil fuels in a class of models inspired
by DICE models and derive the first-best policy and a closed-form formula as a function of the
climate and economic parameters for the optimal carbon tax and Social Cost of Carbon.

Second, I extend this class of model to handle country heterogeneity. I build on the literature
that started with the RICE – the multi-regions version of the DICE model – with Nordhaus and
Yang (1996); Nordhaus (2011). As studied in Hillebrand and Hillebrand (2019), the optimal carbon
tax should be the Social Cost of Carbon, i.e. the sum of Local Damages, and the heterogeneity
across regions determines the optimal transfer policies. When transfers are unrestricted, there
is no need to adjust the carbon tax or the Social Cost of Carbon for inequality. More recently,
frameworks with more realistic heterogeneity have been developed to study the impact of climate
change and design optimal policies such as Krusell and Smith (2022), Hassler, Krusell, Olovsson
and Reiter (2020), Kotlikoff, Kubler, Polbin and Scheidegger (2021b), Kotlikoff, Kubler, Polbin,
Sachs and Scheidegger (2021) or Belfiori (2018). I show how to solve for the optimal carbon
taxation, which features of the heterogeneity matter, in this class of model.

Related, the spatial-economic geography literature has made important advances in studying
the heterogeneous impact of climate change. Cruz and Rossi-Hansberg (2021), Cruz and Rossi-
Hansberg (2022a), Rudik et al. (2021) or Bilal and Rossi-Hansberg (2023b) are rich frameworks
that incorporate migration, agglomeration and congestion externality, and meaningful spatial het-
erogeneity. The design of optimal policies in such models is still being explored in the literature,
and the approach in this article is well-suited for this body of work.

Moreover, a blooming literature has been developed to study the redistributive effects of
carbon taxation within countries and the heterogeneous impacts of climate change across house-
holds. For example, Belfiori, Carroll and Hur (2024) provides similar theoretical and quantitative
results for the optimal policy in the First-Best and Second-Best without transfers. In similar
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heterogeneous agents frameworks, Le Grand, Oswald, Ragot and Aurélien (2023); Wöhrmüller
(2024); van der Ploeg, Rezai and Tovar (2024); Fried, Novan and Peterman (2024); Benmir and
Roman (2022); Kuhn and Schlattmann (2024); Schlattmann (2024); Douenne, Hummel and Pe-
droni (2023); Douenne, Dyrda, Hummel and Pedroni (2024) have made significant contributions
to understand the redistributive effects – due to differences in goods, car and durables, housing,
or adaptation mechanisms along the wealth distribution.

I also relate to the literature closer to climate sciences, reexamining the empirical perfor-
mances of Integrated Assessment Models, such as in Dietz, van der Ploeg, Rezai and Venmans
(2021), Dietz and Venmans (2019), Ricke and Caldeira (2014) or Folini et al. (2021). Following
this literature, I consider a simple climate system that allows me to both match larger IAMs and
derive closed-form expressions for the social cost of carbon and optimal carbon tax.

Moreover, I also relate to a thriving literature that studies optimal policy design in Hetero-
geneous Agents models. Solving Ramsey policies, Le Grand et al. (2021), Bhandari et al. (2021a),
Davila and Schaab (2023) or McKay and Wolf (2022) propose different approaches to conduct mon-
etary and fiscal policy in HANK models. In my framework, I solve the Ramsey policy sequentially
and solve climate externalities and Pigouvian taxation in the presence of heterogeneity rather than
managing business cycle fluctuations.

The method developed here is flexible enough to handle aggregate uncertainty, such as cli-
mate risk and business cycle fluctuation, and results in this dimension are work-in-progress. The
Stochastic DICE model of Cai and Lontzek (2019) and Lontzek, Cai, Judd and Lenton (2015) or
the general approach to study model uncertainty and ambiguity aversion applied to climate change
in Barnett, Brock and Hansen (2020, 2022) are particularly related. If the inclusion of aggregate
risk is preliminary in the present paper, I provide intuitions in the toy model and will integrate
this in forthcoming works.

Lastly, this work also relates to advances in the mathematical literature on Mean Field
Games. Indeed, if the literature has leveraged approaches studying the PDE system, following
Lasry-Lions’ contribution, Cardaliaguet (2013/2018), or Achdou et al. (2022), they usually rely on
dynamic programming methods. However, the Pontryagin maximum principle – used for solving
the neoclassical model – extends to the stochastic case, as in Yong and Zhou (1999), or the case
with a distribution of agents or – Mean-Field / McKean Vlasov dynamics – as in Carmona et al.
(2015), Carmona and Delarue (2018) or Carmona and Laurière (2022). Using this approach in the
deterministic case in large dimensions, I solve the model globally, compute the social cost of carbon
analytically, and design optimal policy. For the case with aggregate risk, I borrow intuitions from
Carmona et al. (2016), Bourany (2019), and Carmona and Delarue (2018) to solve the Stochastic
FBSDE system in future work Bourany (2023).

The remainder of this paper is organized as follows. In Section 2, I study the optimal taxation
carbon in a simple model to provide most of the intuitions. In Section 3, I lay out the Integrated
Assessment Model that we study in the policy analysis. In Section 4 I derive the optimal carbon
tax – First-Best and Second-Best Ramsey policy – in this context. In Section 5, I present how I
match the model to the data. In Section 6, I present the main result of the quantitative analysis.
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2 Toy model

In this section, I develop the simplest climate economy model to highlight the intuition
behind the design of the optimal climate policy. The goal is to provide intuitions on the effects of
heterogeneity across countries, the source of climate externality related to energy markets, and how
it change the level of carbon taxation. In the next section, I develop a more general quantitative
model that will be used for policy recommendation.

The model is static and all the decisions are taken in one period. Consider I countries
i ∈ I, heterogeneous in three dimensions that will be detailed below. A unique household in each
country consumes the good ci, produced by the representative firm with labor `i and energy ei.1

In each of these countries, an energy producer extracts energy and sells this input at price qe on
international markets. It earns profits and is owned by the household. Moreover, the countries
are subject to climate damage on production. I describe each agent’s problem in turn. Finally,
a government, whose objective is specified in the next section, imposes a tax on emission tεi and
distributes lump-sum transfers tlsi in each country.

First, a representative household consumes their labor income wi ¯̀i, where the exogenous
labor supply is normalized to ¯̀

i = 1, the profit of the energy firm of its country πei and the
lump-sum transfers given by the government tlsi .

Vi = U(ci)

ci = wi ¯̀i + πei + tlsi .

Second, a representative firm produces a homogeneous good2 using energy ei and household
labor `i with a constant return to scale technology. Since the labor supply is normalized to 1, ei
represents the energy use per capita. The production function F̃ (`i, ei) is concave in (`i, ei), and
F̃e(`, e) > 0 and F̃ee(`, e) < 0 and features Inada conditions. This firm maximizes profits:

max
`i,ei

Di(S)ziF̃ (`i, ei)− (qe + tεi )ei − wi`i , (1)

where tεi is a carbon tax paid per unit of energy.

Both countries are subject to climate damages Di(S) caused by climate externalities related
to the world fossil-fuel energy consumption that release greenhouse gas emissions in the atmosphere:

S = S0 +
GHG emissions E︷ ︸︸ ︷∑

i∈I ei ,

where energy use and emissions are measured in (metric) tons of Carbon or CO2. This depends
on the mix between fossil fuels and renewable energies, taken as given in this static model. The
quantitative model introduces this endogenous channel of energy substitution.

1Generalization of this model, with differing population Pi, endowments of inputs in the production function (e.g.
capital ki), do not change the qualitative implication of this framework, as we will see in the quantitative model.

2This good is traded costlessly across countries and its price is the numeraire, and hence normalized to 1.
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The global carbon emission stock is not internalized by households in their energy consump-
tion decision, leading to damage Di(S) that affects country i’s effective productivity, as in standard
Integrated Assessment models, e.g. Nordhaus DICE models.

In each country, a competitive energy producer extracts energy exi – for example oil, gas, or
coal – maximizing its profit, subject to convex cost C(ex), i.e. C′(ex) > 0 and C′′(ex) > 0 that is
paid in the homogenous good.

πei = max
exi

qeexi − Ci(exi ) ,

⇒ qe = C′i(exi ) ⇒

 exi = Ei(qei ) = C′−1
i (qe)

πei := qeE(qei )− Ci
(
Ei(qei )

) ,

subject the energy price qe. This corresponds to a decreasing-return-to-scale extraction technology,
and implies positive profits πei > 0. Since energy is traded without friction on international markets,
this price is set to clear the supply and demand:

E =
∑
i∈I

ei =
∑
i∈I

exi .

Since the good firm’s technology is constant return to scale (CRS), define F (ei) = F̃ (1, ei) to
aggregate firms and household budgets into a single constraint:

ci + (qe + tεi )ei = Di(S)ziF (ei) + qei e
x
i − Ci(exi ) + tlsi [λi] . (2)

with λi the shadow value of that constraint, which plays an important role in redistribution motives.

Heterogeneity. The countries i ∈ I are symmetric in all regards, except for differences
in three parameters. To fix ideas, consider two regions, North and South, to give qualitative
predictions of the policy results. First, countries differ in terms of productivity zi. Here, I consider
a wide definition of zi that accounts for technology, efficiency, market frictions, and institutions.
This results in some countries – e.g. the North – producing more and being richer, leading to
inequality in consumption.3 Second, energy reserves endowments are unequally distributed, which
results in differences in costs of extraction. I assume that northern countries, e.g. US, Canada,
Russia, Norway, etc. have lower costs of extraction C′N (e) < C′S(e), implying larger production and
energy rents πeN > πeS . Third, some countries, e.g., Southern Hemisphere, are more vulnerable to
the damages of climate, DS(S) < DN (S) for all S the stock of carbon. In this sense, the damage
parameter γi = − D

′
i(S)

SDi(S) is higher in the South, γS > γN . All these differences yield heterogeneity
in consumption in the competitive equilibrium and motives for redistribution, e.g. cN > cS .

3Indeed, assuming F (e) is Cobb Douglas F (e) = ¯̀1−αeα, with ¯̀= 1, we obtain αDi(S)zieα−1
i = qe leading to

ei =
(
αDi(S)zi/qe

)1/(1−α)
yi − qeei =

(
Di(S)zi

)1/(1−α)(qe)−α/(1−α)[αα/(1−α)−α1/(1−α)]
which is increasing in zi and Di(S)
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Definition 2.1 (Competitive Equilibrium). Given a carbon policy tε, a competitive equilibrium
(CE) is an allocation {ci, ei, exi }i and energy price qe such that (i) the good firm chooses input ei
maximizing profit, and (ii) the energy firm chooses extraction exi maximizing profit, and both goods
and energy markets clear:

∑
i∈I
ci + Ci(exi ) =

∑
i∈I
Di(S)ziF (ei) E =

∑
i∈I

ei =
∑
i∈I

exi .

This results in the following optimality conditions. First, for consumption, the multiplier λi rep-
resents the marginal value of wealth or the marginal utility of consumption.

λi = U ′(ci) with ci = Di(S)ziF (ei) + qe(exi − ei)− Ci(exi ) + tlsi

where consumption depends on production, energy cost, and net energy export.
The second and third optimality for energy use and energy extraction write as follow:

MPei = qe + tεi with MPei := Di(S)ziF ′(ei) ,

qe = C′(exi ) ,

and this corresponds to the standard condition Marginal Product = Marginal Cost for Energy.
This competitive equilibrium is inefficient: climate damages Di(S) are not internalized, and

energy consumption is too high in view of the economic costs of global warming. Moreover,
economic inequality results from the heterogeneity in productivity, energy endowment, and climate
damage. In our two regions example, cN > cS results in λS > λN . Redistribution from the North
to the South could be desirable from a utilitarian point of view. This inequality in consumption and
damages arises despite trade openness.4 I explore how the social planner allocates consumption
and energy in such an environment.

2.1 First-Best: Social planner allocation with full transfers

Consider a Social Planner choosing the agent’s decisions, subject to the resource constraints
in goods and energy as well as the climate externality.

W = max
{ci,ei,exi }i∈I

∑
i∈I

ωiU(ci)∑
i∈I
ci + Ci(exi ) =

∑
i∈I
Di(S)ziF (ei) [φ]

E =
∑
i∈I

ei =
∑
i∈I

exi [µe]

S := S0 +
∑
i∈I

ei

(3)

4We could consider trade and financial autarky preventing production from being exported to other countries.
This would strengthen heterogeneity and redistributive motives.
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where φ is the shadow value of the good market clearing and µe the one of the energy market
clearing. The welfare function is the weighted sum of countries’ utilities, with Pareto weights
ωi. In the following, I denote the social planner allocation {ĉi, êi}i∈I to distinguish it from the
competitive equilibrium.

Choosing the consumption on behalf of the agents yields a redistribution motive:

[ci] φ = ωiU
′(ĉi) ⇒ ωiU

′(ĉi) = ωjU
′(ĉj) ∀i, j ∈ I .

Depending on the Pareto weights, there is a motive for transferring consumption across countries.
Regarding the choice of energy inputs:

[êi] & [êxi ] C′(êxi ) = µe

φ
= Di(S)ziF ′(êi) +

∑
j∈I
D′j(S)zjF (êj)︸ ︷︷ ︸

=:SCC
with an additional term that represents the cost of emitting one ton of carbon in terms of forgone
production. This term is the Social Cost of Carbon (SCC) in the social planner allocation and
represents the marginal global damage of climate change. With γi = − D

′
i(S)

SDi(S) , which is constant
with Nordhaus’ Damage function Di(S) = e−

γi
2 (S−S0)2 , I redefine it as SCC = ∑

j∈ISγjyj .

I turn to the decentralization of such allocation. I consider a planner who has access to all
instruments {tei , tlsi }i, and, in particular, lump-sum transfers tlsi across countries.

Proposition 1 (First-Best Policy and Decentralization).
The optimal policy decentralizing the First-Best allocation is a uniform carbon tax, tεi = tε, equal
to the Social Cost of Carbon tε = SCC, and uses lump-sum transfers for redistribution. Indeed,
optimality writes:

MPei := Di(S)ziF ′(êi) = qe + tε qe = C′(êxi )

with tε = SCC := −
∑
j∈I
D′j(S)zjF (êj) =

∑
j∈I
Sγjyj = IEj

[
Sγjyj

]
and transfers {tlsi }i which are implicitly defined by

ωiU
′(ĉi) = ωjU

′(ĉj) ,

ĉi = Di(S)ziF (êi) + qe(êxi − êi)− Ci(êxi ) + (tlsi − tεêi) .

For arbitrary Pareto weights ω, lump-sum transfers are redistributive: ∃ i, j s.t. tlsi >tεêi, tlsj <tεêj.
To see this last point, summing the budget constraints yields:

∑
i∈I

tlsi = tε
∑
i∈I

êi

implying there is lump-sum redistribution from richer countries to poorer ones in the presence of
heterogeneity across countries.5 In our North-South example, with zS < zN , C′N < C′S or D′S > D′N ,

5Given that tlsi = tεêi + U ′−1( φ
ωi

)−Di(S)ziF (êi)− qe(êxi − êi).
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and for arbitrary Pareto weights6, we obtain that tlsS > tεêS , and tlsN < tεêN . This implies that
some funds are taxed from the North and redistributed lump-sum to the South. However, there
exists a unique set of Pareto weights ωi = 1/U ′(ĉi) – the so-called Negishi weights – such that this
motive disappears tlsS = tεêS and tlsN = tεêN and there are no transfers across countries.

In the following, I rule out this flexible lump-sum transfers assumption: if development aid
exists, in practice, full redistribution with lump-sum taxes and transfers to cover the differences in
technology, market frictions, and institutions is politically unfeasible.

2.2 Second Best: Ramsey problem, uniform carbon tax, and limited transfers

Consider now a social planner designing the optimal climate policy, taking into account the
constraints preventing transfers across countries. Subject to the competitive equilibrium optimal-
ity conditions, the climate externality and the absence of financial instruments for full lump-sum
redistribution, the planner takes the decisions of consumption and energy to maximize global wel-
fare. I denote the Ramsey allocation {c̃i, ẽi, ẽxi }i to distinguish it from the competitive equilibrium
{ci, ei, exi } and the First-best allocation {ĉi, êi, êxi }.

W = max
{c̃i,ẽi,ẽxi }i,qe,tε

∑
i∈I

ωiU(c̃i) (4)

I consider a uniform carbon tax for all countries tεi = tε, and this, for several reasons. First, the
goal is to provide a direct comparison to the standard Pigouvian framework, where the natural
outcome is a global uniform tax on fossil energy. Second, following the arguments of Weitzman
(2015), the uniform carbon tax or price of carbon serves as a “focal point”, where the social-planner
policy is a representation of the bargaining outcome in an agreement coming from all the countries
in the world. Third, in the next section, I consider different tax rates for each country.

In both cases – uniform tax or country-specific taxes – I assume away cross-country transfers:
as the revenue of the tax is redistributed lump-sum to the household t̃lsi = tεẽi. Moreover, in the
Second-Best Ramsey policy, the planner internalizes the optimality conditions of the competitive
equilibrium. Using the Primal Approach in public finance, the Ramsey problem accounts for the
countries’ budgets and the firms’ optimality conditions and is written as:

W = max
{c̃i,ẽi,ẽxi }i,qe,tε

∑
i∈I

ωi U(ci)

s.t c̃i + (qe+tε)ẽi = Di(S)ziF (ẽi) + qeẽxi − Ci(ẽxi ) + tεẽi [φi]

qe = C′i(ẽxi ) qe+tε = MPei [υi]

S := S0 +
∑
i

ei E =
∑
i

ei =
∑
i

exi [µe]

(5)

with the Lagrange Multipliers φi, υi, µe, respectively for the budget constraint, the energy choice
of the good firm, and the energy market clearing.

6In particular, this is the case if the Pareto weights are large enough, i.e. ωS ≥ φ/U ′(cS) i.e. more than the
weight imposed by the shadow value of good discounted by South’ marginal utility
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The Lagrangian of this problem, as well as the detailed optimality conditions, are derived in
detail in Appendix A. They yields the following optimality conditions for consumption ci, demand
ei and supply exi for energy:

ωiU
′(c̃i) = φi = marginal value of

income/wealth

φitε = υiDi(S)ziF ′′(ẽi)︸ ︷︷ ︸
=demand distortion

+ µe︸︷︷︸
= supply
redistribution

−
∑
j φjD′j(S)zjF (ẽj)︸ ︷︷ ︸

∝ Social Cost of Carbon

The planner chooses a single carbon policy instrument and thus accounts for several redistribution
channels across countries through (i) the marginal value of income φi, (ii) the distortion of energy
demand symbolized by the shadow value of energy choice υi, (iii) the redistributive effects on energy
market with the market clearing multiplier µe, and (iv) the Social Cost of Carbon summarizing the
marginal cost of climate change. There, before deriving the main formula for the optimal carbon
tax tε and explaining the economic intuition behind it, let us introduce these key objects.

First, I define the “social welfare weight” φ̂i = φi/φ that represents the relative weight that
the planner uses for global policy. I define it as a ratio, rescaling the multiplier φi, of the shadow
value of relaxing the budget constraint for country i.

φ̂i = φi

φ
= ωiU

′(ci)
1
I

∑
i∈I ωiU

′(ci)
≶ 1

where φ = ∂W/∂c = 1
I

(∑
i∈I ωiU

′(ci)
)
is the average marginal utility. φ is the “money↔welfare”

conversion factor for the social planner. When there is no full redistribution, this factor φ̂i is high
for relatively poorer countries or countries with a high Pareto weight ωi.

Second, climate change affects countries differently according to their marginal damages D′j .
The social cost of carbon scales those damages by the social welfare weights/inequality factor
φ̂i ∝ ωiU

′(ci) given that the planner does not have access to full redistribution. Rescaled in
monetary unit, with the conversion factor φi, the SCC writes:

SCC := −∂W/∂S
∂W/∂c

= − 1
φ

∑
j

φjD′j(S)zjF (ej) = −
∑
j

φ̂jD′j(S)zjF (ej) =
∑
j∈I

φ̂j Sγjyj

with the definition γi = − D
′
j(S)

Dj(S)S , the slope of the climate damage function, as in Nordhaus’ DICE
model. In particular, in this heterogeneous countries model with limited redistribution, the Social
Cost of Carbon integrates the distribution of consumption/income under the factor φ̂i:

SCC :=
∑
j∈I

φ̂j Sγjyj = IEj
(
φ̂j Sγjyj

)
SCC = I Ej [Sγjyj ] + I Covj

(
φ̂j ,Sγjyj

)
≶ I Ej [Sγjyj ] =: SCC

with the damage slope γi = − D
′
i(S)

Di(S)S , and country i’s output yi = Di(S)ziF (ei). The SCC =

12



IEj [−D′j(S)zjF (ej)] = IEj [Sγjyj ] is the Social Cost of Carbon when full redistribution is available,
or equivalently in representative agent models where redistributive concerns are absent. Since Ej(·)
is a mean7 over countries j, we need to multiply by the number of countries (I here) to obtain the
sum of local damages.

Is the SCC higher in the model with inequality compared to the one-agent setting? Take
the North-South economy as an example. First, low-income countries have a lower consumption
and hence higher marginal utility of consumption, e.g. cS < cN and φ̂S > φ̂N . Second, South is
suffering from stronger damages D′S > D′N . However, third, productivity is higher in the North
zN > zS implying F (eN ) > F (eS) and income ȳN :=zNF (eN ) > ȳS . Therefore, the covariance
between φ̂i, ȳi and γi ∝ D′i is ambiguous. Quantitatively, in a large class of Integrated Assessment
models, the local cost of climate changeD′i(S)yi is strongly correlated with income yi, as there larger
production loss of climate change in richer countries. In such cases, the covariance Covj

(
φ̂j , γjyi

)
is negative, and as a result:

SCC = I Ej [Sγiyi] + I Covj
(
φ̂j ,Sγjyj

)
< IEj [γjyj ] = SCC if Covj

(
φ̂j , γjyj

)
< 0

Third, I explore the redistributive effect of carbon taxation on the energy supply. Changing
the price affects the market clearing, with shadow value µe. I formulate this supply side channel
as a redistribution between energy importers and exporters, weighted by a factor representing the
curvature of aggregate energy supply:

Supply Redistribution = µe

φ
= CEE

1
I

∑
j

φj

φ
(ej − exj ) with CEE =

(∑
j

C′′j (exj )−1)−1

= CEE Ej
(
φ̂j(ej − exj )

)
= CEE Covj

(
φ̂j , ej − exj

)
≶ 0

What is the sign of this covariance? In our two regions example, we assumed that the North had
a larger endowment in energy resources and hence higher net energy exports eN − exN < eS − exS .
Therefore, since the net import of energy correlates with lower consumption, and hence a higher
marginal value of consumption U ′(ci), the covariance term is positive. Moreover, the magnitude
of this terms-of-trade redistribution ultimately depends on the aggregate supply elasticity:

CEE =
(∑

j

C′′j (exj )−1)−1 = qe
ν̄

E
with ν̄ =

(∑
j λ

x
j ν
−1
j

)−1

with νj the inverse supply elasticity, constant in the iso-elastic case qe = C′i(e) = ν̄ie
νi and the share

of country i in energy production λxj = exi /E. As a result, this Social “Supply Redistribution” is
positive. It is larger when the energy supply is inelastic – price and profits vary a lot for small
changes in quantity produced. It is null when the energy production is Constant Return to Scale
(CRS) when νj = 0, and therefore, no energy rents are redistributed.

7The formula of the expectation of a product writes Ei[xiyi] = Ei[xi]Ei[yi] + Covi[xiyi]
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Third, carbon taxation distorts energy choice across users and changes the equilibrium energy
price along the demand curve. We derive the Social “Demand Distortion” term as:

Demand Distortion = 1
I

∑
j

υj

φ
Dj(S)zjF ′′(ej) = Ej

(
υ̂j Dj(S)zjF ′′(ej)

)
= Covj

(υj
φ
,Dj(S)zjF ′′(ej)

)
≶ 0

with υj is the multiplier on the energy demand optimality condition: positive value implies that the
planner would like to relax the constraint, increase the quantity ei, lower theMPei, and conversely
for negative values. I define υ̂j = υj/φ as the rescaled shadow value of country j’s energy demand.

There is no aggregate distortion, only redistributive distortions across countries. This comes
from the optimality of the tax tε, as Ej

(
υ̂j
)

= 0, and this yields the last line as a covariance. How
to determine its sign? In our North-South example, lower-income economies have energy demand
more sensitive to price distortions since ziF ′′(ei) relates to the energy share and demand elasticity:

Di(S)ziF ′′(ei) = − qe

eiσei
(1− sei ) ⇒ DS(S)zSF ′′(eS) < DN (S)zNF ′′(eN )

where sei = eiq
e

yi
< 1 is the energy share in production and σei is country i’s energy demand elasticity.

The North relies “more” on energy – since zN > zS implies that eN > eS : more productive countries
have higher energy demand ceteris paribus. It would also be the case if energy is more substitutable
in richer countries, i.e. large σe, and demand varies a lot with price. The covariance would then be
negative: if the planner values more the production, high υj , of the most inelastic countries, lower
F ′′(ei) then the tax would be lower. Moreover, that term is null if the energy demand/production
function is constant return in energy such that sei = 1, or if energy is perfectly substitutable
σe → ∞, or if we are in a representative agent economy DN (S)zNF ′′(eN ) = DS(S)zSF ′′(eS) and
there is no heterogeneity in demand across countries.

Proposition 2 (Second-Best Ramsey Policy with limited transfers).
The optimal Second-Best carbon tax accounts for three distributional motives when setting a single
uniform level: (i) climate damage in the Social Cost of Carbon (SCC), (ii) Supply Redistri-
bution in energy markets through terms-of-trade and energy rents and (iii) Demand Distortion
through distorted firms’ energy choices. This includes redistribution motives due to the presence of
inequality through the social welfare weights φ̂j = φj/φ̄ = ωjU

′(cj)/1
I

∑
i ωiU

′(ci). The optimal
energy tax writes:

tε = SCC + Supply Redistribution + Demand Distortion

tε = −
∑
j

φ̂jD′j(S)zjF (ej) + CEE
1
I

∑
j

φ̂j(ej − exj ) + 1
I

∑
j

υ̂jDj(S)zjF ′′(ej)

tε = IEj
(
Sγjyj

)
+ ICovj

(
φ̂j ,Sγjyj

)
+ qe

ν̄

E
Covj

(
φ̂j , ej − exj

)
− qeCovj

(
υ̂j ,

1−sei
σei ei

)
,
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for the carbon tax such that MPei = C′(ex) + tε, where γi = − D
′
i(S)

Di(S)S is the marginal damage
of climate change8, yi = Di(S)ziF (ei) is total production, ν̄ =

(∑
j λ

x
j ν
−1
j

)−1 the average inverse
energy supply elasticity, sei the energy cost shares, and σei the energy demand elasticity. We see
these three motives matter with a single tax and lump-sum rebate. Compared to the economy with
full redistribution, the carbon tax is smaller if (i) the cost of climate γjyj is concentrated in
richer countries, with low φ̂i, (ii) the net energy imports are high, with higher ei − exi , in richer,
low φ̂i countries, (iii) the energy is more essential, with low demand elasticity and high 1−sie

σei ei
, in

poorer, high distortion υ̂i, countries. For (ii) and (iii), carbon taxation is isomorphic to an energy
terms-of-trade manipulation between the exporters and the importers in trade theory.

In the next corollary, we reexpress the carbon tax as a function of observable sufficient
statistics. Indeed, given its dependence on the multipliers for individual demand υi, the Demand
Distortion term can be quite opaque.

Corollary 3 (Second-Best Ramsey Policy with limited transfers, sufficient statistics).
The optimal Second-Best uniform carbon tax can be rewritten as:

tε = 1
1 + Covj

(
φ̂j , ê

s,σ
j

)[SCC + Supply Redistribution
]

with ês,σj :=
σej ej
1−sej∑
i
σei ei
1−sei

tε = 1
1 + Covj

(
φ̂j , ê

s,σ
j

)[IEj(Sγjyj)+ ICovj
(
φ̂j ,Sγjyj

)
+ qe

ν̄

E
Covj

(
φ̂j , ej − exj

)]

for a uniform carbon tax tε, with marginal climate damage γi, output yi, average inverse energy
supply elasticity ν̄, energy cost shares sei , energy demand elasticity σei . Note that ês,σi = êi = ei/E

if the production function has a Cobb-Douglas form.9 Demand distortion amplifies or dampens the
carbon taxation motives, i.e. the Social Cost of Carbon (SCC) and Supply Redistribution. The car-
bon tax is lower if the largest energy consumers ei, with high energy share sei and demand elasticity
σei have low consumption ci and thus high social welfare weights φ̂j = ωjU

′(cj)/1
I

∑
i ωiU

′(ci).

Note, in representative agent models, as in Nordhaus (2017), or Golosov et al. (2014), there
is no heterogeneity across countries, making all the covariances trivially null. Hence, we obtain the
standard Pigouvian result tε = SCC = IEj [Sγjyj ] = SCC. Moreover, models with unconstrained
transfers, which can be aggregated, yield φ̂j=φ̂i=1, also reducing these covariances to zero. Models
with heterogeneity in income, climate damage, or country size, like Nordhaus and Yang (1996) or
Krusell and Smith (2022), but no heterogeneity in energy demand nor energy rent redistribution
also yield the Pigouvian result tε = SCC, where the Social Cost of Carbon is adjusted for inequality.

These Second-Best carbon tax formulas hold for a single uniform carbon tax. If the planner
has access to a distribution of carbon tax rates (or carbon prices), the distribution of the tax
changes with the presence of inequality, as we see in the next section.

8The parameter γi is constant in the damage function used in the DICE model Di(S) = e−γi(S−S0)2
.

9If all countries i have the same Cobb-Douglas production of the form F (`i, ei) = eαi `
1−α
i , we get es,σj := σei ei

1−se
i
= 1×ei

1−α

and hence ês,σj := es,σj /
∑

i
es,σi = ei/E
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2.3 Ramsey Problem with heterogeneous carbon tax & limited transfers

We consider a case where the Social Planner implements a distribution of country-specific
carbon taxes tεi . I again assume away cross-country transfers, and the revenue of the carbon tax is
rebated lump-sum tlsi = tεi ei. The welfare objective and the constraints internalized by the planner
are the same as before: (i) the budget c̃i = Di(S)ziF (ẽi) + qe(ẽxi − ẽi)− Ci(ẽxi ) with multiplier φi,
(ii) the energy firm optimality qe = C′(exi ), (iii) the energy demand optimality qe+tεi = MPei with
multiplier υj , and (iv) the energy market clearing E = ∑

i ei = ∑
i e
x
i . The only exception is that

the carbon tax is country-specific tεi . The planner optimality conditions become:

ωiU
′(ci) = φi φ̂i = φi

φ
= ωiU

′(ci)
1
I

∑
i∈I ωiU

′(ci)
≶ 1

the same as before, as the planner keeps the same motive for redistribution. The social welfare
weights, or inequality factor, come for heterogeneity in the marginal value of income φi. However,
when the planner can choose one instrument per country, the distortion of demand is absent:

υj = 0 ⇒ Demand Distortion = 0

Proposition 4 (Second-Best Ramsey Policy, heterogeneous taxes & limited transfers).
The optimal Second-Best energy taxation policy with heterogeneous taxes when transfers are absent
becomes:

tεi = 1
φ̂i

∑
j

φ̂j
(
−D′j(S)zjF (ẽj)

)
︸ ︷︷ ︸

∝ SCC

+ 1
φ̂i
CEE

1
I

∑
j

φ̂j(ej − exj )
︸ ︷︷ ︸

=Supply Redistribution

tεi = 1
φ̂i

[
SCC + Supply Redistribution

]

tεi = 1
φ̂i

[
IEj

(
Sγjyj

)
+ ICovj

(
φ̂j ,Sγjyj

)
+ qe

ν̄

E
Covj

(
φ̂j , ei − exi

)]
where γi is the marginal damage of climate change, yi is total output and ν̄i the average inverse
energy supply elasticity, and φ̂j = φj/φ̄ ∝ ωjU(cj) are the social welfare weights

The planner accommodates country-specific levels of inequality for the distribution of carbon
prices. Indeed, for a given – potentially arbitrary – distribution of Pareto weights ωi, the optimal
carbon tax is relatively lower for poorer countries. The two motives for carbon taxation, (i) the
Pigouvian Social Cost of Carbon and (ii) the supply redistribution, changing terms-of-trade and
energy rent in general equilibrium, both need to be discounted by the country level of inequality
φ̂i ∝ ωiU

′(ci). The tax is reduced for countries with low consumption – due to inherently low
income (due to TFP) or climate damage – or high Pareto weight in the global welfare. Lastly, the
energy demand is not affected by this country-specific tax.

These main findings – that the level and the distribution of carbon taxes change with in-
equality – are general and hold in a dynamic quantitative model that I develop in the next sections.
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2.4 From carbon taxation to carbon pricing in emissions markets

In this section, I investigate how to implement the optimal climate policy when the planner
chooses to design a “cap-and-trade” emission market, such as the European Union’s “emission
trading system (ETS)”. Emissions markets are a privileged policy solution as they simultaneously
provide the strict regulation of a cap and the market efficiency of emission trading.

Consider a social planner designing the cap-and-trade system, choosing the number of al-
lowances, or “quotas” or “permits”, E to be auctioned in a world market. Moreover, it also chooses
the number of permits that are given “for free” to each country εi. As a result, it controls the
total supply of permits E + ∑

i εi, which are traded on a global market at price qε. Finally, the
representative firm in each country chooses how many permits to purchase εi to cover its emissions
from energy use. The country i’s representative household/firm faces the following problem:

max
ci,ei,εi

U(ci) s.t

 ci = Di(S)ziF (ei) + qe(exi − ei)− Ci(exi ) + qε(εi − εi) + tlsi
ei ≤ εi

where the firm pay for εi carbon permits at price qε. This yields the optimality condition for
energy ei and carbon permits εi:

MPei = qe + qε

which implies that the implicit carbon tax is MPei− qe = t̃ε = qε. The complete treatment of this
example is detailed in Appendix A.3. Below, I summarize several lessons on the optimal design of
this type of policy.

First, the unconstrained distribution of “free carbon permits” εi acts as implicit money
transfers across countries. Indeed, if the planner “offers” the ownership of carbon permits, coun-
tries/firms can sell them on the market to get εiqε and redistribute that money to households.
Moreover, due to the government budget constraints, the revenue and cost of those permits are
redistributed lump-sum to the household ∑i tlsi = qε

∑
i(εi − εi). If these implicit transfers are

allowed, the planner can achieve full redistribution ωiU
′(ci) = ωjU

′(cj). As a result, we can
recover the First-Best allocation with qε = SCC, exactly as in Proposition 1 and Section 2.1.

Second, if we prevent both explicit and implicit transfers, i.e. ε̄i = 0, the planner again
needs to adjust the carbon price for the presence of inequality, as represented by the social welfare
weights φ̂i = ωjU(cj)/1

I

∑
i ωiU(ci). This implies that the total quantity Ē to be auctioned on a

global market should be chosen to target a carbon price of qε as in the Second-Best in Section 2.2.

Corollary 5 (Global carbon price, cap-and-trade system with limited transfers).
The carbon price target on a global cap-and-trade emission market needs to target the following
level, accounting for redistribution motives, exactly as in Proposition 2:

qε = SCC + Supply Redistribution + Demand Distortion

qε = −
∑
j

φ̂jD′j(S)zjF (ej) + CEE
1
I

∑
j

φ̂j(ej − exj ) + 1
I

∑
j

υ̂jDj(S)zjF ′′(ej)

qε = IEj
(
Sγjyj

)
+ ICovj

(
φ̂j ,Sγjyj

)
+ qe

ν̄

E
Covj

(
φ̂j , ej − exj

)
− qeCovj

(
υ̂j ,

1−sei
σe
i
ei

)
.
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Third, if the planner wants to achieve additional redistribution, it needs to design segmented
markets with I = #I different prices qεi . In each market, the planner needs to set the supply
Ēi = ei to achieve the target prices qεi ≡ tεi = (1/φ̂i)(SCC + Supply redistribution), which are the
same level as Proposition 4 in Section 2.3. In that context, the carbon permits/allowances are not
tradeable across countries unless against the exchange rate qεi /qεj for one ton of CO2.

We see that the question of the number of instruments prevails over the nature of the instru-
ments – price or quantity – as I explain in the next section.

2.5 Prices vs. Quantity

I now discuss the pros and cons of a global carbon tax or country-specific carbon taxes,
or price instruments, in comparison to quantity targets in a cap-and-trade system, either with a
global carbon budget or country-specific carbon targets. In that sense, I explore the arguments
made in Weitzman (2003) and Weitzman (2015) on these two types of instruments.

Weitzman (2015) argues strongly against quantity targets and emissions cap-and-trade sys-
tems. He defends that a universal carbon tax ideally possesses (1) cost-effectiveness, (2) a natural
one-dimensional focal point (as in Schelling), and (3) a built-in self-enforcement mechanism that
internalizes the externality, balancing out countervailing forces and heterogeneous interests. Ac-
cording to him, n different quantity assignments, as in the top-down approach of the Kyoto Proto-
col, fail on the second and third points and are harder to bargain upon in international agreements.
It spurs free-riding as each nation has a self-interest to negotiate a low cap on their own carbon
emissions – lower than socially optimal and “disagreements over the subdivision of an aggregate
world cap into n national quantity targets” prevent the achievement of an efficient solution.

I showed above that (i) the availability of transfers and (ii) the choice of instruments –
whether a global policy or country-specific ones, are the most important determinants of the
policy effectiveness, rather than the choice of quantity or price instruments. Indeed, as noted
in Section 2.4, there is a direct mapping between a quantity of carbon permits Ē along with a
distribution of “free allowances” {ε̄i}i and a carbon tax tε along with cross-countries transfers tlsi ,
and both replicate the First-Best allocation. If, like Weitzman, we note that allocating carbon
permits appears as “visible transfer payments across national borders”, we could instead advocate
for ε̄i = 0 to refrain from transfers that are undermined by free-riding incentives.

In that context, there is also a direct link between choosing a total quantity of permits Ē and
a single carbon price qε = tε that replicates Weitzman’s idea of an “internationally harmonized but
nationally retained carbon tax” exactly as detailed in Section 2.2, Proposition 2 and corollary 5.
Regarding policy uncertainty and the volatility of carbon price in cap-and-trade systems for a given
quantity target E , one could note that policymakers could control the quantity of permits supplied
and perform “open-market operations” to reach a stable carbon price target. Finally, country-
specific quantity Ēi = ei and country-specific carbon taxes {tεi} both suffer from the same pitfalls
because of free-riding, bargaining frictions, and transaction costs in international negotiations.
These considerations are examined in Bourany (2024a).
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2.6 Extensions and implication for carbon taxation

In the previous sections, I showed how the carbon tax should differ from the representa-
tive agent Pigouvian framework in the simplest model with heterogeneous countries. In Bourany
(2024a), I analyze the case with two important extensions. First, international trade has redis-
tributive “carbon leakage” effects that dampen the effectiveness of carbon policy. For example,
imposing a carbon tax on energy in country i reallocates production toward other countries j that
now may export toward i. In Bourany (2024a), I show that the presence of inequality and trade
create a fourth motive that differentiates the optimal carbon tax from the social cost of carbon.

Second, the carbon policy is chosen by a social planner at the world level. However, free-
riding – when individual countries deviate without implementing the socially optimal policies – cre-
ate participation constraints that limit what can be achieved by the planner. In Bourany (2024a),
I study how to optimally design climate agreements accounting for such free-riding incentives.

2.7 Climate Risk and Social Cost of Carbon

Until now, the present analysis is deterministic: both the future gains and losses of climate
policies and climate change are known to all agents. In Bourany (2023), I study how uncertainty
about future climate damage and economic opportunities affect carbon policies. I show a summary
of those results here.

Let us consider an extension of the previous where the damage caused by climate change and
productivity is affected by a random variable ε ∈ E following the probability distribution ε ∼ ϕ(ε),
such that the productivity becomes stochastic: Di(S|ε). This is a simple example of “climate
risk”, where for a given amount of carbon emissions, the economic damage of climate change is
unknown. The model is set up in two stages: (i) the agents and the planner take the energy
– and thus emissions – decisions ex-ante, and (ii) the productivity/climate shock is realized and
production and consumption ci(ε) adjust ex-post to satisfy the budget and resources constraints.

In the competitive equilibrium, the representative agents maximize their expected utility:

max
ei,exi

∫
E

max
ci(ε)

U(ci(ε)) dϕ(ε)

In that case, the energy input decision is taken in expectation but does not imply fundamentally
different choice. The optimality condition writes:∫

E
MPei(ε) dϕ(ε) = qe

as before the households and firms do not internalize the climate externality caused by emissions.

I now consider the case of a social planner maximizing the world’s welfare. In the two-step
decision process, the planner would choose the decisions in energy inputs, extraction, and a uniform
carbon tax tε for all countries:

max
{ej ,exj }j ,qe,tε

∫
E

max
{cj(ε)}j

∑
i∈I

ωiU(ci(ε))dϕ(ε)
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As before, we consider the Social welfare weights, that are now adjusted for the ex-post
allocation of risk:

φ̂i(ε) = φi(ε)

Ei,ε[φi(ε)] = ωiU
′(ci(ε))

1
I

∑
i

∫
εωjU

′(cj(ε)) dϕ(ε)

The planner’s optimality condition for the energy choice gives us an analytical formulation
for the carbon tax, which consist of four terms: the three terms we considered above: (i) the
Social Cost of Carbon, (ii) the Supply redistribution, and (iii) the Demand Distortion, all of them
adjusted for the presence of ex-post heterogeneity due to risk. There is also a new additional term:
(iv) the effect of risk on the the energy choice. This last term correct for the redistributive motives
caused by the presence of risk and is expressed as a covariance term: if the countries with the
highest need for energy – i.e. with a high marginal product of energy – are also the poorest –
with high social weights and marginal utility – this implies an energy subsidy ex-ante to provide
redistribution in the absence of insurance markets.

Eε
(
MPei(ε)

)
= qe +Eε

[
SCC(ε)+Supply Redistribution(ε)+Demand Distortion(ε)

]
−Covε

(
φ̂i(ε),MPei(ε)

)
︸ ︷︷ ︸

effect of agg. risk ε
on energy choice

The three terms seen above are taken in expectation and the carbon taxation accounts for
the presence of risk. Take the example of the Social Cost of Carbon: following the approach above
to decompose how the heterogeneity ex-ante and ex-post affect the level of the Pigouvian motive.
The Social Cost of Carbon, in expectation Eε[SCC(ε)] is written:

Eε
[
SCC(ε)

]
=
∑
i∈I

∫
E
φ̂i(ε)LCCi(ε) dϕ(ε)

= Ej
[
Covε

(
φ̂i(ε), LCCj(ε)

)
︸ ︷︷ ︸
=effect of aggregate risk ε

]
+ Covj

[
Eε
(
φ̂i(ε)

)
,Eε

(
LCCj(ε)

)]
︸ ︷︷ ︸

=effect of heterogeneity across j

+ Ej,ε
[
LCCj(ε)

]︸ ︷︷ ︸
=average exp. damage

The second and third terms are the same as in the previous sections: the presence of inequal-
ity implies a covariance term for ex-ante heterogeneity that can increase or decrease the carbon
tax. However, this time, it is taken in expectations, for the local cost of carbon Eε

(
LCCj(ε)

)
and

the social welfare weights Eε
(
φ̂i(ε)

)
. Similarly, the last terms is the average, ex-ante and ex-post,

of the local cost of carbon.
The novelty is in the first term, representing the effect of risk, and hence ex-post heterogeneity

on the cost of climate change. If the climate damages LCCi(ε) are highest in the poorest countries,
i.e. with the highest φ̂i(ε), the covariance is positive and it can then increases the SCC. This create
insurance motives for climate policy, as the Social Cost of Carbon is heightened due to climate risk
when the poorest countries are the most affected by climate change.

We will see that these general lessons also hold in a richer dynamic setting.
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3 Quantitative model

I develop a neoclassical framework with rich heterogeneity across regions. Time is continuous
t ∈ [t0,∞), and the countries are indexed by i ∈ I. They can be heterogenous in an arbitrary
number of dimensions as summarized in the state variables sit10.

In each country, we consider five representative agents: (i) a household making consumption
and saving decisions, (ii) a firm using capital, labor, and different energy sources to produce the
final good, and three energy firms that (iii) extract fossil fuels (oil and gas), (iv) produce coal, and
(v) produce renewable/non-carbon energy. Finally, each country has a government that collects
taxes and redistributes lump-sum rebates.

3.1 Household

Each region i ∈ I is populated by a representative household of size Pit at time t. This
population is increasing at an exogenous constant growth rate ni, and Ṗit = niPit. As a result,
the population is given as Pit = Pi0e

nit. The household owns all the different firms, including the
representative firm that produces goods with total factor productivity zit, which also grows with
growth rate ḡi, implying zit = zi0e

ḡit. In the tradition of the Neoclassical model, I normalize all
the economic variables of the model per “effective capita”, dividing by the trend e(ni+ḡi)t.

The household consumes the homogeneous final good cit and is affected by the region’s
temperature τit. They can save and borrow in a liquid financial asset bit at a world interest rate
r?t . Moreover, they can invest and hold that wealth in capital kit to be rented to the homogeneous
good producer at rate rkit. Households supply locally their inelastic labor ¯̀

i = 1 to the final good
firm, receiving the wage income ¯̀

iwit. Moreover, the household receives the profit that the fossil
firm generates πfi , as will be detailed below. They maximize the per-capita present discounted
utility with discount rate ρ, and solve the following intertemporal problem.

Vit0 = max
{cit,bit,kit}

∫ ∞
t0
e−(ρ−ni)t ui(cit, τit) dt (6)

The utility that households receive from consumption is also scaled by a damage function Dui (τ),
which represents the direct impact of temperature τit. I consider standard CRRA preference with
the intertemporal rate of substitution 1/η.

ui(cit, τit) = u
(
Dui (τit)cit

)
u(D c) = (Dc)1−η

1− η . (7)

We aggregate the bond and capital of the individual country as a single wealth variable
wit = kit + bit and rescale income and wealth per effective unit of labor, accounting for TFP and

10More precisely, state variables of heterogeneity can be split in two, sit = {si, sit}, where si represents ex-
ante heterogeneity and states variables sit represent ex-post heterogeneity that changes over time. In practice, the
dimensionality of s can be arbitrarily large, as I explain in the computational section below.
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population growth ḡi + ni, it yields the dynamics of wealth wit accumulation:

ẇit =
(
r?t − (ni + ḡi)

)
wit + wit

¯̀
i + πfit + tlsit , (8)

starting from initial condition wt0 = k0 + b0. The return on capital is rkit is equalized to the bond
return rkit = r?t in the absence of other financial market frictions. Furthermore, the household
receives the energy sector profits, and, more specifically, the profit from the oil-gas firm πfit that
generates meaningful energy rents. Finally, the household also receives lump-sum transfers tlsi from
the government. Wealth wit is the first dimension of ex-post heterogeneity.

3.2 Final good firm

In each country i ∈ I, a representative firm produces a homogeneous final good using a
constant-return-to-scale technology F (·) and different inputs: labor ¯̀

i at wage wit, capital per
effective capita kit at the rental rate r?t , and energy per effective capita eit at price qit as detailed
below.11 The firm maximizing profit, i.e. output per capita y = Dy(τ)zF (·) net of input costs:

max
kit,eit

Dyi (τit)ziFi(kit, ¯̀
i, eit)− wit

¯̀
i − qeiteit − (r?t + δ)kit . (9)

The firm’s productivity first differs across countries due to institutional and efficiency time-invariant
factors summarized in zi. Second, temperatures τit affect output through climate damages Dyi (τit),
which is the source of climate externality which will be detailed below. The production function
has a constant elasticity of substitution between the capital-labor bundle kα`1−α and energy e:

Fi(kit, `i, eit) =
[
(1− ε)

1
σ (kαit `1−αi )

σ−1
σ + ε

1
σ
(
zeiteit

)σ−1
σ

] σ
σ−1

with σ < 1, such as energy is complementary in production12 and where directed technical change
zet is exogenous and deterministic. This directed – energy augmenting – technical change increases
in output for a given energy consumption mix.13 This exogenous trend implies zeit = z̄ei e

get.
The firm optimal inputs decision for capital, kit, labor `i, and energy eit is such that the

marginal product of the inputs equals its price. With the marginal product of capital, labor and
energy are defined as: MPxit = ∂x[Dyi (τit)ziFi(kit, `i, eit)] for x ∈ {k, `, e}, we obtain the first-order
conditions:

rkit = MPkit − δ = r?t wit = MP`it qeit = MPeit (10)

Energy demand

11The original – unnormalized – production function:

Yt = F̃ (Kt, Lt, Et) = D(τt)zt
[
(1− ε)

1
σ
(
Kα
t L

1−α
t

)σ−1
σ + ε

1
σ
(
zetEt

)σ−1
σ

] σ
σ−1

I normalize output Yt by the trends in TFP eḡit and population Lt ≡ P0e
nit to obtain output per effective capita.

12If σ = 1, we have the Cobb Douglas : F (k, `, e) = ε̄ze εt (kα`1−α)1−εeε
13An upward trend in such technology is sometimes argued to be behind the “relative decoupling” of developed

economies: an increase in production and value-added simultaneous to a decline in energy consumption.
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Given the demand for energy inputs et in each country, the firm has the choice among three
sources of energy: fossil fuels efit, coal ecit and low-carbon/renewables erit. These three sources are
substitutable, and total energy eit has constant elasticity of substitution σe.

eit =
(
ω

1
σe
f (efit)

σe−1
σe + ω

1
σe
c (ecit)

σe−1
σe + ω

1
σe
r (erit)

σe−1
σe

) σe
σe−1

subject to the budget for energy expenditures, which implies the price of the energy bundle qit, for
σe ∈ (0,∞):

qeiteit = efit
(
qft + ξf tεit) + ecit

(
qcit + ξctεit) + eritq

r
it

qeit =
(
ωf (qft + ξf tεit)1−σe + ωc(qcit + ξctεit)1−σe + ωr(qrit)1−σe

) 1
1−σe

where qft is the international price of oil and gas, qcit the local price of coal energy, and qrit the local
price of low-carbon energy. Similarly, the representative final good firm choose the energy inputs
according to the first-order condition:

qft + ξf tεit = MPefit = qeit ω
1
σe
f

(efit
eit

)− 1
σe (11)

and similarly for the other energy inputs qcit + ξctεit = MPecit and qrit = MPecit.
Energy from oil-gas, efi , and coal, eci , differ from renewable in the sense that they emit

greenhouse gases, with respective carbon concentration ξf and ξc, as we will see in Section 3.4. As
a result, there is a motive for taxing oil, gas, and coal energy with the carbon tax tεit, which is a
tax per ton of CO2. I discuss the choice of this tax in the next sections.

3.3 Energy markets

The final good firm consumes three kinds of energy sources – oil and gas, coal, or renewable
(non-carbon) – supplied by three representative energy firms in each country i ∈ I. Oil and gas
sources are traded internationally, while coal and renewable sources are both traded locally.

3.3.1 Fossil firm

A competitive energy producer extracts fossil fuels oil and gas exi from its pool of resources
Rit. The energy is extracted with convex production cost νfi (exit,Rit), where these costs are paid
in units of the final good, and the oil and gas are sold in international markets at a price qf .

The fossil-fuel reserves Rit are depleted with extraction exit such that Ṙit = −exit. We assume
that neither the fossil firms nor the social planners internalize the scarcity of these resources.
Internalizing the resource depletion would imply a more involved dynamic Hotelling problem –
with stock effects – with the Hotelling rent rising over time, dampening the extraction rate exi . I
suggest an extension in appendix XX to see how these motives would change the taxation of fossil
fuel and carbon theoretically. However, in the interest of keeping the framework simple, I refrain
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from considering this extension in the quantitative analysis. Richer models developed in Bornstein,
Krusell and Rebelo (2023), Heal and Schlenker (2019), and Asker, Collard-Wexler, De Canniere,
De Loecker and Knittel (2024) study the dynamic aspects of the oil market and the considerations
for carbon emissions.

As a result, the static maximization problem of the fossil firm is given by :

πfit = max
exit

qft e
x
it − ν

f
i (Pitexit,Rit)/Pit ,

Ṙit = −Pitexit
(12)

where νfi (Pitexit,Rit)/Pit is the extraction cost per capita, which is convex in exit, and Rit0 = Ri0
the initial condition for reserves. Since the extraction costs are convex, the production function has
decreasing return to scale.14 As a result, a positive energy rent πfit exists, even if the competitive
firm takes the fossil price qft as given. Moreover, I abstract from market power in the oil market,
for example with the OPEC as a cartel – even though this framework could easily allow for such an
extension. Any sources of misallocation – in the sense of Hsieh and Klenow (2009) – are accounted
for in the calibration of the cost function νfi (·) as we will see in the quantification Section 5. I
consider a functional form for cost that yields isoelastic supply curves for fossil energy extraction.

νfi (exit,Rit) = ν̄i
1 + νi

( exit
Rit

)1+νi
Rit (13)

which is homogeneous of degree one in (exi ,Ri) and where the elasticity νi = νf ′′i (ex,R)
νf ′i (ex,R)ex

is constant.

Naturally, the optimal extraction decision for the fossil firm follows from the optimality
condition:

qft = νfi ex
(
Pite

x
it,Rit

)
= ν̄i

(Pitexit
Rit

)νi
(14)

which yields the implicit function ex?it = exi (qft ) = νf ′ −1
i (qft ) = Rit (qft /ν̄i)1/νi for the optimal oil

and gas extraction.
Finally, energy rent comes from fossil firms’ profits πf (qf , Pi) = qfex(qf )−νfi

(
ex(qf ),R

)
> 0,

and the per-capita profit function writes:

πfi (qft ,Rit) = qft e
x
it − ν

f
i (Pitexit,Rit)/Pit = νiν̄i

1 + νi

(Pitexi
Ri

)1+νi Rit
Pit

= νiν̄
−1/νi
i

1 + νi
Rit(qft )1+ 1

νi . (15)

As we will see below, the profit πfi (qf ,R) and its share in income ηπfit = πfit
yi+πfit

are key to determine
the exposure of a country to carbon taxation. Indeed, reducing carbon emissions by phasing out
of fossil fuels reduces energy demand and its price qf and hence affects energy profit πfi and the
welfare of large oil and gas exporters.

14We can also define a fossil production function with inputs xfi such that ex = g(xfi ) and profit π = qfg(x) − x
instead of π = qfex − ν(ex), in which case g(x) = ν−1(x)
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3.3.2 International fossil energy markets

Oil and gas are traded frictionlessly in international markets.15 The market clears such that

Efit =
∑
i∈I
Pie

(ni+ḡi)t efit =
∑
i∈I

e(ni+ḡi)texit . (16)

Countries have different exposure to this fossil energy market. As country i consumes fossil fuels
in total quantity Pitefit = Pie

(ni+ḡi)tefit, and produces total quantity Pitexit = Pie
(ni+ḡi)texit, its net

exports of oil and gas per effective capita are exi − e
f
i ≶ 0.

3.3.3 Coal firm

A representative firm produces coal that is consumed by the final good firm. I differentiate
coal from other fossil fuels like oil and gas because coal production typically does not generate
large energy rents for producing countries as a share of GDP. Moreover, large coal producers also
consume a large fraction of that coal locally, as trade costs for coal transportation are larger. Hence,
I make this empirically grounded assumption that coal is not traded internationally. Moreover, I
assume that production is not subject to the finiteness of the stock of reserves. Indeed, the scarcity
of coal sources is not a concern since the ratio of reserve/production is above a hundred for most
large world producers.

The production ēcit has constant returns to scale and uses final good inputs. The profit
maximization problem is analogous to the fossil problem:

πcit = max
ēcit

qci ē
c
it − κci ēcit ,

where the marginal cost κci is constant. This implies that there is no coal profit16 in equilibrium,
i.e. πcit = 0. The price for coal and the market clearing condition are given by:

qci = κci , ēci = eci . (17)

This implies a perfectly elastic supply curve for coal energy, something we observe in practice as
coal production is easily scalable in response to oil and gas price fluctuations.

3.3.4 Low-carbon, renewable, firm

The final good firm also uses renewable and other low-carbon energy sources, such as solar,
wind, or nuclear electricity. This provides a way of substituting away from fossil fuels in the
production function F (·).

A representative firm produces renewable or non-carbon energy, and this supply, ērit, is not
traded. This assumption is verified by the fact that electricity is rarely traded across countries

15For the sake of simplicity, I make the simplifying assumption that fossil fuels produced in different countries are
not distinguishable – crude oil or natural gas from Nigeria, Saudi Arabia, or Russia are not differentiated varieties.

16This is motivated by evidence that even the largest coal producers do not have coal rents above 1% of GDP.
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– and when it is, it is only the result of temporary differences in electricity production due to
intermittency rather than large structural imbalances. The production ērit also has constant returns
to scale, and this input is paid in units of the final good. Hence, the renewable firm maximization
problem is:

πrit = max
ērit

qritē
r
it − κritēri ,

where κrit is the marginal cost of producing renewables, resulting in zero profits πri = 0. The price
of renewable and the market clearing are given by:

qrit = κit = κ̄ie
−grt , erit = ērit (18)

where I assume that the marginal cost κit decreases exogenously at rate gr such that κit = is
lower over time. Given those marginal costs, this returns a perfectly elastic supply curve. This
is a slightly stronger assumption in the context of renewable energy: In the short run, renewable
energy requires investments in capacity, implying a fairly inelastic supply curve. This is especially
true considering the intermittency problems of wind and solar energy, c.f. Gentile (2024). I take
the conservative assumption that the supply curve is flat in the medium run.

However, in the long run, technological progress and learning-by-doing create positive exter-
nalities, substantially decreasing the cost of clean energy, resulting in a decreasing supply curve.
To allow this learning-by-doing effect, as in Arkolakis and Walsh (2023), I consider an extension
where the marginal cost depends on power capacity:

qrit = κit = κ̄i (Crit)−κ
r where Ċrit = max{ ˙̄erit, 0}γr (19)

where the renewable capacity Crit increases for each additional renewable production ērit. The
capacity of production, in kW , increases for each additional kWh of production needed ērit at
each point in time, and this by a factor γr, and decreases production costs by a factor κr. The
parameter γr ∈ (0,∞) represents a learning-by-doing factor. Indeed, Crit =

∫ t
t0
| ˙̄erit|γrdt, and if

γr > 1 capacity increases more than one for one due to increasing return to scale. Note that when
γr = 1, and ˙̄erit > 0,∀t, we simply get that Crit = ērit, i.e. the capacity is exactly what is needed for
production. This would imply a downward-sloping supply curve with (negative) supply elasticity
−κr. I assume that neither the firm nor the social planner internalizes this learning-by-doing
externality. The study of the optimal policy in the presence of both negative climate externalities
and positive Schumperian externalities is beyond the scope of this paper.

3.4 The climate system

The economic activity and fossil fuel consumption of each country create a climate externality
by emiting carbon in the atmosphere. This feeds back in the climate system, which increases the
temperatures and causes heterogeneous damages over different regions. As in standard Integrated
Assessment Models (IAM), it creates a Pigouvian motive for carbon taxation as summarized by
the Social Cost of Carbon.

26



3.4.1 Emissions

The consumption of fossil fuels are emitting carbon dioxide (CO2) and other greenhouse gas
emissions in the atmosphere. Due to oil and gas efit and coal ecit consumptions – expressed in unit
per effective capita, subject to growth rate of population ni and TFP ḡi– we obtain that each
country i ∈ I releases total CO2 emissions:

εit = Pie
(ni+ḡi)t

(
ξfefit + ξcecit

)
,

where ξf and ξc denote the carbon content of respectively oil-gas and coal energy. As a result,
global emissions aggregate to:

Et = ξ̄t
∑
i∈I

εit .

I consider that emissions are non-exploding and I follow Krusell and Smith (2022) by assuming
that part of emissions Et is abated via carbon capture and storage (CCS) modeled by the exogenous
parameter ξ̄t, with ξ̄t0 = 1. The share of emissions abated grows to 100% in the long-run, implying
that ξ̄t →t→∞ 0. Increasing CCS allows the system to reach net-zero in several centuries, stabilizing
cumulative carbon emissions and temperatures.

3.4.2 Climate system and temperature

Moreover, these emissions are released in the atmosphere, adding up to the cumulative stock
of greenhouse gas St – or atmospheric carbon concentration:

Ṡt = Et − δsSt . (20)

A part of these emissions exit the atmosphere and is stored in oceans or the biosphere, discounting
the current stock by an amount δs. Moreover, these cumulative emissions push the global atmo-
spheric temperature Tt upward linearly with climate sensitivity χ, with some inertia and delay
represented by the parameter ζ.

Ṫt = ζ
(
χSt − (Tt − Tt0)

)
. (21)

More particularly, the inertia ζ is the inverse of persistence, and modern calibrations set ζ ≈ 0.5 is
such that the pick of emissions happens after 10− 15 years. Dietz et al. (2021) show that classical
IAM models such at Nordhaus’ DICE tend to generate a too large climate system inertia, as shown
in the Figure 2. Conversely, if ζ → ∞, temperature reacts immediately and we obtain a linear
model – which is a good long-run approximation:

Tt = T̄t0 + χSt = T̄t0 + χ

∫ t

t0
e−δssξ̄sEs ds

This simple two-equations climate system is a good approximation of large-scale climate
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Figure 1: Linear temperature model - IPCC report
Figure 2: Pulse experiment

models.17 Indeed, with the appropriate calibration of parameters δs for carbon exit, ζ for climate
system inertia, and χ for the climate sensitivity, we can match these larger models as represented
by the pulse experiment as shown in Figure 2.

3.5 Damage and externality

Climate damages are related to local temperatures: warmer regions are more affected and
vulnerable to extreme events and impacts.

The temperature in country i is affected by global warming of the atmosphere Tt with linear
pattern scaling ∆i

τ̇it = ∆i Ṫt
τit = τi0 + ∆i(Tt − Tt0)

(22)

Atmospheric temperature Tt translates into local temperature τit via the sensitivity ∆i that
depends on the geographic properties of country i – like temperature, latitude, longitude, elevation,
distance from coasts and water bodies, vegetation, and albedo (sunlight reflexivity due to ice,
vegetation and soil properties). Evidence of this temperature scaling is displayed in Section 3.5
from the IPCC report. As shown in Section 5, I estimate this pattern scaling by regressing local
temperatures on global temperature.

Finally, I consider a period damage function Dyi (τit) := Dy(τit−τ?i ) for productivity and
Du(τit−τ?i ) for damage to utility. The target τ?i is the “optimal” temperature for country i.
The function Dy(τ̂) is a reduced-form representation of the economic damage. In the baseline

17These climate models have a much more complex climate block, adding 3 to 4 additional state variables, e.g.
with J the vector of carbon “boxes”: layers of the atmosphere and sinks such as layers of oceans:

J̇t = ΦJJt + ρS
∑

I

εit

Ft = F
(
ρFJt

)
Ṫt = ΦTT + ρFFt

with Ft carbon forcing with F(·) ∼ log(·), ρS , ρF , and ρT are vectors are ΦJ and ΦT Markovian transition matrices.
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quantification, I assume damages are quadratic, as in standard Integrated Assessment Models
such as the DICE framework. This methodology follows Krusell and Smith (2022), Kotlikoff,
Kubler, Polbin, Sachs and Scheidegger (2021) and Burke et al. (2015). Moreover, those damages
are such that productivity decays to zero when temperatures are extremely cold or hot.

Dyi (τ) = Dy(τ − τ?i ) = exp
(
− γy1{τ>τ?i}(τ−τ

?
i )2 − αγγy1{τ<τ?i}(τ−τ

?
i )2) , (23)

where γy represents the damage parameter on output for warm temperatures, with an asymmetric
impact αγγy < γy for cold temperatures following the quantification in Rudik et al. (2021), who
show that productivity impact is much weaker for cold than for hot temperatures. The damage
function for utility Dui (τ) has the same functional form with damage γu.

This creates winners and losers: countries warmer than their target temperature τ?i are
extremely affected by global warming. In contrast, regions with negative τit−τ?i benefit – at least in
the short-run – from a warmer climate. I deviate from the above articles by assuming that the target
temperature τ?i differs across countries: an already warm regions have different adaptation costs
compared to a country which is historically cold. The target temperature τ?i = αττ? + (1−ατ )τ̄it0
is more or less tilted toward historical baseline. I discuss this quantification in Section 5.

3.6 Competitive Equilibrium

The final good is freely traded, and, with output yi, the market clearing holds:

∑
i∈I
Pie

(ni+ḡi)t
[
cit+(k̇it+(ni+ḡi+δ)kit)+νfi (exit,Rit)+κciecit+κriterit

]
=
∑
i∈I
Pie

(ni+ḡi)tDi(τit)zitF (kit, `i, eit) .

(24)
Similarly, the bond market, in zero net supply, clears18 such that ∑i Pie

(ni+ḡi)tbit = 0

Definition. Competitive equilibrium (C.E.):

18This is also equivalent to
∑

i
Pie

(ni+ḡi)twit =
∑

i
Pie

(ni+ḡi)tkit.
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For a set of policies {tεit, tlsit}it across countries, a C.E. is a set {cit, bit, kit, efit, ecit, erit, exit, ēcit, ērit}it of
decisions, and prices {r?t , q

f
t ,wit, q

c
it, q

r
it}it, and states {wit, τit,Rit,St, τit}it such that:

(i) Households choose consumption, saving and investment, {cit, kit, bit}it maximizing utility as
in equation (6) subject to the budget constraint and wealth dynamics equation (8).

(ii) Final good firms choose inputs {kit, `i, eit, efit, ecit, erit}it to maximize profits, resulting in input
choices following equation (11) and equation (10).

(iii) Fossil energy firms maximize profits as in equation (12) and extract/produce {exi }i given by
equation (14)

(iv) Renewable and coal energy firms maximize profits, and supplies {ēci , ēri } are given respectively
by equation (17) and equation (18)

(v) Energy markets clears for fossils as in equation (16) and for coal and renewable in equa-
tion (17) and equation (18)

(vi) The emissions Et = ∑
i εit affects the climate system {St, Tt, τit}it, following equation (20),

equations (21) and (22).
(vii) Good markets clear for final good for each country as in equation (24), and bond market

clear by Walras law.

Heterogeneity. This model features many dimensions of heterogeneity, that can be sum-
marized by the state variable sit = {si, sit}, describing the ex-ante dimensions of heterogeneity si –
differences across countries that do not change over time – and ex-post heterogeneity sit that change
endogeneously over time. The states are: si = {Pi, ni, ḡi, zi, zei , ν̄i, νi, κ̄ci , κ̄ri ,∆i, τ

?
i , τi0, wi0,Ri0} and

s̄it = {wit, τit,Rit}. For solving the model, we need to keep track of this dynamical system with
heterogeneity, as we see next.

3.7 Sequential formulation and household decisions

First, since the Household owns the four firms – final good, fossil, coal, and renewable energy
– we can aggregate profits and household budget constraint, which gives:

ẇit =
(
r?t − (ni+ḡi)

)
wit + πfi (qft ,Rit) +Dyi (τit)zitF (kit, `i, efit, ecit, erit)− (r? + δ)kit

−
(
qft + ξf tεit

)
efit −

(
qcit + ξctεit

)
ecit − qriterit − cit + tlsit ,

(25)

and yields a single optimal control problem. The consumption/saving relates to the path of wealth
wit, given that the firms decisions, given by the optimality conditions

To solve for the competitive equilibrium and the optimal decision of the Household, we
solve this class of Integrated Assessment Model with the sequential formulation of optimal con-
trol problem. This relies on the Pontryagin Maximum Principle, which can be applied in het-
erogeneous agents settings – with discrete agents in our case, or continuous agents/Mean-Field
Games, as in Carmona and Delarue (2018). The household in each country has individual states
s = {si, sit}it = {si, wit, τit,Rit}it, individual controls, c = {cit, bit, kit, efit, ecit, erit, exit}it, take prices
as given q = {r?t , q

f
t ,wit, q

c
it, q

r
it}it, and has costates or Lagrange multipliers, λ = {λwit, λτit, λSit},
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each of which represents shadow value of the respective states dynamics. The Hamiltonian of the
individual country can be written as follow:

H(s, c,q,λ) = u(c, τ) + λwẇ + λτ τ̇ + λSṠ

for the dynamics ẇit given in equation (25), τ̇it given by equation (22) and Ṡt given by equation (20).
As a result, the equilibrium relations for the household consumption/saving problem boil

down to the standard neoclassical model dynamics and, for each country i ∈ I, we obtain a system
of coupled ODEs:  λ̇

w
it = λwit(ρ+ ηḡi − r?t )

λwit = uc(cit, τit)
(26)

where λwit is the costate, or “marginal value” of wealth wit, equal to marginal utility uc(cit, τit) =
Du(τit)u′(Du(τit)cit). Using the optimality for c, we obtain the Euler equation:

ċit
cit

= 1
η

(r?t + ηḡi − ρ) + γc(τit − τ?i )τ̇it

The dynamics of local temperature appear in the Euler equation. Indeed, because the marginal
utility of consumption is affected directly by changes in temperature, an increase in temperature
in the future triggers substitution from present to future consumption through saving.

To close the control problem, note that the household income is determined by the firms
decisions. There, the capital and energy choices simply result from static optimization between
the price or cost and the marginal return of those inputs in production. However, the climate
variables affect damages, and the country i household internalizes that under the “local social cost
of carbon” as we will see now.

3.8 Social and Local Cost of Carbon

The Social Cost of Carbon (SCC) is a measure used by climate scientists and economists to
summarize the marginal welfare cost of climate change in monetary terms. The cost of carbon is
an equilibrium concept: it depends on the path of temperatures but also on economic variables and
policies. In the competitive equilibrium, the climate externality is not internalized and households
and firms do not take climate damages into account for choosing consumption, production, and
energy decisions. Still, forward-looking agents anticipate perfectly the evolution of climate.

The Local Cost of Carbon (LCC) represents such a welfare valuation, for the cost incurred by
country i of one additional ton of CO2 released in the atmosphere. In continuous time, and using
our the Pontryagin Maximum Principle sequential approach, the Local Cost of Carbon (LCC) can
be written easily as the ratio of the two costates:

LCCit := −
∂Vit
∂St
∂Vit
∂cit

= −λ
S
it

λwit
. (27)

The welfare cost of carbon λSit represents the marginal welfare change from an additional ton of
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carbon St. This is normalized in monetary units with the marginal value of wealth, as indeed
the monetary value of welfare differs across regions i, ∂Vit∂cit

= λwit = uc(cit, τit) 6= uc(cjt, τjt) = λwjt,
due to inequality in consumption. This notion is exactly analogous to the Local Cost of Carbon
concept developed in Cruz and Rossi-Hansberg (2022a), among many others.

As a result, following the dynamics of the LCC amounts to solve for the dynamics of both
costates λwit and λSit. Recalling the dynamics of the climate system:


Et = ∑

i∈I εit = ∑
I Pie

(ni+ḡi)t
(
ξfefit + ξcecit

)
Ṡt = Et − δsSt
τ̇it = ζ

(
∆iχSt − (τit − τit0)

)
we can use the Pontryagin principle to pin down the dynamics of the local cost of carbon. First, the
shadow value of increasing temperatures is affected by the cost of climate on both the productivity
effect Dy(τ)zF (k, e) and the utility effect u(Du(τ)c).

λ̇τit = λτit(ρ−ni−(1−η)ḡi + ζ) + γy(τit − τ?i )Dyi (τit)︸ ︷︷ ︸
−∂τDy

ziF (kit, eit)λwit + γu(τit − τ?i )Dui (τit)︸ ︷︷ ︸
−∂τDu

u′
(
Du(τit)cit

)
cit .

(28)
Indeed, this shadow value increases with marginal damages, scaled by both marginal utility of
wealth λwit and consumption u′(Du(τ)cit). This change in the marginal value of temperature affects
directly the shadow value of adding carbon in the atmosphere according to the dynamics of λSit:

λ̇Sit = λSit(ρ−ni−(1−η)ḡi + δs)− ζ χ∆i λ
τ
it . (29)

Emitting carbon in the atmosphere has a differential marginal impacts across regions due to het-
erogeneous costs of temperature and vulnerability to climate synthesized by the pattern scaling
∆i and marginal damages γy(τit − τ?i ) parameters. Solving the differential equations analytically,
we can obtain the general formula – as found in Appendix B. When climate inertia is null ζ →∞,
this rewrites:

λSit −−−→
ζ→∞

−
∫ ∞
t

e−(ρ−ni−(1−η)ḡi+δs)(s−t)χ∆i(τis−τ?i )
[
γyyis + γucis

]
λwisds ,

where output is yit = ziDyi (τit)F (kit, eit) and λwit = Dui (τit)u′
(
Dui (τit)cit

)
. Using the Euler equation,

or costate dynamics of equation (26), we get λwit = λwise
−
∫ s
t

(ρ+ηḡi−r?s )du for s > t, which gives the
Local Cost of Carbon:

LCCit →
∫ ∞
t

e−δs(s−t)−
∫ s
t

(r?u−ni−ḡi)duχ∆i(τis−τ?i )
[
γyyis + γucis

]
ds . (30)

Note that the Local Cost Carbon is discounted with the interest rate r?t of the global bond market,
and how it compares to growth of population ni and TFP ḡi.

The Social Cost of Carbon is an aggregate measure that summarizes the global effects of
climate change. It depends on the global welfare metrics and aggregates the Local Costs of Carbon
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from different regions. We introduce it in the next section.

4 Optimal policy

I consider the social planner that design the optimal climate policy to maximize global wel-
fare, following three benchmarks: (i) the First-Best allocation, where the social planner has access
to all the instruments, including cross-countries lump-sum transfers, (ii) the Second-Best policy
where the social planner only chooses a single carbon tax tεt , and (iii) the Second-Best alloca-
tion, choosing country-specific carbon taxes tεit. Despite the model being richer than Section 2’s
model, the theoretical results are analogous: I show how inequality and the lack of redistributive
instruments change the path of the carbon tax.

4.1 First-Best

We consider the optimal policy of a social planner can choose the allocation decision of each
country, subject to the resource constraints of the economy. They maximize global welfare, which
is the weighted sum of household utilities, with Pareto weights19 ωi:

Wt0 = max
{c,k,ef ,ecer,ex,ēc,ēr}

∑
I
Pi ωi

∫ ∞
t0
e−(ρ−ni−(1−η)ḡi)t u

(
Dui (τit) cit

)
dt (31)

subject to the good and energy resource constraints and the climate system:

∑
i∈I
Pie

(ni+ḡi)t
[
cit + (k̇it+(ni+ḡi+δ)kit) + νfi (exit,Rit) + κcie

c
it + κrite

r
it

]
=
∑
i∈I
Pie

(ni+ḡi)tDi(τit)zitF (kit, `i, eit) [φwt ]

Efit =
∑
i∈I
Pie

(ni+ḡi)t efit =
∑
i∈I

e(ni+ḡi)texit [µft ] ēci = eci [µcit] ēri = eri [µrit]

Ṡt = Et − δsSt Et :=
∑
I
Pie

(ni+ḡi)t(ξfefit + ξcecit
)

[φSt ]

τ̇it = ζ
(
∆iχSt − (τit − τit0)

)
[φτit]

I associate the Lagrange multipliers φwt for the good market clearing, µft , µcit, µrit for the market
clearing respectively of fossil (oil-gas), coal and renewable (low-carbon) and φSt and φτit for the
shadow value of additional carbon emissions and temperatures increase.

The result is similar to the toy model example, and the complete description is available in
Appendix C. The optimality condition for consumption shows a redistribution motive: the planner
equalizes marginal utility subject to Pareto weights:

ωiuc(cit, τit) = φwt = ωjuc(cjt, τjt)

with marginal utility uc(cit, τit) = Du(τit)u′(Du(τit)cit) = Du(τit)1−ηc−ηit , with the CRRA func-

19Pareto weights should sum to one, s.t. 1
P

∑
I Piωi = 1
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tional form. Despite the possibility, in the competitive equilibrium, to trade in goods, bonds, and
energy, strong inequality exists due to differences in productivity, energy rents or climate damage.
As a consequence, in the First-Best, the social planner redistributes consumption using lump-sum
transfers in the decentralized equilibrium.

4.1.1 First-Best – Social Cost of Carbon

Given the welfare function in Appendix C, the marginal cost of adding one unit of carbon
in the atmosphere St can be summarized by the Social Cost of Carbon. It represents the

SCCfbt := −
∂Wt
∂St
∂Wt
∂cit

= −φ
S
t

φwt
(32)

where the aggregate welfare change φSt is normalized in monetary units with the aggregate marginal
value of wealth ∂Wt/∂cit = ωiuc(cit, τit) = φt. The welfare cost of carbon evolves again with the
marginal damage of temperature, φτit which is the costate of the temperature dynamics, and the
marginal value of carbon φSt , the costate of carbon concentration dynamics, which aggregates these
different costs across all countries. Solving the differential equations for φτit, φSt and φwt , following
the same approach as in Section 3.8, we obtain the Social Cost of Carbon:

SCCfbt →
∫ ∞
t

∑
i∈I

ωiPie
−δs(t−t0)−

∫ t
t0

(rkiu−ni−ḡi)du χ∆i(τis−τ?i )
[
γyyis + γucis

]
dt ,

and this implies the following proposition.

Proposition 6 (Social Cost of Carbon – First-Best Allocation).
In the First-Best allocation, marginal utilities are equalized φi = ωiuc(cit, τit), ∀i ∈ I, and as a
result, we obtain that the Social Cost of Carbon is the sum of Local Costs of Carbon of the different
locations i ∈ I.

SCCfbt =
∑
i∈I

ωiPiLCCit

where the Local Cost of Carbon LCCit is defined as in equation (30), i.e.

LCCit =
∫ ∞
t

e−δs(s−t)−
∫ s
t

(rku−ni−ḡi)duχ∆i(τis−τ?i )
[
γyyis + γucis

]
ds .

Despite the model being substantially richer, the main result of the Section 2 holds. This aligns
with models without heterogeneity in marginal value of wealth, which can be aggregated. Models
where differences in climate damages do not have redistributive effects on production, consumption
and welfare would imply that the Social Cost of Carbon is simply the sum, weighted by population,
Pi, and Pareto weights ωi, of the Local Cost of Carbon LCCit. Such models include Nordhaus and
Yang (1996), and Krusell and Smith (2022), where in the later the free mobility of capital and the
absence of heterogeneity in TFP or production allows to aggregate the economy.
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4.1.2 Decentralization of the First-Best: transfers and carbon tax

I show how this allocation can be decentralized with carbon taxation in the competitive
equilibrium. The detailed treatment of this result is in Appendix A.

Proposition 7 (First-Best Allocation – Carbon taxation and transfers).
To decentralize the First-Best allocation, we need two set of instruments: (i) a carbon tax,

(ii) cross-country lump-sum transfers. First, the optimal First-Best carbon tax equals the Social
Cost of Carbon, as defined in Proposition 6:

MPefit = qft + ξf tεt tεt = SCCfbt

A similar optimality condition holds for coal MPecit = qrit + ξctεt . In particular, the optimal carbon
tax is equal across countries. This results from the equalization marginal value of wealth. To
achieve such equalization, the planner uses lump-sum transfers:

ωiuc(cit, τit) = φt = ωjuc(cjt, τjt) ⇒ c?it = u−1
c (φt

∣∣τit)
which pins down the lump-sum transfers needed given the budget constraint:

c?it =
(
r?t−(ni+ḡi)

)
wit + πfit + yit − (r?+δ)kit −

(
qft + ξf tεt

)
efit −

(
qcit + ξctεt

)
ecit − qriterit − ẇit + tlsit ,

A uniform carbon tax result aligns with the standard policy recommendations in representative
agent models – which encompass most Integrated Assessment Models, like DICE, Nordhaus (2017),
Barrage and Nordhaus (2024), FUND, PAGE, MERGE, and others – or the optimal carbon tax-
ation result of Golosov, Hassler, Krusell and Tsyvinski (2014). It also reminiscent of models with
unrestricted redistribution such as Hillebrand and Hillebrand (2019).

Lump-sum transfers redistribute across countries and across time:∫ ∞
t0
Pie

(ni+ḡi)t
∑
I

tlsit dt = 0

Situations where income yit, energy rents πfit, climate damage and temperature τit, or Pareto
weights ωi are very heterogeneous such that consumption differentials in the equilibrium without
policy intervention are large, the First-Best implies that some countries receive positive lump-
sum transfers ∃j, s.t. tlsj > 0 and others pay lump-sum taxes ∃j′, s.t. tlsj′ < 0. Therefore, such
decentralized allocation features direct lump-sum transfers across countries.

The question is whether such lump-sum transfers are politically feasible. Can a world central
planner impose lump-sum transfers to solve world inequality, for example taxing North America
and Europe and rebating it lump-sum to Africa or South Asia? In the next sections, I analyze a
family of policies where transfers are not allowed.
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4.2 Ramsey problem and optimal uniform carbon taxation

I consider the optimal carbon taxation, where the planner is prevented from achieving redis-
tribution. Lump-sum transfers are not available instruments, for political, governance, or economic
reasons. This implies to solve a Ramsey taxation problem with imperfect instruments, where the
planner internalize the constraints that are impose by the Competitive Equilibrium.

In particular, it maximizes global welfare, choosing a uniform carbon tax for the world {tεt}t
and rebates the revenue of that tax to the household of the country that pays it tls = tεtεit.

Wt0 = max
{c,b,k,ef ,ecer,ex,ēc,ēr}
{tε,r,qf ,qc,qr}

∑
I
Pi ωi

∫ ∞
t0
e−(ρ+ni)t u

(
Dui (τit) cit

)
dt . (33)

The planner takes the agent decisions, {cit, bit, kit, efit, ecit, erit, exit, ēcit, ērit}it, prices {r?t , q
f
t ,wit, q

c
it, q

r
it}it,

and states {wit, τit,St}it subject to the constraints of the Competitive equilibrium, which are
(i) the budget constraint equation (25), with multiplier ψwit , (ii) the climate dynamics for carbon
St, equation (21), with multiplier ψSt , and temperatures τit, equation (22), with multiplier ψτit, (iii)
the firms optimality conditions for energy efit, ecit, erit, from equation (11), and capital kit, respec-
tively with multipliers υfit, υcit, υrit, υkit, (iv) the energy firms optimality for extraction and production,
from equations (14), (17) and (18), and finally (v) the market clearing for goods equation (24),
bonds, fossil, coal and renewable energy, from equations (16) to (18).

We apply the Pontryagin Maximum Principle and the details of the entire system are found
in Appendix D. Note that the social planner has full commitment, in the sense that decisions taken
in the initial period t0 binds ∀t ∈ (t0,∞) and there is no time inconsistency. We provide some
intuitions of the most important results.

First, before of lack of redistribution, we can define the normalized social welfare weights –
as some inequality index – using the marginal value of wealth ψwit :

ψwit = uc(ci, τit) ⇒ ωiuc(cit, τit) 6= ωjuc(cjt, τjt)

ψ̂wit := ωiPiψ
w
it

ψ
w
t

= ωiPiuc(cit, τit)
1
P
∑
i∈I ωiPiuc(cit, τit)

ψ
w
t = 1

P
∑
I
ωiPiψ

w
it ,

(34)

with ψwt the marginal value of wealth of the “average” agent. If the ratio ψ̂wit is higher than 1, the
planner sees country i at time t with a lower welfare than the average household.

4.2.1 Second-Best, Social Cost of Carbon

Again, as in the previous section, the Social Cost of Carbon is measured as the ratio of the
marginal value of carbon and the marginal value of wealth:

SCCsbt := −
∂Wt
∂St
∂Wt
∂ct

= −ψ
S
t

ψ
w
t

(35)
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it differs slightly from the definition in equation (32) of the First-Best, because now the planner
consider the “average agent” marginal utility ψwt to convert the Social Cost of Carbon in monetary
unit.

To obtain the Social Cost of Carbon, we again solve the differential equation for the marginal
damage to temperature and the marginal value of carbon.

SCCsbt =
∫ ∞
t

e−δs(s−t)−
∫ s
t
r?uduχ

∑
i∈I

e(ni+ḡi)(s−t)∆i(τis−τ?i )
[
γyyis + γucis

]
ψ̂wisds

This now differs from the First-Best because the temperature damages (τit− τ?i )
[
γyyit + γucit

]
are

weighted by welfare ψwit . We thus obtain an important result in Second-Best economies:

Proposition 8 (Social Cost of Carbon – Second-Best Allocations).
In the Second-Best allocation, inequalities across countries persist as measured by the social welfare
weights ψ̂wit 6= 1, ∀i ∈ I. When redistribution is constrained, the Social Cost of Carbon is the
weighted sum of Local Costs of Carbon of the different locations i ∈ I, weighted by the social
welfare weights ψ̂wit as given in equation (34):

SCCsbt =
∑
i∈I

ψ̂wit LCCit ∝
∑
i∈I
Pi ωi uc(cit, τit)LCCit

where the Local Cost of Carbon LCCit is defined as in equation (30), i.e.

LCCit =
∫ ∞
t

e−δs(s−t)−
∫ s
t

(r?u−ni−ḡi)duχ∆i(τis−τ?i )
[
γyyis + γucis

]
ds .

As a result, we can express the Social Cost of Carbon as:

SCCsbt =
∑
I
ψ̂wit LCCit

= P EI[ωiLCCit]+ P CovI
(
ψ̂wit , LCCit

)
≶ P EI[ωiLCCit] =: SCCfbt

for the mean EI[·] and covariance CovI(·) over locations.20 Since the Social Cost of Carbon is a
sum – and not a mean – one needs to rescale by world population P.

To summarize, the presence of heterogeneity and the correlation between local damage and
income change the Social Cost of Carbon from the Social Planner’s perspective.

4.2.2 Second-Best, Uniform Carbon Taxation

As shown in model of Section 2, taxation of carbon and fossil fuels have strong redistributive
general equilibrium effects through energy markets.

Fossil energy supply redistribution. First, the implementation of carbon taxation reduces
demand for fossil fuels, which has strong redistributive effects on the energy rent and along the

20We define them as EI[xit] = 1
P

∑
i∈I Pixit and CovI(xit, yit) = 1

P

∑
i∈I Pi

(
xit−EI[xit]

) (
yit−EI[yit]

)
it.
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supply curve. Recall that υfit is the Lagrange multiplier for the optimality condition on fossil fuel
demand, and we denote υ̂fit = υfit/ψ

w
it the rescaled value by the marginal value of wealth – it would

represent the monetary value of marginally relaxing that optimality condition. Moreover, a change
in equilibrium quantity of oil-gas relaxes the market clearing, leading to the following mechanism:

Supply Redistributionft =
(∑

i

νfi exex (exit,Rit)
−1
)−1(∑

i

ψ̂wit [e
f
it − e

x
it]−

∑
i

υ̂fit

)
,

where
(∑

i ν
f
i exex (exit,Rit)

−1
)−1

is the aggregate supply elasticity for oil and gas, which depends on
the equilbrium extraction exit and reserves Rit of each country. Moreover, as we saw above, carbon
taxation lowers the energy price qft , leading to a term-of-trade effect. This redistributes energy
rents from exporters to importers, and hence scale with efit − exit. This change is weighted by the
marginal valuation of wealth ψ̂wit , and it is higher when the fossil-fuel producers are also relatively
poorer or weighted more by the planner. This effect rewrites ∑i ψ̂

w
it [exit−e

f
it] = CovI

(
ψ̂wit(exit−e

f
it)
)
,

and we can measure this covariance empirically as a sufficient statistics. Moreover, the change in
energy price also affects the oil and gas price, affecting the demand, as denoted by the term ∑

i υ̂
f
it.

This term comes from the fact that carbon polity is affecting differentially oil-gas and coal. Recall
that, if υ̂fit > 0, the planner would increase energy prices, moving up along the supply curve, which
results in a lower the optimal carbon tax tεt .

Fossil energy demand distortion. Second, carbon taxation is a distortionary tax that create a
wedge for the demand of energy. This demand distortion differs across countries due to differences
in energy mix, productivity and the endowmnent and cost of energy sources. From the planner’s
optimality for energy, we can define the following term:

Demand Distortionfit := ̂̄υfit =
[
υ̂fit ∂efMPefit + υ̂cit ∂efMPecit + υrit ∂efMPerit + υ̂kit ∂efMPkit

]
= ziDi(τit)

[
υ̂fit Fef ef + υ̂cit Fef ec + υ̂rit Fef er + υ̂kit Fefk

]

= 1
efit

[
− υ̂fit(q

f
t +ξf tεt )

(1−sfit
σe

+ sfit
1−seit
σy

)
+ υ̂cit(qcit+ξctεt )s

f
it

( 1
σe
− 1−seit

σy

)
+ υ̂ritq

r
its

f
it

( 1
σe
− 1−seit

σy

)
+ υ̂kit(r?t+δ)

sfits
e
it

σy

]
,

with energy share in production, seit = eitq
e
i /yi, fossil share in energy mix sfit = efitq

f
t /eitq

e
it and sim-

ilarly scit = ecitq
c
it/eitq

e
it and srit = eritq

r
it/eitq

e
it. Moreover, σe is the elasticity of substitution between

energy sources, σy the one between energy and the capital/labor bundle, and υ̂fit := ωiPiυ
f
it/ψ

w
it, υ̂

r
it

and υ̂kit are rescaled versions of the Lagrange multipliers for fossil energy, renewables, and capi-
tal respectively. Note, we can find a similar expression for coal energy, Demand Distortioncit, as
function of Fecef , Fecec , etc.

To understand the intuition behind this term, take the first term, −1−sfit
σe − s

f
it

1−seit
σy , as an

example. We see that this demand channel of taxation has two effects: the first channel lowers
fossil consumption due to direct substitution effect between the three energy inputs, lowering the
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marginal product of fossil MPefit with elasticity σe. The second effect is indirect through the total
energy use eit, proportionally to the fossil share sfit. Weighting these different distortions with the
shadow values υxit for input x and scaling it for the input prices qft , qcit, etc. we obtain the total
distortion caused by taxation of fossil fuels. This term is more involved than in the simpler model
of Section 2 and Proposition 2, because of the general substitution patterns across energy and
heterogeneity across countries. Moreover, the aggregate level of the carbon tax balances out all
these distortions across countries and energies, and the optimality condition for tεt gives:∑

i∈I

(
ξf υ̂fit + ξcυ̂cit

)
= 0

This minimization of total distortion relates to the standard principles of Ramsey taxation, as in
Diamond and Mirrlees (1971); Diamond (1973); Atkinson and Stiglitz (1976).

Optimal carbon tax. We now present our main result for the optimal Second-Best uniform
carbon tax. Details on how this formula is derived from the optimality condition for energy
choices can be found in Appendix D. The optimal level of carbon taxation integrates the different
redistribution motives that we detailed above. As a result, the Ramsey planner accounts for these
general equilibrium effects as symbolized by the curvature of demand and supply of energy.

Proposition 9 (Uniform Carbon Taxation – Second-Best Allocation).
The optimal Second-Best carbon tax accounts for three distributional motives when setting a single
uniform level tε, in the absence of cross-countries transfers, when revenues of the carbon are
rebated locally tlsit = εittεt : (i) climate damage in the Social Cost of Carbon (SCC), (ii) Supply
Redistribution in energy markets through terms-of-trade and energy rents and (iii) Demand
Distortion through distorted firms’ energy choices. This includes redistribution motives due to
the presence of inequality through the social welfare weights ψ̂wit = ωiPiψ

w
it/ψ

w
it ∝ ωiPiuc(cit, τit).

The optimal carbon tax writes:

ξf tεt = ξf SCCsbt + Supply Redistributionft +
∑
i∈I

Demand Distortionfit

SCCt = P EI[ωiLCCit]+ P CovI
(
ψ̂wit , LCCit

)
Supply Redistributionft =

(∑
i

(νfi exex)−1
)−1[

PCovI
(
ψ̂wit , e

x
it − e

f
it

)
− PEI[υ̂fit]

]
Demand Distortionfit =

∑
x∈{ef,ec,er,k}̂

υxit ∂efMPxit

(36)

where υ̂xit are the rescaled multipliers for the optimality condition MPxit = qxit for the choice of
input x, i.e. υ̂fit := ωiPiυ

x
it/ψ

w
it, for x being fossil (oil-gas) ef , coal ec, renewable (low-carbon) er

and capital k. Moreover, the supply redistribution depends on the curvature of the oil-gas supply
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with νfi exex the supply elasticity, and the demand distortion depends on ∂efMPxit the curvature of
the production function, i.e. the own-elasticity in oil-gas Fef ef and cross-elasticity, e.g. Fef er .

In addition, even without climate externality SCCt = 0, the carbon tax tεt could be posi-
tive, accounting for energy terms-of-trade manipulations, for example with wealthy exporters and
relatively poorer importers, or when richer countries are consuming more fossil-fuels with higher
elasticity, following the intuitions of Section 2.

Such a result holds as long as different agents – countries, firms, or households – have different
marginal utilities of consumption, i.e. different ψ̂wit . However, these motives would be absent in
models like Golosov et al. (2014) for two reasons: First if the supply curve for energy is perfectly
elastic, because of constant return to scale, which yields νexex = 0. Second, when the agent/firm
is “representative” or multiple agents can be aggregated – at least in the inputs demand decisions
– and a single energy tax instrument in the First-Best, the social planner is not “distorting” the
energy demand across agents: the planner and the agents would achieve the same optimality
condition for fossil fuel demand.

4.3 Country-specific carbon taxation

We now consider an experiment where the social planner design country-specific taxes that
would allow to correct some of these redistributive concerns. In that case, not only the level but
also the distribution of the fossil fuel/carbon tax is affected by redistribution motives. The planner
maximizes global welfare as in equation (33), choosing a countries-specific carbon taxes {tεit}t over
time and rebates the carbon tax revenue to the household of the country that pays it tls = tεtεit.
We solve the planner’s problem choosing the agent decisions, prices, and states, subject to the
constraints of the Competitive equilibrium.

Proposition 10 (Country-specific Carbon Taxation – Second-Best Allocation).
The optimal Second-Best country-specific carbon taxation, when transfers are absent and revenues
rebated locally, can be written as:

tεit = 1
ψ̂wit

[
SCCt + Supply Redistributionft + Demand Distortionfit

]
SCCt = P EI[ωiLCCit]+ P CovI

(
ψ̂wit , LCCit

)
Supply Redistributionft =

(∑
i

(νfi exex)−1
)−1[

PCovI
(
ψ̂wit , e

x
it − e

f
it

)
− PEI[υ̂fit]

]
Demand Distortionfit =

∑
x∈{ef,ec,er,k}̂

υxit ∂efMPxit

The demand distortion is only local since the planner can choose country-specific taxes. However,
this distortion is not null, since the planner does not have energy-sources-specific taxes. In
particular, the carbon tax affects both oil-gas and coal,

ξf υ̂fit + ξcυ̂cit = 0
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These local distortive effects remain if energy demands efit, ecit, energy shares, and elasticities differ.

Following the logic in Section 2, the optimal tax still depend on both the Social Cost of
Carbon SCCt and Supply Redistributionft as developed above. These two energy taxation motives
– climate externality correction and energy rents redistribution – remains the same. However, we
observe that the demand distortion is reduced considerably. We observe that because the planner
has access to n different instruments

At the difference with Section 2, we now have only the local distortions, represented by the
Lagrange multipliers υ̂fit, υ̂cit, υ̂rit, υ̂kit for the input choices. These inputs distortion are no longer null
in equilibrium as in the Proposition 2, despite the planner choosing a country-specific tax level.
The reason is that now there is a distortion and a reallocation between oil-gas, coal, and other
inputs. The optimality for tεi gives:

ξf υ̂fit + ξcυ̂cit = 0 6⇒ υ̂cit = 0 & Demand Distortionfit = 0

Nevertheless, the tax is country i specific and depends on redistribution motives. Indeed the
ratio 1/ψ̂wit is the inverse of the social welfare weight – the inequality index developed earlier in this
section in equation (34). It implies that richer/colder countries, which have higher consumption
and lower marginal utilities are charged higher carbon taxes, and conversely poorer countries should
be charged a lower tax:

low cit high τit ⇒ high ψ̂wit ∝ uc(cit, τit) ⇒ low tfit

everything else being constant, in particular SCCt, Supply Redistributionft andDemand Distortionfit.
In particular, this result provides a justification for the use of a “tiered” carbon taxation –

where carbon tax would be lower for developing economies and higher for advanced economies.
This proposal, that tend to be promoted for moral reasons, is shown here to have an explanation
based on efficiency and welfare maximization.

5 Quantification and calibration

The model is calibrated to a sample of 68 countries to provide realistic predictions on the
impact of optimal carbon policy. I first describe the data used. I then provide details on the quan-
tification, and how the parameters are calibrated to match the data. I summarize in Table 2 the
dimensions of heterogeneity of the model. Table 1 contains the summary table for the calibration
described in this section.

5.1 Data

First, I describe briefly the data used to calibrate the model. I use data for the year 2018-
2023, taking the average over that period to smooth out the effect of the COVID-19 recession on
energy and macroeconomic data.
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I use data for GDP per capita, in Purchasing Power Parity (PPP, in 2016 USD) from the
World Bank, as collected and processed by the Maddison Project, Bolt and van Zanden (2023).
For the energy variables, I use the comprehensive data collected and processed in the Statisti-
cal Review of Energy Energy Institute (2024), that includes the production and consumption of
various energy sources, including Oil, Gas, Coal and Renewable. It also includes proven reserves
of those fossil fuels. For energy rent, I use the World Development Indicators that use national
accounts to measure the share of GDP coming from energy (oil, gas and coal) and natural resource
rents. Finally, for temperature, I use the same time series as Burke et al. (2015), which use the
temperature at country level, averaged over the year and weighted by population across locations.

5.2 Welfare and Pareto weights

The welfare function that the social planner maximize, in Appendix C is the weighted sum
of individual utilities in all countries, with Pi the population size and ωi the Pareto weights.

I consider two sets of Pareto weights. First, I consider the utilitarian benchmark, where the
planner weight every individual in the world equally: ωi = 1. Second, following the discussion in
Anthoff et al. (2009), Nordhaus (2011) and Nordhaus and Yang (1996), one would like to choose
Pareto weights that eliminate redistributive effects that are orthogonal to climate change and
carbon policy. To that purpose, the “Negishi” Pareto weights make the preexisting competitive
equilibrium efficient under that welfare metric. This implies that:

ωi = 1
uc(c̄it0 , τit0) ⇔ C.E.(c̄i) ∈ argmax

c̄i

∑
i

Piωiu(c̄it0 , τit0)

ωiuc(c̄it0 , τit0) = ωjuc(c̄jt0 , τjt0) ∀i, j ∈ I

where c̄i is the consumption level in the present competitive equilibrium – the period 2018-2023
– absent future climate damage. This implies that the carbon policy do not have redistributive
motives through energy general equilibrium effects. However, global warming, and the carbon
taxation itself have redistributive effects, as they change the distribution of cit. These effects
would thus be taken into account in the choice of policies as shown in Proposition 9.

5.3 Macroeconomy, trade and production

For the macroeconomic part of the framework, I consider standard utility and production
functions. For utility, as in the equation (7), I calibrate the CRRA/IES parameter to be η = 1.5,
taken from Barrage and Nordhaus (2024).

For production, I use a nested CES framework. The firm combines a Cobb-Douglas bundle
of capital ki and labor `i21 with a composite of energy ei, with elasticity σy. Second, the energy
ei aggregates the different energy sources: oil and gas ef , coal eci , and renewable/non-carbon eri ,
with elasticity σe. To calibrate these functions, I set the capital-labor ratio α = 0.35 to match

21Labor is inelastically supplied `i = ¯̀
i in each country and normalized to 1 – since the country size Pi is already

taken into account. As a result, all the variables can be seen as input per capita.
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the cost share of capital. For the energy, I set ε = 0.10 to match the world average energy cost
share qei ei

yi
= 6%, as measured in Kotlikoff, Kubler, Polbin and Scheidegger (2021b) and used in

Krusell and Smith (2022). For the elasticity between energy and other inputs, I set σy = 0.3 for
all countries, which is in the range of estimates in Papageorgiou et al. (2017), among others.22

Therefore, capital/labor and energy are complementary in production: an increase in the price of
energy has a strong impact on output as it is less productive to “substitute away” to other inputs
– capital, labor here. This aligns with other empirical and structural evidence on the impact
of energy shocks, e.g. Hassler et al. (2021a). Then, I calibrate the energy mix for oil-gas, with
ωf = 0.56, coal ωc = 0.27, and non-carbon ωr = 0.17, to match the aggregate shares of each of
these energy sources in the data. In the next section, I document how I match the individual
countries’ energy mix using energy prices/costs. Finally, for the elasticity between energy inputs, I
use the value σe = 2, following the rest of the literature, i.e. Papageorgiou et al. (2017), Kotlikoff,
Kubler, Polbin and Scheidegger (2021b), and Hillebrand and Hillebrand (2019), among others.

I calibrate the productivity zi of the production function yit0 = Dyi (τit0) zi ȳit0 to match
exactly the GDP, yit0 , across countries. This parameter zi, represents productivity residuals as
well as institutional/efficiency differences across countries. In Figure 3, I show the GDP levels, as
they replicated with this model.

Table 1: Baseline calibration

Technology & Energy markets
α 0.35 Capital share in F (·) Capital/Output ratio
ε 0.12 Energy share in F (·) Energy cost share (8.5%)
σy 0.3 Elasticity capital-labor vs. energy Complementarity in production (c.f. Bourany 2022)
ωf 0.56 Fossil energy share in e(·) Oil-gas/Energy ratio
ωc 0.27 Coal energy share in e(·) Coal/Energy ratio
ωr 0.17 Non-carbon energy share in e(·) Non-carbon/Energy ratio
σe 2.0 Elasticity fossil-coal-non-carbon Slight substitutability & Study by Stern
δ 0.06 Depreciation rate Investment/Output ratio
ḡ 0.01? Long run TFP growth Conservative estimate for growth

Preferences & Time horizon
ρ 0.03 HH Discount factor Long term interest rate & usual calib. in IAMs
η 1.5 IES / Risk aversion Standard calibration
n 0.0035 Long run population growth Conservative estimate for growth
ωi 1 Pareto weights Uniforms / Utilitarian Social Planner
ωi 1/u′(ci) Pareto weights Negishi / Status-quo Social Planner
T 400 Time horizon Time for climate system to stabilize

Climate parameters
ξf 2.761 Emission factor – Oil & natural gas Conversion 1 MTOE ⇒ 1 MT CO2
ξc 3.961 Emission factor – Coal Conversion 1 MTOE ⇒ 1 MT CO2
χ 2.3/1e6 Climate sensitivity Pulse experiment: 100GtC ≡ 0.23◦C medium-term warming
δs 0.0004 Carbon exit from atmosphere Pulse experiment: 100GtC ≡ 0.15◦C long-term warming
ζ 0.027 Growth rate, Carbon Capture and Storage Starting after 2100, Follows Krusell Smith (2022)
γ⊕ 0.003406 Damage sensitivity Nordhaus’ DICE
γ	 0.3×γ⊕ Damage sensitivity Nordhaus’ DICE & Rudik et al (2022)
αT 0.5 Weight historical climate for optimal temp. Marginal damage correlated with initial temp.
T ? 14.5 Optimal yearly temperature Average spring temperature / Developed economies

22It also aligns with my own estimation in Bourany (2022).
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5.4 Energy markets

For the energy market, I match the energy mix of different countries, using the CES frame-
work displayed above, as well as differences in costs of production. For the supply side, we use
iso-elastic fossil extraction cost to replicate the oil-gas supply of fossil producers.

First, in this model, oil and gas are traded on international markets, with demand Piefit0 from
the final good firm and supply Piexit0 from the fossil energy firm, extracting oil and gas from its own
reserves. We use the extraction function νfi to have the following isoelastic form of equation (13),
which is homogeneous of degree one in (exi ,Ri). The inputs are paid in the price of the consumption
good – normalized to one.23 This implies the profit function in equation (15). I calibrate the three
parameters Ri, νi and ν̄i to match the three country-level variables Ri, exi and πfi . The reserves Ri
are taken directly from the data on oil and gas reserves documented by Energy Institute (2024).
I calibrate the slope of this cost function ν̄i to match exactly the production of oil and gas exi , as
informed by that same data source. This is displayed in Figure 4. I then calibrate the curvature of
the cost function to match the share ηπi = πfi

yipi+πfi
of fossil energy profit as share of GDP. I choose

νi to minimize the distance – mean squared error – between the model share ηπi and the data,
successfully matching the share within 5−10 percentage points. Differences in oil and gas energy
rent across countries are not only determined by differences in cost and technology, but also in
differences in trade costs and market power – by the existence of OPEC which control more than
28% of oil supply and around 15% of natural gas supply. This explains why it is difficult to match
exactly the value ηπi . However, to keep the simplicity and tractability of the model, I refrain from
adding an additional Armington structure over energy sources, or oligopoly power over oil and gas
as discussed in Bornstein et al. (2023) and Hassler et al. (2010).

Second, I match the energy mix of the different countries by relying on the two assumptions
made in the model: (i) coal and renewable are only traded at the country level: ēci = eci and
ēri = eri and (ii) the cost function is linear in goods, i.e. the production is Constant Returns to
Scale, implying qci = κci and qri = κri . This allows me to match the energy mix of each country
by calibrating the energy costs parameters κci and κri for each country to match the data on coal
share eci

efi +eci+e
r
i

and non-carbon energy share eri
efi +eci+e

r
i

. Using the CES framework above, I match
exactly the energy shares, successfully identifying countries that are more reliant on coal vs. oil
and gas vs. non-carbon/renewable: for example, China and India are highly coal-dependent, and
Russia, Middle-East and United-States/Canada are the biggest consumers of oil and gas.

5.5 Climate system

Finally, I calibrate the climate model described in Section 3.4 to match important features
of the relationship between carbon emissions, temperatures and climate damages.

23I express the oil-gas extraction with a cost function xfi = νfi (·). We can also express analogously with the
production function:

exi = g(xfi ) =
( 1+νi

ν̄i

) 1
1+νR

νi
1+νi
i (xfi )

1
1+νi

with inputs xfi paid in the final good price. This production has constant returns to scale in (xfi ,Ri).
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Figure 3: GDP per capita
Thsds 2011-USD PPP, avg. 2018-2023

Figure 4: Oil and gas production
GTOE (gigatons oil equiv.), avg. 2018-2023

Figure 5: Temperatures
Avg., population-weighted, 2015

First, I calibrate two parameters of the global climate system: the climate sensitivity χ,
i.e. the reaction of global temperature, Tt, to the atmospheric concentration of CO2, St, and the
carbon decay rate, δs, representing the exit of carbon of the atmosphere into carbon sinks – oceans,
biosphere – and out of the higher atmosphere. To this end, as is standard in Integrated Assessment
models, I match the pulse experiment dynamics of larger IAMs – CMIP5 in this case: for a “pulse”
of 100GT of carbon released – corresponding to 10 years of emissions – the global temperature
reaches its peak between 0.20◦C and 0.25◦C after 10 years and then decreases slightly to stabilize
around 0.17◦C after 200 years. I follow Dietz et al. (2021), and calibrate χ = 0.23 and δ = 0.0004
to match these two moments, as seen in Figure 2.

Moreover, this climate system is inherently unstable for emissions, Et = ξ̄t
∑
i∈I εit, with

trends in population growth, n, and long-term TFP growth ḡ, where n = 0.0035 and ḡ = 0.01 are
the long-term growth rates according to forecast by the UN and World-Bank. To counteract the
non-stationarity of the climate system, I follow Krusell and Smith (2022) and assume that part of
the emissions Et are captured and stored, under the variable ξ̄t. I assume the exponential form,
ξ̄t = e−ξt and calibrate ζ to match the moment suggested in Krusell and Smith (2022): 50% is
captured by 2125, and 100% by 2300 – which is > 99.9% in our model. This implies that in the
Business-as-Usual scenario, global temperatures reach ∼ 4.5◦ by 2100 and are stabilized around
7◦ by 2400. More optimistic scenarios for Carbon Capture and Storage (CCS) could be imagined
without affecting the main result since most of the damages are discounted heavily after 2100.

Second, I calibrate initial temperatures τit0 with data from Burke et al. (2015), and I display
selected countries in Figure 5. Furthermore, I assume the linear pattern scaling τ̇it = ∆iTt. I
identify the scaling parameter in reduced-form by estimating this linear regression over the period
t = 1950−2015 for each country and then aggregating by region i.24 This procedure does not
require extensive and granular data such at geographical characteristics, albedo, etc.

Third, to calibrate the damages, I use a quadratic function as in the DICE - IAM, and seen
in equation (23), with the damage parameter γ = 0.00340. This value is intermediary between the
value γ = 0.00311 in Krusell and Smith (2022), calibrated to match Nordhaus’ DICE calibration
of 6.6% of loss of global GDP when temperature anomaly Tt = 5, and the updated calibration in

24To control for the fact that country j has an influence on world temperature Tt =
∑

i
giτit, I estimate the

jackknife linear equation with Tt, 6=j =
∑

i 6=j giτit for each j, i.e. τjt = ∆jTt, 6=j .
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Barrage and Nordhaus (2024) which calibrate it at γ = 0.003467. For small values, I consider γ− =
0.3γ, following the quantification in Rudik et al. (2021), who show that the negative productivity
impact of cold temperatures is much weaker than for hot temperatures.

Finally, to calibrate τ?i , I use also an intermediary assumption between the following two
cases: (i) the representative agent economy, like Barrage and Nordhaus (2024), would assume
τ?i = τit0 , which implies that τit−τ?i = ∆iTt: differences in damages only comes from increases
in aggregate temperature. The analysis by Bilal and Känzig (2024) shows that climate damage
on GDP comes in large part from the increase in global temperature, causing extreme events. In
contrast, (ii) a different view in heterogeneous countries economies would set τ?i = τ? the same for
all regions, at an “ideal” temperature, as in Krusell and Smith (2022) and Kotlikoff, Kubler, Polbin,
Sachs and Scheidegger (2021). In this case, differences in climate damages come essentially from
differences in initial temperatures. I take the intermediary step and assume τ?i = αT τ?+(1−αT )τit0 ,
where ατ = 0.5 and τ? = 14.5 is the average spring temperature of developed economies – and
around the yearly average of places like California or Spain.

5.6 Heterogeneity

In this section, I summarize the different dimensions of heterogeneity included in the model
and aggregate the parameters of the calibration in Table 1.

Table 2: Heterogeneity across countries

Dimension of heterogeneity Model parameter Matched variable from the data Source of the data
Population Country size Pi Population Pi UN Population Prospect
TFP/technology/institutions Firm productivity zi GDP per capita (2016-PPP) yi World Bank/Maddison project
Productivity in energy Energy-augmenting productivity zei Energy cost share sei SRE Energy Institute (2024)
Cost of coal energy Cost of coal production κci Energy mix/coal share eci/ei SRE Energy Institute (2024)
Cost of non-carbon energy Cost of non-carbon production κri Energy mix/coal share eri /ei SRE Energy Institute (2024)
Local temperature Initial temperature τit0 Pop-weighted yearly temperature Burke et al. (2015)
Pattern scaling Pattern scaling ∆i Sensitivity of τit to world Tt Burke et al. (2015)
Oil-gas reserves Reserves Ri Proved Oil-gas reserves Ri SRE Energy Institute (2024)
Cost of oil-gas extraction Slope of extraction cost ν̄i Oil-gas extracted/produced exi SRE Energy Institute (2024)
Cost of oil-gas extraction Curvature of extraction cost νi Profit πfi / energy rent World Bank / WDI

6 Quantitative model results

The results of this section are preliminary. I simulate the model with 68 countries. However,
to display the quantitative results in the graphs, I show examples of ten large “example countries”:
the US, China, Germany, Japan, Russia, Nigeria, India, Saudi Arabia, Brazil, and Indonesia.

6.1 Local and Social Cost of Carbon

In the following graph, I first display the Social Cost of Carbon and Local Cost of Carbon
derived above. Recall that in the Second-Best, we have SCC = ∑

I ψ̂
w
i LCCi.
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In the next graph we plot the difference between LCCi = ψSi
λwi

(blue, left bars) and the

carbon-tax relevant terms: ψ̂wi LCCi = ψSi
ψ
w (red, right bars). We see that the US and China

have the largest Local Costs of Carbon, since, as argued above, the LCCi scales proportionally to
population Pi and GDP per capita yi. However, when we account for inequality and the social
welfare weight – i.e. the Pareto weight times marginal utility of consumption – we observe that
now India, Indonesia, and Nigeria are the countries with the higher “welfare/policy-relevant” Local
Cost of Carbon.

In the competitive equilibrium – i.e. without mitigation policies implemented, the Social
Cost of Carbon can be written in two ways: one without accounting for redistributive effects
EI[ωiLCCi] and one that does integrate inequality EI[ψ̂wi LCCi]. In our numerical exercise, we
obtain:

EI[ωiLCCi] = $95/tCO2 EI[ψ̂wi LCCi] = $45/tCO2

The result is displayed in Section 6.1.

The optimal carbon tax with heterogeneity and redistribution motives in the Second Best
allocation is given as:

tε = SCC + Supply Redistribution + Demand Distortion

Correcting for the two additional redistributive terms, the optimal carbon tax is 5% lower than the
SCC, because the Supply Redistribution and Demand Distortion term largely offset each others.
The results with utilitarian weights, i.e. ωi = 1, ∀i, are displayed in Section 6.1. The carbon tax
much higher, as both the Supply Redistribution and Demand Distortion. The planner would use
carbon tax as a tool for redistribution using energy price and terms-of-trade manipulation.

The dynamic setting allows us to compute the temperature path. In Section 6.1, I display
the path of global temperature in the competitive equilibrium (i.e. the Business as Usual scenario)
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vs. Second-Best with the optimal carbon tax. I show that the second-best allocation aligns closely
with the Shared Socioeconomic Pathway (SSP) 4.5, i.e., the "Middle of the Road" Scenario. This
is due to the fact that global emissions are only reduced by 35%, as the marginal costs of climate
change equate the marginal cost of mitigation and the energy transition. As a result, it would not
be optimal to reduce carbon emissions to net-zero in this class of Integrated Assessment Models.
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7 Conclusion

In this paper, I examine how to design the optimal carbon policy in a world marked by
multiple layers of inequality. Through both theoretical and quantitative analysis, I demonstrate
that the traditional approach of setting a global carbon tax equal to the Social Cost of Carbon
needs to be reconsidered when accounting for global inequalities in emissions, income, climate
vulnerability, and policy impacts.

The key theoretical insights emerge from both a simplified model and a rich, dynamic frame-
work. In the First-Best scenario with available redistributive instruments, the optimal policy
follows the Pigouvian principle, where the carbon tax equals the Social Cost of Carbon. However,
in the more realistic Second-Best scenario without cross-country transfers, the optimal policy must
balance climate externalities with redistributive considerations. This leads to two main findings:
First, the uniform global carbon tax needs to be adjusted for both supply redistribution and de-
mand distortion effects. Second, when country-specific carbon taxes are possible, they should be
inversely proportional to social welfare weights – the product of the planners’ Pareto weights and
the marginal utility of consumption – resulting in lower taxes for developing economies.

The quantitative analysis, based on a calibrated model covering 68 countries, reveals that
accounting for inequality reduces the Social Cost of Carbon twofold (from $100 to $50). This
reduction reflects the higher marginal value of wealth in poorer countries. The model also captures
competing effects on the optimal carbon tax from energy markets equilibrium: downward pressure
to protect fossil-fuel exporters versus upward pressure to minimize energy use distortions. These
effects largely offset each other, resulting in an optimal carbon tax slightly above $110, aligned
with existing estimates.

These findings have important implications for international climate policy. They suggest
that a one-size-fits-all approach to carbon taxation could be suboptimal when considering global
inequalities. Instead, policymakers should consider differentiated carbon pricing schemes that
account for countries’ economic development levels, heterogeneous climate damages, and energy
market exposure. This research also highlights the importance of developing complementary re-
distributive mechanisms in international climate policy to achieve both environmental and equity
objectives.

Future research would extend this analysis by examining the dynamic evolution of these
effects as developing economies grow, climate impacts intensify, and fossil fuel reserves deplete.
Moreover, it would assess the role of uncertainty and climate risk for the optimal policy as in
Bourany (2023). Additionally, investigating the political economy constraints and implementation
challenges of differentiated carbon pricing schemes matters considerably for practical policy design,
as I analyzed in Bourany (2024a).
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A Toy model – Theoretical results

The first two sections are forthcoming. For a similar model – with multi-country trade – the proofs
of the main theorems are analogous to the ones provided in the appendix of Bourany (2024a).

A.1 First Best

A.2 Second-Best

A.3 Cap and Trade

Competitive equilibrium

max
ci,ei,εi

U(ci) s.t

 ci = Di(S)ziF (ei) + qe(exi − ei)− Ci(exi ) + qε(εi − εi) [λi]
ξei ≤ εi [ηiqε]

where ηi is the Lagrange multiplier/shadow for each dollar of carbon permits – hence the normal-
ization by qε. The carbon intensity of energy is ξ: it requires ξ allowance to get enough carbon
permit εi for one unit (e.g. ton of oil equivalent) of energy ei. This yields the optimality condition
of the firm for energy ei and carbon permits εi:

MPei = qe + ξηiq
ε [εi] ηiq

ε = qε

which implies that the implicit carbon tax is MPei − qe = ξt̃ε = ξqε. Multiplier ηi for inequality
constraint ei ≥ εi. Optimality of εi: ηi = 1.

The Lagrangian for the Second Best allocation in this context:

L(ci, ei, εi, εi, E ,λ) =
∑
i

PiωiU(ci) +
∑
i

ωiPiφi
(
Di(S)ziF (ei) + qe(exi − ei)− Ci(Piexi )/Pi + qε(ε̄i − εi) + tlsi − ci

)
+ µeqe

(∑
j

Pi(exj − ej)
)

+ µεqε
(
E +

∑
j

Pi(ε̄i − εi)
)

+ µg
(∑

i

qεPi(εi − ε̄i)− Pitlsi
)

+
∑
i

Piωiθi
(
qe − C′i(Piexi )

)
+
∑
i

Piωiυi(MPei − qe − ξqε)

Two options for rebate:
(i) Global rebate (government budget): ∑i tlsi = ∑

i q
ε(εi − ε̄i) (multiplier µg), or:

(ii) Local lump-sum rebate tlsi = qε(εi−ε̄i) (in that case µg = 0, we replace tlsi in budget constraint)

Planner’s optimality conditions

• [ci]
φi = U ′(ci)

• [ei]
Piωiφi[MPei − qe] + ξ

∑
j

PjωjφjD′i(S)zjF (ej)− µe + PiωiυiDi(S)ziF ′′(ei) = 0

Piωiφiξq
ε = ξφSCC + µe − PiωiυiDi(S)ziF ′′(ei)
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• [exi ]
Piωiφi[qe − C′i(Piexi )]︸ ︷︷ ︸

=0

+ µePi − PiωiθiPiC′′i (Piexi )

Piωiθi = µe/
(
C′′i (Piexi )

)
• [qe] ∑

i

Piωiφi(exi − ei) +
∑
i

Piωiθi −
∑
i

Piωiυi = 0

• [Ē ]
µεqε = 0

Given that the planner controls directly the supply of carbon allowances, the market clearing
is not a binding constraint for the optimal policy.

• [εi] & [ε̄i] & [tlsi ] in the case of global rebate:

[εi] − ωiPiφiqε − qεµεPi + µgqεPi = 0

µε − µg = −ωiφi
[εi] ωiPiφiq

ε + qεµε − µgqεPi = 0

µε − µg = −ωiφi
[tlsi ]

∑
i

Piωiφi = µg
∑
i

Pi

This implies that the planner implements full redistribution using the distribution of “free”
carbon permits εi and lump-sum transfers tlsi . The exact mix {tlsi , εi} is undetermined as long
as the following condition holds:

ωiφi = ωiU
′(ci) = µg = ωjU

′(cj)

• [εi] & [ε̄i] Local rebate: no impact in the budget constraint

[εi]− qεµεPi = 0

[εi]qεµεPi = 0

Given that the purchase of carbon permits, and hence the revenue of “free” carbon permits, are
redistributed/taxed lump-sum, we obtain that ε̄i is a redundant policy instrument. Moreover,
the planner chooses the same policy as the agent, such that εi = ξei.

• [qε] ∑
i

Piωiυi = 0

Again, as in the carbon taxation case, this implies no "aggregate distortion" at the global level.
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B Quantitative model - Competitive equilibrium

Dynamics of the individual state variables sit = (wit, τit,Rit,St):

ẇit = (r?t − ni − ḡi)wit +D(τit)F (kit, eit)− (r?t + δ)kit + πfi (qft ,Rit)− qeiteit − cit

Et = ξ̄t
∑
i∈I
Pie

(ni+ḡi)t(ξfefit + ξcit)

τ̇it = ζ(∆i χSt − (τit − τit0)) Ṡt = Et − δsSt
Ṙit = −efit qft = ν̄t(exit/Rit)νi

Household problem: Pontryagin Maximum Principle

Hhh(s, {c,k,ef ,ec,er}, {λ}) = e−(ρ−ni−(1−η)ḡi)tu(ci, τi) + e−(ρ−ni−(1−η)ḡi)tλwit

((
r?t−(ni+ḡi)

)
wit +Dyi (τit)ziF (kit, efit, ecit, erit)

+ πfi (qft ,Rit)− (r?t + δ)kit − qft e
f
it − q

c
ite

c
it − qriterit − cit

)
+ e−(ρ−ni−(1−η)ḡi)tλSit

(
Et − δsSt

)
+ e−(ρ−ni−(1−η)ḡi)tλτit

(
ζ(∆i χSt − (τit − τit0))

)
Choice of controls:

uc(cit, τit) = Du(τit)u′(D(τit)cit) = λwit

[kt] MPkit = r?t + δ

[xt] MPexit = Dyi (τit)zi ∂xF (kit, efit, ecit, erit) = qxit for x ∈ {f, c, r}

[ext ] qft = νfi ex(exit,Rit)

The Pontryagin maximum principle for the states {wit, τit,St}

[wt] λ̇wit = λwit
(
ρ− ni − (1−η)ḡi

)
−Hw(·) = λwit

[
(ρ− ni − (1−η)ḡi)− (r?t − ni − ḡi)

]
⇒ λ̇wit = λwit

(
ρ+ ηḡi − r?t

)
[τit] λ̇τit = λτit(ρ−ni−(1−η)ḡi + ζ) + γy(τit−τ?i )Dyi (τit)︸ ︷︷ ︸

−∂τDy

ziF (kit, eit)λwit + γu(τit−τ?i )Dui (τit)︸ ︷︷ ︸
−∂τDu

u′
(
Du(τit)cit

)
cit

[St] λ̇Sit = λSit(ρ−ni−(1−η)ḡi + δs)− ζ χ∆i λ
τ
it

Recall if ρ+ ηḡi < r?t , then λwt decreases (and consumption increases) over time.

Solving the ODE for the Local Cost of Carbon

λSit = −
∫ ∞
t

e−(ρ−ni−(1−η)ḡi+δs)(s−t)ζχ∆iλ
τ
isds

with λτit =
∫ ∞
t

e−(ρ−ni−(1−η)ḡi+ζ)(s−t)(τis−τ?i )(1+(αγ−1)1{τis<τ?i })
[
γyyis + γucis

]
λwisds

λSit −−−→
ζ→∞

−
∫ ∞
t

e−(ρ−ni−(1−η)ḡi+δs)(s−t)χ∆i(τis−τ?i )
[
γyyis + γucis

]
λwisds ,
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with output is yit = ziDyi (τit)F (kit, eit) and λwit = Dui (τit)u′
(
Dui (τit)cit

)
. Use the Euler equation, or

costate dynamics:

λ̇wit = λwit
(
ρ+ ηḡi − r?t

)
⇒ λwit = λwise

−
∫ s
t

(ρ+ηḡi−r?s )du

for s > t, which gives the Local Cost of Carbon:

LCCit = −λ
S
it

λwit
→
∫ ∞
t

e−(ρ−ni−(1−η)ḡi+δs)(s−t)χ∆i(τis−τ?i )
[
γyyis + γucis

]
e+
∫ s
t

(ρ+ηḡi−r?s )duds ,

LCCit =
∫ ∞
t

e−δs(s−t)−
∫ s
t

(r?u−ni−ḡi)duχ∆i(τis−τ?i )
[
γyyis + γucis

]
ds

This implies that the future damages are discounted faster if r?it > ni + ḡi. Conversely, if growth
rate of population ni and TFP ḡi are high compared to the world interest rate – think of developing
economies – then they would put more weights on future damages on output and consumption per
capita.

C Quantitative model - First-Best

First-Best allocation results from the global welfare maximization of the planner, who has
access to all the instruments:

Wt0 = max
{c,k,ef ,ecer,ex,ēc,ēr}

∑
I
Pi ωi

∫ ∞
t0
e−(ρ−ni−(1−η)ḡi)t u

(
Dui (τit) cit

)
dt

subject to the good and energy resource constraints and the climate system:

∑
i∈I
Pie

(ni+ḡi)t
[
cit + (k̇it+(ni+ḡi+δ)kit) + νfi (exit,Rit) + κcie

c
it + κrite

r
it

]
=
∑
i∈I
Pie

(ni+ḡi)tDi(τit)zitF (kit, efit, ecit, erit) [φwt ]

Efit =
∑
i∈I
Pie

(ni+ḡi)t efit =
∑
i∈I

e(ni+ḡi)texit [µft ] ēci = eci [µcit] ēri = eri [µrit]

Ṡt = Et − δsSt Et :=
∑
I
Pie

(ni+ḡi)t(ξfefit + ξcecit
)

[φSt ]

τ̇it = ζ
(
∆iχSt − (τit − τit0)

)
[φτit]

Let us define several objects: total population Pt = ∑
i∈I Pie

nit, P = Pt0 = ∑
i Pi and global

population growth rate:
nt = 1

Pt

∑
i∈I

niPie
nit

and the welfare-relevant discount rate:

Pe−
∫ t
t0
ρ̄sds =

∑
i∈I

ωiPie
−(ρ−ni−(1−η)ḡi)t

ρ̄t = 1
P
∑
i∈I

(ρ−ni−(1−η)ḡi)ωiPie
−(ρ−ni−(1−η)ḡi)t−

∫ t
t0
ρ̄sds =

∑
i∈I(ρ−ni−(1−η)ḡi)ωiPie−(ρ−ni−(1−η)ḡi)t∑

i∈I ωiPie
−(ρ−ni−(1−η)ḡi)t
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Note, all the analysis can accomodate time-varying population growth rate nit and time-varying
TFP growth ḡit.

First-Best Optimal Control Problem – Pontryagin Principle
The Hamiltonian for the Social planner is:

Hfb(s, c, φ) =
∑
I
ωi Pi e

−(ρ−ni−(1−η)ḡi)t u
(
Dui (τit) cit

)
+e−

∫ t
t0
ρ̄sds

φwt
∑
i∈I
Pie

(ni+ḡi)t
(
Di(τit)zitF (kit, efit, ecit, erit)− (ni+ḡi+δ)kit − eνi(ni+ḡi)tνfi (exit,Rit)− κciecit − κriterit − cit

)
+ e
−
∫ t
t0
ρ̄sds

µft
∑
i∈I
Pie

(ni+ḡi)t
(
exit − e

f
it

)
+ e
−
∫ t
t0
ρ̄sds

φSt

{∑
I
Pie

(ni+ḡi)t(ξfefit + ξcecit
)
− δsSt

}
+
∑
i∈I

ωi Pi e
−(ρ−ni−(1−η)ḡi)tφτit ζ

(
∆iχSt − (τit − τit0)

)
Pontryagin maximum principle, optimality conditions, first for controls {c, ef , ec, er, ex}

• Consumption [cit]

ωi Pi e
−(ρ−ni−(1−η)ḡi)t uc

(
Dui (τit) cit

)
= e
−
∫ t
t0
ρ̄sds

φwt Pie
(ni+ḡi)t

ωi e
−(ρ+ηḡi)t+

∫ t
t0
ρ̄sdsDui (τit)u′

(
Dui (τit) cit

)
= φwt

• Energy sources [efit], [ecit], [erit]

φwt MPefit = Di(τit)zitFef (kit, efit, ecit, erit) = µft − ξfφSt
MPecit = Di(τit)zitFec(kit, efit, ecit, erit) = κci − ξcφSt MPerit = κri

• Energy extraction [exit]
φwt e

νi(ni+ḡi)tνfi ex(exit,Rit) = µft

eνi(ni+ḡi)tν̄i
( exit
Rit

)νi
= µft
φwt

note that ex is the extraction rate per effective capita: with population/TFP growth, the
marginal cost become larger.

• Note that we simplify the problem by avoiding treating ecit and ēcit and erit and ērit as separate
variables.

Pontryagin maximum principle, optimality conditions, second for states {kit,St, τit}it

• Capital [ki]

φ̇wt = φwt ρ̄t −H
fb
k (s, c, λ) = φwt ρ̄t + φwt (ni + ḡi)− φwt (MPkit − δ)

φ̇wt = φwt
(
ρ̄t + ni + ḡi − (MPkit − δ)

)
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Note if that there is only one country, we get ρ̄t = ρ− ni − (1−η)ḡi and then we obtain the
standard Euler equation φ̇wt = φwt (ρ+ ηḡi − rkit), with rkit = MPkit − δ

• Carbon concentration in atmosphere [St]

φ̇St = φSt
(
ρ̄t + δs

)
−
∑
i∈I

ωiPie
−(ρ−ni−(1−η)ḡi)t+

∫ t
t0
ρ̄sds

ζ∆iχ φ
τ
it

• Temperature [τit], normalized by e−(ρ−ni−(1−η)ḡi)t local discounting

φ̇τit = φτit
(
ρ−ni−(1−η)ḡi

)
−Hfbτ (s, c, λ)

φ̇τit = φτit
(
ρ−ni−(1−η)ḡi + ζ

)
+ ωiu

′(Dui (τit) cit
)
Dui (τit)(τit−τ?i )γucit + e

−
∫ t
t0
ρ̄sds+(ni+gi)t+(ρ−ni−(1−η)ḡi)t

φwt (τit−τ?i )γyyit

Proof of Proposition 6

Solving for the shadow value of temperature φτit and carbon φSt

φ̇τit = φτit
(
ρ−ni−(1−η)ḡi + ζ

)
+ e
−
∫ t
t0
ρ̄sds+(ρ+ηḡi)t

φwt (τit−τ?i )[γyyit + γucit]

φτit0 =
∫ ∞
t0

e−(ρ−ni−(1−η)ḡi+ζ)(t−t0)e
−
∫ t
t0
ρ̄sds+(ρ+ηḡi)t

φwt (τit−τ?i )[γyyit + γucit]

φτit0 =
∫ ∞
t0

e
−
∫ t
t0
ρ̄sds−(ζ−ni−ḡi)(t−t0)

φwt (τit−τ?i )[γyyit + γucit]

Solving for the SCCi, we get:

φSt0 = −
∫ ∞
t0

e
−
∫ t
t0
ρ̄sds−δs(t−t0)∑

i∈I
ωiPie

−(ρ−ni−(1−η)ḡi)(t−t0)+
∫ t
t0
ρ̄sds

ζ∆iχ φ
τ
itdt

φSt0 = −
∫ ∞
t0

e−δs(t−t0)∑
i∈I

ωiPie
−(ρ−ni−(1−η)ḡi)(t−t0)ζ∆iχ φ

τ
itdt

φSt0 −−−→ζ→∞
−
∫ ∞
t0

e−δs(t−t0)∑
i∈I

ωiPie
−(ρ−ni−(1−η)ḡi)(t−t0) χ∆i(τit−τ?i )

[
γyyit + γucit

]
φwt dt ,

Realizing that the marginal value of wealth:

φ̇wt = φwt
(
ρ̄t + ni + ḡi − (MPkit − δ)︸ ︷︷ ︸

=rkit

)
⇒ φwt0 = φwt e

−
∫ t
t0

(ρ̄s+ni+ḡi−rkis)ds

This implies that the Social Cost of Carbon defined as SCCt0 = −φSt0
φwt0

can be rewritten as:

−φSt0 −−−→ζ→∞

∫ ∞
t0

e−δs(t−t0)∑
i∈I

ωiPie
−(ρ−ni−(1−η)ḡi)(t−t0) χ∆i(τit−τ?i )

[
γyyit + γucit

]
φwt0e

−
∫ t
t0

(rkis−ρ̄s−ni−ḡi)dsdt ,

SCCt0 →
∫ ∞
t0

∑
i∈I

ωiPie
−[(ρ−ni−(1−η)ḡi)(t−t0)−

∫ t
t0
ρ̄sds]

e
−δs(t−t0)−

∫ t
t0

(rkis−ni−ḡi)ds χ∆i(τit−τ?i )
[
γyyit + γucit

]
dt ,
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The aggregate discount factor is defined as ∑i∈I ωiPie
−(ρ−ni−(1−η)ḡi)(t−t0) = Pe−

∫ t
t0
ρ̄sds, and given

that cit, yit and τit are bounded, we can simplify the expression. Moreover, changing the order of
the sum and integral by Fubini’s theorem, we obtain:

SCCt0 →
∫ ∞
t0

∑
i∈I

ωiPie
−δs(t−t0)−

∫ t
t0

(rkis−ni−ḡi)ds χ∆i(τit−τ?i )
[
γyyit + γucit

]
dt ,

SCCt0 →
∑
i∈I

ωiPi

∫ ∞
t0

e
−δs(t−t0)−

∫ t
t0

(rkis−ni−ḡi)ds χ∆i(τit−τ?i )
[
γyyit + γucit

]
dt ,

SCCt0 →
∑
i∈I

ωiPi LCCit

where the Local Cost of Carbon LCCit is given in Appendix B. Given that, in the competitive
equilibrium, we have free capital flows and frictionless borrowing, it implies rkit = MPkit− δ = r?t ,
which gives the results of Proposition 6. �

D Quantitative model - Second-Best

Second-Best allocation results from the global welfare maximization of the planner, subject
to choice of a global carbon tax, tε, and local lump-sum rebate: tlsit = tε(ξfefit + ξcecit).

Wt0 = max
{c,k,ef ,ecer,ex,ēc,ēr}

∑
I
Pi ωi

∫ ∞
t0
e−(ρ−ni−(1−η)ḡi)t u

(
Dui (τit) cit

)
dt

subject to the good and energy resource market clearing and the climate system:

ẇit =
(
r?t − (ni+ḡi)

)
wit + πfi (qft ,Rit) +Dyi (τit)ziF (kit, efit, ecit, erit)− (r?t + δ)kit

−
(
qft + ξf tεit

)
efit −

(
qcit + ξctεit

)
ecit − qriterit − cit + tlsit , [ψwit ]

Efit =
∑
i∈I
Pie

(ni+ḡi)t efit =
∑
i∈I

e(ni+ḡi)texit [µft ] Bt =
∑
i∈I
Pie

(ni+ḡi)t(wit − kit) = 0 [µbt ]

ēci = eci [µcit] ēri = eri [µrit]

Ṡt = Et − δsSt Et :=
∑
I
Pie

(ni+ḡi)t(ξfefit + ξcecit
)

[ψSt ]

τ̇it = ζ
(
∆iχSt − (τit − τit0)

)
[ψτit]

as well as the optimality conditions of the agents of the Competitive equilibrium

[kt] MPkit = r?t + δ [υkit]

[xt] MPexit = Dyi (τit)zi ∂xF (kit, efit, ecit, erit) = qxit for x ∈ {f, c, r} [υxit]

[ext ] qft = νfi ex(exit,Rit) [θxit]

Using the Primal approach, we can write the Hamiltonian, where the states are {wit,St, τit}it, and
the controls are {cit, bit, kit, efit, ecit, erit, exit, ēcit, ērit}it, and prices {r?t , q

f
t ,wit, q

c
it, q

r
it}it and where each
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country i variable is discounted by ρ−ni−(1−η)ḡi:

Hsb(s, c,ψ) =
∑
I
ωi Pi e

−(ρ−ni−(1−η)ḡi)t u
(
Dui (τit) cit

)
+
∑
i∈I

ψwitωi Pie
−(ρ−ni−(1−η)ḡi)t

((
r?t − (ni+ḡi)

)
wit +Di(τit)zitF (kit, efit, ecit, erit)

+ πfi (qft ,Rit)− (r? + δ)kit −
(
qft + ξf tεit

)
efit −

(
qcit + ξctεit

)
ecit − qriterit − cit + tlsit

)
+
∑
i∈I
Pie
−(ρ−ni−(1−η)ḡi)t[µcit(ēcit − ecit) + µrit(ērit − erit)]

+ e
−
∫ t
t0
ρ̄sds

µft
∑
i∈I
Pie

(ni+ḡi)t
(
exit − e

f
it

)
+ e
−
∫ t
t0
ρ̄sds

µbt
∑
i∈I
Pie

(ni+ḡi)t
(
wit − kit

)
+ e
−
∫ t
t0
ρ̄sds

ψSt

{∑
I
Pie

(ni+ḡi)t(ξfefit + ξcecit
)
− δsSt

}
+
∑
i∈I

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψτit ζ

(
∆iχSt − (τit − τit0)

)
+
∑
i∈I

ωi Pie
−(ρ−ni−(1−η)ḡi)t

[
υfit(q

f
t +ξf tε −MPefit) + υcit(qcit+ξctε −MPecit) + υrit(qrit −MPerit) + υkit(r?t + δ −MPkit)

]
+
∑
i∈I

ωi Pie
−(ρ−ni−(1−η)ḡi)t

[
θxit
(
νfi ex(exit,Rit)− q

f
t

)
+ θcit(κcit − qcit) + θrit(κrit − qrit)

]

PMP: Optimality conditions for the controls {cit, bit, kit, efit, ecit, erit, exit, ēcit, ērit}it are:

• Consumption:
ωi Piu

(
Dui (τit) cit

)
= ψwitωi Pi

• Capital choice:

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit [MPkit − δ − r?t ]− e

−
∫ t
t0
ρ̄sds

µbt
∑
i∈I
Pie

(ni+ḡi)t

−ωiPie−(ρ−ni−(1−η)ḡi)t[υfit∂kMPefit + υcit∂kMPecit + υrit∂kMPerit + υkit∂kMPkit
]

= 0

µbt = −e−[(ρ+ηḡi)t−
∫ t
t0
ρ̄sds]

ωi
[
υfit∂kMPefit + υcit∂kMPecit + υrit∂kMPerit + υkit∂kMPkit

]
The multiplier µbt represents the shadow value of liquidity of aggregate bonds. If we increased
bond supply Bt, it would decrease the interest rate and improve the ability of firms to borrow
and invest, decreasing the marginal value of capital. This redistributive effect has an impact on
the firm inputs optimality conditions for input x, written with υxit∂kMPxit. As a result, µbt is
the equilibrium value equalizing these different redistributive/distortive effects.

• Energy extraction – Oil-gas (Fossil) [exit]

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit [q

f
t − ν

f
i ex(exit,Rit)] + e

−
∫ t
t0
ρ̄sds

µft Pie
(ni+ḡi)t

+ ωi Pi e
−(ρ−ni−(1−η)ḡi)tθxitPiν

f
i exex(exit,Rit)

µft = −e−[(ρ+ηḡi)t−
∫ t
t0
ρ̄sds]

ωi θ
x
itPie

(ni+ḡi)νfi exex(exit,Rit)
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The multiplier µft is the shadow value of liquidity of aggregate oil-gas supply. If we increased
supply Eft , it would decrease the oil-gas price rate qft going down the supply curve, as denoted
by the curvature νfi exex and weighted by the shadow value of optimality of the fossil firm’s
extraction. Note also that we scaling the curvature of the cost by population Pie(ni+ḡi)t –
population growth push extraction along the supply curve.

• Energy production (Coal and renewable)

ωi Pi e
−(ρ−ni−(1−η)ḡi)tµcit = 0

ωi Pi e
−(ρ−ni−(1−η)ḡi)tµrit = 0

There’s no redistribution effects across countries through the market clearing, due to the fact
that (i) the coal (and renewable) are traded locally, and (ii) there are no profits from coal and
renewable production.

• Energy consumption – Oil-gas (Fossil)

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit [MPefit − q

f
t ]− e−

∫ t
t0
ρ̄sds

µft Pie
(ni+ḡi)t + ξfe

−
∫ t
t0
ρ̄sds

ψSt Pie
(ni+ḡi)t+

− ωiPie−(ρ−ni−(1−η)ḡi)t[υfit∂efMPefit + υcit∂efMPecit + υrit∂efMPerit + υkit∂efMPkit
]

= 0

ωi Pi e
−(ρ+ηḡi)t+

∫ t
t0
ρ̄sds

ψwitξ
f tεt = Piµ

f
t − PiξfψSt + ωiPie

−(ρ+ηḡi)t+
∫ t
t0
ρ̄sds[

υfit∂efMPefit + υcit∂efMPecit + υrit∂efMPerit + υkit∂efMPkit
]

• Energy consumption – Coal

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit [MPecit − qcit]− ωi Pi e−(ρ−ni−(1−η)ḡi)tµcit + ξce

−
∫ t
t0
ρ̄sds

ψSt Pie
(ni+ḡi)t+

− ωiPie−(ρ−ni−(1−η)ḡi)t[υfit∂ecMPefit + υcit∂ecMPecit + υrit∂ecMPerit + υkit∂efMPkit
]

= 0

ωi Pi e
−(ρ+ηḡi)t+

∫ t
t0
ρ̄sds

ψwitξ
ctεt = −PiξcψSt + ωiPie

−(ρ+ηḡi)t+
∫ t
t0
ρ̄sds[

υfit∂ecMPefit + υcit∂ecMPecit + υrit∂ecMPerit + υkit∂ecMPkit
]

• Energy consumption – Renewable

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit [MPecit − qrit]− ωi Pi e−(ρ−ni−(1−η)ḡi)tµrit+

− ωiPie−(ρ−ni−(1−η)ḡi)t[υfit∂erMPefit + υcit∂erMPecit + υrit∂erMPerit + υkit∂efMPkit
]

= 0

⇒
[
υfit∂ecMPefit + υcit∂ecMPecit + υrit∂ecMPerit + υkit∂ecMPkit

]
= 0

PMP: Optimality conditions for the controls over prices {r?t , q
f
t ,wit, q

c
it, q

r
it}it

• Interest rate [r?t ]∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit [wit − kit] +

∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tυkit = 0

The redistributive effect on agents’ budget, weighted by ψwit should compensate for the dis-
tortionary effect on firms’ optimality of capital, weighted by shadow value υkit.
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• Fossil energy price: [qft ]

∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit [exit − e

f
it] +

∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)t[υfit − θxit] = 0

• Coal energy price: [qcit]

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit [ēci − ecit] + ωi Pi e

−(ρ−ni−(1−η)ḡi)t[υcit − θcit] = 0

⇒ υcit = θcit

• Renewable energy price: [qrit], similarly:

⇒ υrit = θrit

For coal and renewable, since the price is local, the "distortive/redistributive" effect on the
supply equals the one of its demand.

• Wages wit are determined directly by the Marginal Product of Labor MP`it, since the labor
supply is inelastic and normalized to 1.

• Carbon tax/Carbon price [tε]

∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)t[ξfυfit + ξcυcit] = 0

The optimal carbon tax level balances out all the distortions for each country, for oil-gas and
coal, according to shadow values υfit and υcit.

PMP: Optimality conditions for the states {wit,St, τit}it.

• Wealth [wit]

ψ̇wit = ψwit(ρ−ni−(1−η)ḡi)−Hsbw (s, c,ψ)

ψ̇wit = ψwit(ρ+ ηḡi − r?t ) + 1
ωiPi

e
−
∫ t
t0
ρ̄sds+(ρ+ηḡi)t

µbt

µbt = e
−[(ρ+ηḡi)t−

∫ t
t0
ρ̄sds]

ωi
[
υfit∂kMPefit + υcit∂kMPecit + υrit∂kMPerit + υkit∂kMPkit

]
ψ̇wit = ψwit(ρ+ ηḡi − r?t ) + e

−
∫ t
t0
ρ̄sds+(ρ+ηḡi)t

e
−[(ρ+ηḡi)t−

∫ t
t0
ρ̄sds] 1

Pi

[
. . . ]

ψ̇wit = ψwit(ρ+ ηḡi − r?t ) + 1
Pi

[
υfit∂kMPefit + υcit∂kMPecit + υrit∂kMPerit + υkit∂kMPkit

]
This implies time-varying liquidity motives for the marginal value of wealth. Abstracting from
discounting ρ−ni−(1−η)ḡi and ρ̄t, if µbt is positive (the planner would like to increase the supply
of bond, decreasing return), it needs to be compensated for higher marginal value of wealth ψwit
in the future (ψ̇wit is higher if µbt > 0) which implies higher consumption, today at time t.
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• Temperature [τit]

ψ̇τit = ψτit(ρ−ni−(1−η)ḡi)−Hsbτ (s, c,ψ)

ψ̇τit = ψτit(ρ−ni−(1−η)ḡi + ζ) + γy(τit−τ?i )Dyi (τit)︸ ︷︷ ︸
−∂τDy

ziF (kit, eit)ψwit + γu(τit−τ?i )Dui (τit)︸ ︷︷ ︸
−∂τDu

u′
(
Du(τit)cit

)
cit

ψ̇τit = ψτit(ρ−ni−(1−η)ḡi + ζ) + (τit−τ?i )[γyyit + γucit]ψwit

• Carbon concentration [St]

ψ̇St = ψSt ρ̄t −Hsbτ (s, c,ψ)

ψ̇St = ψSt (ρ̄t + δs)−
∑
i∈I

ωi Pi e
−(ρ−ni−(1−η)ḡi)t+

∫ t
t0
ρ̄sds

ζ∆iχψ
τ
it

Proof of Proposition 8
Solving for the differential equations for the marginal value of temperature ψτit and carbon ψSit.

ψτit =
∫ ∞
t

e−(ρ−ni−(1−η)ḡi+ζ)(s−t)(τis−τ?i )
[
γyyis + γucis

]
ψwisds

ψSt = −
∫ ∞
t

e−δs(s−t)−
∫ s
t
ρ̄sds

∑
i∈I

ωi Pi e
−(ρ−ni−(1−η)ḡi)(s−t)+

∫ s
t
ρ̄sdsζ∆iχψ

τ
isds

ψSt = −
∫ ∞
t

e−δs(s−t)
∑
i∈I

ωi Pi e
−(ρ−ni−(1−η)ḡi)(s−t)ζ∆iχψ

τ
isds

ψSt −−−→
ζ→∞

−
∫ ∞
t

e−δs(s−t)
∑
i∈I

ωi Pi e
−(ρ−ni−(1−η)ḡi)(s−t)∆iχ (τis−τ?i )

[
γyyis + γucis

]
ψwisds

Using the dynamics for the marginal value of wealth;

ψwit =
∫ T

t
e−(ρ+ηḡi)(s−t)+

∫ s
t
r?uduῡkisds+ e−(ρ+ηḡi)(T−t)+

∫ T
t
r?uduψwiT

ῡkit = 1
Pi

[
υfit∂kMPefit + υcit∂kMPecit + υrit∂kMPerit + υkit∂kMPkit

]
First, let us assume that ῡkit ≈ 0 there are no liquidity effects, giving ψwit = e−(ρ+ηḡi)(T−t)+

∫ T
t
r?uduψwiT .

I define the social welfare weights:

ψ
w
t = 1

Pt

∑
i∈I

ωiPie
−[(ρ−ni−(1−η)ḡi)t−

∫ t
t0
ρsds]

ψwit

ψ̂wit = ωiPiψ
w
it

ψ
w
t
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This allow to simplify the marginal value of carbon:

ψSt → −
∫ ∞
t

e−δs(s−t)
∑
i∈I

ωi Pi e
−(ρ−ni−(1−η)ḡi)(s−t)∆iχ (τis−τ?i )

[
γyyis + γucis

]
ψwisds

ψSt → −
∫ ∞
t

e−δs(s−t)
∑
i∈I

ωi Pi e
−(ρ−ni−(1−η)ḡi)(s−t)∆iχ (τis−τ?i )

[
γyyis + γucis

]
e+(ρ+ηḡi)(s−t)−

∫ s
t
r?uduψwitds

This implies the Social Cost of Carbon:

SCCt = −ψ
S
t

ψ
w
t

=
∫ ∞
t

e−δs(s−t)−
∫ s
t
r?udu

∑
i∈I

e(ni+ḡi)(s−t)∆iχ (τis−τ?i )
[
γyyis + γucis

]ωi Pi ψwit
ψ
w
t

ds

SCCt =
∑
i∈I

ψ̂witLCCit ψ̂wit = ωi Pi ψ
w
it

ψ
w
t

LCCit =
∫ ∞
t

e−δs(s−t)−
∫ s
t

(r?u−ni−ḡi)du ∆iχ (τis−τ?i )
[
γyyis + γucis

]
ds

which gives the results of Proposition 8. �

Proof of Proposition 9
Solving for the optimal carbon tax involves for solving for the objects in the optimality condition
for energy choices. Take the energy choice for fossil-fuels:

ωi Pi e
−(ρ+ηḡi)tψwitξ

f tεt = e
−
∫ t
t0
ρ̄sds

Piµ
f
t − e

−
∫ t
t0
ρ̄sds

Piξ
fψSt

+ωiPie−(ρ+ηḡi)t[υfit∂efMPefit + υcit∂efMPecit + υrit∂efMPerit + υkit∂efMPkit
]

We need to solve each of the objects in turn: (i) the marginal value of carbon, ψSt , related to the
Social Cost of Carbon, as seen in the previous proposition, (ii) the marginal value of oil supply
µft , related to the energy supply redistribution, (iii) the marginal value of firms’ inputs optimality
conditions υfit, υcit, υrit, υkit.

Supply redistribution
We want to solve for µft . First, take the optimality for [qft ].

∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tθxit =

∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit [exit − e

f
it] +

∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tυfit

The redistribution effect on oil-gas quantity between exporter and importers exit − efit exactly
compensate – for the planner – the equilibrium effect on demand υfit and supply θxit.

Second, using the optimality of [exit]:

µft = −e−[(ρ+ηḡi)t−
∫ t
t0
ρ̄sds]

ωi θ
x
it Pie

(ni+ḡi)t νfi exex(exit,Rit)

ωi Piθ
x
it = − Pie

−(ni+ḡi)t

νfi exex(exit,Rit)
e
−[(ρ+ηḡi)t−

∫ t
t0
ρ̄sds]

Piµ
f
t
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As a result, we obtain:

∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tθxit = −µft

∑
i

Pie
(ni+ḡi)t

νfi exex(exit,Rit)
e

(ρ+ηḡi)t−
∫ t
t0
ρ̄sds

e−(ρ−ni−(1−η)ḡi)t

∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tθxit = −e−

∫ t
t0
ρ̄sds

µft
∑
i

1
νfi exex(exit,Rit)

⇒ e
−
∫ t
t0
ρ̄sds

µft = −
[∑

i

νfi exex(exit,Rit)−1
]−1∑

i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tθxit

⇒ e
−
∫ t
t0
ρ̄sds

µft =
[∑

i

νfi exex(exit,Rit)−1
]−1{∑

i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit [e

f
it − e

x
it]−

∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)tυfit

}

Demand distortion
We use a Nested CES framework for production. I express the formula without time indices for
simplicity.

Energy ei =
(∑

`

(ω`)
1
σe (e`i)

σe−1
σe

) σe
σe−1 Output yi = zi

(
(1−ε)

1
σ (zei ei)

σ−1
σ +ε

1
σ (kαi `1−αi )

σ−1
σ

) σ
σ−1

Optimality for fossil energy demand features this complicated term, which we can simplify using
the CES structure. The curvature of production, represented by terms like ∂efMPefi are related
the the elasticity of energy use.

ῡfi =
[
υfi ∂efMPefi + υci∂efMPeci + υri ∂efMPeri + υki ∂efMPki

]
= 1
efi

[
− υfi (qf+ξf tε)

[1−sf
σe

+ sf
1−se
σy

]
+ υci (qci+ξf tε)sfi

[ 1
σe
− 1−se

σy
]

+ υri q
r
i s
f
i

[ 1
σe
− 1−se

σy
]

+ υki (r?+δ̄)s
er/y
i

σy

]

with Energy share in production: sei = eiq
e
i

yi
, Fossil share in energy mix sfi = efi q

f

eiqei
and similarly

sci = eci q
c
i

eiqei
and sri = eri q

r
i

eiqei
.

When we normalize by ψ, we obtain:

̂̄υfi = 1
efi

[
− υ̂fi (qf+ξf tε)

[1−sf
σe

+ sf
1−se
σy

]
+ υ̂ci (qci+ξf tε)sfi

[ 1
σe
− 1−se

σy
]

+ υ̂ri q
r
i s
f
i

[ 1
σe
− 1−se

σy
]

+ υ̂ki (r?+δ)s
er/y
i

σy

]

We can obtain similar formulas for ̂̄υfit, ̂̄υcit, ̂̄υrit, and ̂̄υkit.
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Rewriting the optimal carbon tax

Take the optimality condition for energy choice, where I replaced ῡfit. Sum over countries i and
normalize by world population Pt

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwitξ

f tεt = e
−
∫ t
t0
ρ̄sds

Pie
ni+ḡiµft − e

−
∫ t
t0
ρ̄sds

Piξ
fψSt + ωiPie

−(ρ−ni−(1−η)ḡi)t ῡfit

ξf tεt
∑
i∈I

ωi Pi e
−(ρ−ni−(1−η)ḡi)tψwit = e

−
∫ t
t0
ρ̄sds∑

i

Pie
(ni+ḡi)t

︸ ︷︷ ︸
=Pt

[
µft − ξfψSt

]
+
∑
i

ωiPie
−(ρ−ni−(1−η)ḡi)t ῡfit

ξf tεtψ
w
t =

[
µft − ξfψSt

]
+
∑
i

ωiPie
−(ρ−ni−(1−η)ḡi)t+

∫ t
t0
ρ̄sds

ῡfit

We define:

Supply Redistributiont = µft
ψ
w
t

=
[∑

i

νfi exex(exit,Rit)−1
]−1{∑

i

ωi Pi e
−(ρ−ni−(1−η)ḡi)t+

∫ t
t0
ρ̄sdsψwit

ψ
w
t

[exit − e
f
it]

+
∑
i

ωi Pi e
−(ρ−ni−(1−η)ḡi)t+

∫ t
t0
ρ̄sds υ

f
it

ψ
w
t

}
=
[∑

i

(νfi exex)−1
]−1{∑

i

ψ̂wit [exit − e
f
it] +

∑
i

υ̂fit

}

Demand Distortiont = 1
ψ
w
t

∑
i

ωiPie
−(ρ−ni−(1−η)ḡi)t+

∫ t
t0
ρ̄sds

ῡfit =
∑
i

̂̄υfit
We obtain:

ξf tεt = ξfSCCt +
[∑

i

(νfi exex)−1
]−1{∑

i

ψ̂wit [exit − e
f
it] +

∑
i

υ̂fit

}
+
∑
i

̂̄υfit
ξf tεt = ξfSCCt + Supply Redistributiont + Demand Distortiont

This implies the formula in Proposition 9 �.
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