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Abstract

What is the optimal policy to fight climate change? Taxation of carbon and fossil fuels has

strong redistributive effects across countries: (i) curbing energy demand is costly for developing

economies, which are the most affected by climate change in the first place, (ii) taxation has strong

general equilibrium effects through energy markets and trade reallocation. Through the lens of

an Integrated Assessment Model (IAM) with heterogeneous countries, I show that optimal carbon

policy depends crucially on the availability of redistribution instruments. After characterizing the

Social Cost of Carbon (SCC), I derive formulas for second-best fossil fuel taxes in the presence

of inequalities in climate damages and incomes, redistributive effects through energy and good

trade, and participation constraints if countries can exit climate agreements. I show that a uniform

carbon should be reduced twofold in the presence of inequality. If country-specific carbon taxes are

available, the distribution of carbon prices is proportionally related to the level of income: poor

and hot countries should pay lower energy taxes than rich and cold countries. These qualitative

results are general and I propose extensions with international trade, uncertainty, or participation

constraints when countries can leave climate agreements.
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1 Introduction

The climate is warming due to greenhouse gas emissions generated by economic activity.

More than 500 gigatons of carbon have been emitted through the burning of fossil fuels, and global

atmospheric temperatures have increased by more than 1.1◦C since the industrial revolution. The

sources of these emissions are unequally distributed: developed economies account for over 65%

of cumulative greenhouse gas (GHG) emissions – ∼ 25% each for the European Union countries

and the United States, while some developing countries have barely emitted anything compared to

their population level. In Figure 1, we see how much individuals in each country have exceeded

their carbon budget – a fixed number of gigatons of CO2 per inhabitant: countries in red have

emitted cumulated emissions per capita much higher than their allocated budget. This measure of

emissions highly correlates with local development and GDP in each region as seen in Figure 2.

Figure 1: Excess of carbon budget

Figure 2: Local GDP

However, the consequences of global warming are also unequal: the increase in temperatures

will disproportionately affect developing countries where the climate is already warm. Most emerg-

ing and low-income economies lie geographically closer to the tropics and the equator and tend to

be most vulnerable to global warming. Figure 3 displays an adaptation index that compiles differ-

ent measures of likelihood and vulnerability of the region to extreme events, loss in biodiversity,

drought and heatwaves, or sea level rising among other factors. We observe that this correlates

very closely with local temperatures as seen in Figure 4. Moreover, these indices covary negatively

with the region’s GDP as seen above.

These two layers of inequalities raise the question: which countries will be affected the most by

climate change? Do these different dimensions of heterogeneity matter when measuring the future

costs of global warming and optimal carbon taxation? In that context, we need to understand how

to design climate policy in the presence of externalities and inequality. Indeed, carbon taxation has

strong redistributive effects across countries. Should inequality – development level, temperature,

and the ownership of fossil fuel reserves, etc. – be taken into account when implementing climate

policy?
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Figure 3: Adaptation Index

Figure 4: Local temperature

To answer these classical questions in climate economics, I develop a simple yet flexible model

of climate economics. This extends the standard Neoclassical Growth – Integrated Assessment

model to include heterogeneous regions. These regions – or individual countries – are

(i) heterogeneous in income and level of development and several other dimensions, (ii) could be

affected differently by the global climate and (iii) are interacting with each other through good and

energy markets as well as the climate system through emissions and temperature. This theoretical

framework is of the same family as heterogeneous agent models, or Mean-Field Games.

Since the quantitative framework is very general, I first provide an extremely simple toy model

to provide intuitions. Keeping the same notion of externality and interactions in energy markets,

the design of optimal policy and the characterization of the Social Cost of Carbon (SCC) carry

through. The main result is the following. In the presence of inequality and climate externality, a

world social planner would solve both issues at once. First, they would impose a carbon tax that

accounts for the climate externality, i.e. the Social Cost of Carbon, in a Pigouvian fashion. Second,

they would redistribute across countries using lump-sum transfers, for example taxing lump-sum

European and American countries and transferring to South Asian and African Countries. It is

well-known that in addition to the tragedy of the commons, there are strong policy constraints that

prevent perfect redistribution even in the case of optimal taxation policy

As a result, I consider a Second-Best Ramsey policy and a larger set of suboptimal policies

that would search for an alternative way to fight climate change. Despite being unable to redis-

tribute freely across countries due to limitations on lump-sum transfers, a planner adapts its tax

policy. I show that optimal taxation changes in three ways compared to the standard Pigouvian

result in Representative Agents models: (i) the level of the SCC accounts for inequality and the

correlation between poverty and vulnerability to climate change, (ii) the taxation of energy also

account for redistributive effects of the energy price – due to change in terms-of-trade between

exporters and importers and (iii) the distribution of carbon tax is correlated with the level of de-

velopment: richer/advanced economies should be imposed a higher tax simply because they have

lower marginal utilities of consumption and can hence “afford” to pay higher taxes without being

excessively affected. These findings are very general and I develop a quantitative model to provide
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policy recommendations.

Using a quantitative macroeconomics model with several market forces and frictions, I com-

pute the optimal policy in that context. First, I evaluate the heterogeneous welfare costs of global

warming in a panel of 24 countries. In this framework, countries are heterogeneous in many dimen-

sions – population, productivity, temperature, etc. – and in each of them a household consumes,

borrows subject to credit constraints, invests in physical capital, produces homogenous goods us-

ing capital and energy, and chooses between carbon-intensive fossil fuels and carbon-neutral clean

energy. Moreover, different countries are interacting on the world market for fossil energy where

energy firms extract fossil fuels, implying different energy rents. The different countries are also

interacting through the global climate: both atmospheric and local temperatures rise when the

cumulative stock of emissions rises. However, climate damage is an externality and there are no

incentives to curb emissions. This model is very general and is flexible enough to add numerous

extensions. Simulating the model sequentially in continuous time amounts to solving differential

equations, and I develop a new methodology to handle the solution of this infinite-dimensional

system.

Second, in this framework, I design the optimal Ramsey policy. Using advances in public

finance and optimal taxation in heterogeneous agents modeling, I show how to design the plan-

ner’s problem and decentralize the optimal taxes with heterogeneous regions. I show how optimal

Pigouvian taxes should be adapted to account for (i) redistribution effects of fossil fuel taxations,

(ii) the social cost of carbon due to climate externalities, (iii) the effect of these taxes on energy

markets and on the redistribution of the fossil energy rent and (iv) the distortion of energy choice

both in level and in composition between different sources. As a result, the world optimal carbon

policy may not be as simple as Carbon tax = Social Cost of Carbon, and the taxation should be

adapted to the specific situation of each country.

Third, using this theoretical model, I derive several closed-form results to inform the various

mechanisms at hand in this environment. First, inequality affects the Social Cost of Carbon as

the world SCC is a weighted average of local marginal damages, with weights representing the

distributional effects: with the actual distribution of temperatures and outputs, the SCC is higher in

this heterogeneous agent world than in a representative agent one. Moreover, in standard Integrated

Assessment Models, which factors determine the Social Cost of Carbon? I derive a simple yet

general formula and show that the price of carbon is linear in GDP/level of development of the

country and in the temperature gap from optimal climate, where proportionality constants depend

on climate and damage parameters. These results contrast with the recent developments of this

literature which rely on computational models that tend to be opaque and sometimes theoretically

untractable.

Our main quantitative result is that accounting for inequality implies changing the optimal

carbon tax in two ways. First, the Social Cost of Carbon, when redistribution instruments are

absent, is approximately 40% lower, from $75 to $47: the tax should put more weight on poorer
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countries that have a higher marginal value of wealth. Second, accounting for terms of trade

redistribution motives on the energy markets, the planner would put weight depending on whether

countries are importers or exporters of fossil energy. It implies a larger tax to distort supply: a

higher tax would lower the equilibrium price of fossil fuels, which would benefit poor importers.

This motive would increases the tax from $47 to $115 per tons of Carbon. The net effect is positive.

Forthcoming results would show how these effects would change over time with climate change

dynamics, and the change in the valuation of fossil reserves.

Related literature

This paper stands at the intersection of several subfields of macroeconomics, climate eco-

nomics and computational and mathematical economics.

First, since this project considers an Integrated Assessment model (IAM) with heterogeneous

countries, this is naturally related to the classical approach of IAM by Nordhaus. I use a similar

neoclassical model with a climate block and damage of higher temperatures, as in the DICE model,

Nordhaus (1993) Nordhaus (2017). Regarding policy design, few papers actually build optimal

taxation policies to tackle climate change. Golosov, Hassler, Krusell and Tsyvinski (2014) is the

major exception and develops the first-best policy in a representative agent model and optimal

tax as a function of the SCC and a closed-form formula of the climate parameters. Moreover,

Hillebrand and Hillebrand (2019) develop several transfer policies that are Pareto improvement to

the competitive.

Second, I also relate to the scientific literature that has reexamined the empirical performance

of IAMs, review the calibration, and derive analytical formula as in Dietz, van der Ploeg, Rezai

and Venmans (2021), Dietz and Venmans (2019), Ricke and Caldeira (2014) or Folini et al. (2021).

Adopting the best practice from this literature, I consider a macroeconomic model where I derive

closed-form expressions for the social cost of carbon and the asymptotics of this general class of

model.

Third, and importantly, handling country heterogeneity, I also relate to a booming literature

on computational climate economy models, such as Hassler, Krusell, Olovsson and Reiter (2020),

Krusell and Smith (2022) and Kotlikoff, Kubler, Polbin and Scheidegger (2021b). In a model that

is extremely related, I adopt a different methodology – using the sequential formulation – and I

study the optimal policy when heterogeneity and externality matter for the price of carbon.

Fourth, in a related field, the spatial-economic geography literature has done important ad-

vances in studying the heterogeneous impact of climate change. In this field, important frictions

and adaptation mechanisms have been studied, such as migration, international trade or sector

reallocation, such as Cruz and Rossi-Hansberg (2021), Cruz Álvarez and Rossi-Hansberg (2022),

Rudik et al. (2021) or Bilal and Rossi-Hansberg (2023). In comparison, I assume away strategic

complementarities such as migration or trade, as it would not be tractable in this sequential for-

mulation. However, I do consider forward-looking heterogeneous agents and design optimal policy
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in this context.

Fifth, I also consider specific details to the energy markets that borrow from a literature that

studies market frictions such as exhaustible resources and market power, such as Hotelling (1931),

Heal and Schlenker (2019) and Bornstein, Krusell and Rebelo (2023). I keep the energy market

simple, but I show that the path of emissions and hence the Social Cost of Carbon depends greatly

on the details of the pricing of fossil energy.

Sixth, I develop a framework that is flexible enough to handle aggregate uncertainty, such as

climate risk and business cycle fluctuation. The Stochastic DICE model of Cai and Lontzek (2019)

and Lontzek, Cai, Judd and Lenton (2015) or the general approach to study model uncertainty and

ambiguity aversion applied to climate change in Barnett, Brock and Hansen (2020), Barnett, Brock

and Hansen (2022) are particularly related. If the inclusion of aggregate risk is preliminary in the

present paper, I provide intuitions in the toy model and will integrate this in forthcoming works.

Seventh, I also relate to a thriving literature that studies optimal policy design in Hetero-

geneous Agents models. Solving Ramsey policy, Le Grand et al. (2021), Bhandari et al. (2021a),

Dávila and Schaab (2023) or McKay and Wolf (2022) propose different approach to conduct mon-

etary and fiscal policy in HANK models. In my framework, I solve the Ramsey policy sequentially

and solve climate externalities and Pigouvian taxation in the presence of heterogeneity rather than

managing business cycle fluctuations.

Eighth and lastly, I also integrate advances from the mathematical literature on the Proba-

bilistic Formulation of Mean Field Games. Classical references such as the Lasry-Lions approach

of the PDE system, Cardaliaguet (2013/2018) or even Pham and Wei (2017) all rely on Dynamic

Programming principle. Recently, the solution of the master equation has been very fruitful as in

Cardaliaguet et al. (2015) or Bilal (2021). However, a probabilistic approach has realized that the

Pontryagin maximum principle extends to the stochastic case, as in Yong and Zhou (1999) or the

Mean-Field / McKean Vlasov infinite dimensional case, as in Carmona et al. (2015), Carmona and

Delarue (2018) or Carmona and Laurière (2022). Using this approach in the deterministic case with

shooting algorithms in large dimensions, I solve the model, compute the social cost of carbon and

design optimal policy. For the case with aggregate risk, I borrow intuitions from Carmona et al.

(2016), Bourany (2018) and Carmona and Delarue (2018) to solve the Stochastic FBSDE system.
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2 Toy model

In this section, we develop the simplest version of the quantitative model covered in the next

section. The goal is to provide intuitions on the effects of heterogeneity across countries, the source

of climate externality related to energy markets, and the implementation of optimal policy.

The model is static and all the decisions are taken in one period. Consider two countries i =

N,S, for North and South that are heterogeneous in three dimensions that will be detailed below. A

unique household in each country consumes the good ci that is produced by the representative firm

with energy ei.1 In each of these countries, an energy producer extracts energy and sells this input

at a price qe on international markets. It earns profits and is owned by the household. Moreover,

the countries are subject to climate damage represented by the productivity term Di(S) as in

Nordhaus DICE models. We will describe each agent’s problem in turn. Finally, a government,

whose objective will be specified in the next section, imposes an energy tax tei and distributes

lump-sum transfers tlsi in each country.

First, the Household is passive and consumes their labor income wi, the profit of the energy

firm of it’s country πei and the lump-sum transfers given by the government.

Vi = U(ci)

ci = wi + πei + tlsi [λi]

Second, the representative firm produces a homogeneous good2 using energy ei and household

labor with constant return to scale technologies. We normalize the fixed labor supply to 1, such

that ei represents energy use per capita. The production function F (ei) is thus increasing and

concave in ei, i.e. F ′(e) > 0 and F ′′(e) < 0 and features Inada conditions. This firm maximize

profits:

max
ei
Di(S)ziF (ei)− (qe + tei )ei − wi

where tei is an energy tax paid per unit of energy.

Note that since the good firm’s technology is Constant Return to Scale (CRS), labor income

is simply the residual of firms’ revenue, and hence we can aggregate firms and household budget

into a single constraint:

ci + (qe + tei )ei = Di(S)ziF (ei) + qei ei − ci(ei) + tlsi

Both countries are subject to climate damages Di(S) caused by climate externalities related

1Generalization of this model, with differing Pi, endowments of inputs in the production function (e.g. capital ki
or labor `i), do not change the qualitative implication of this framework, ass we will show in the quantitative model.

2This good can be traded costlessly across countries and its price is the numeraire, and hence normalized to 1.
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to the world energy consumption:

S = S0 +

=GHG emissions︷ ︸︸ ︷
eS + eN

where energy consumption and emissions are measured in Tons of Carbon or CO2. This depends

on the energy mix between fossil fuels used for energy and renewables. However, this is taken as

given in the short run in our static equilibrium. The quantitative model introduces this endogenous

channel of energy choice.

The global carbon emission stock is not internalized by households in their energy consump-

tion decision leading to damage Di(S) that affects country i’s effective productivity, as in standard

Integrated Assessment models, e.g. Nordhaus DICE models.

In each country, an energy producer in extracts energy exi – for example oil, gas or coal –

maximizing its profit, subject to convex cost c(E), i.e. c′(E) > 0 and c′′(E) > 0 that is paid in the

homogenous good.

πei = max
exi

qeexi − ci(exi )

⇒ qe = c′i(E) & πei := c′i(e
x
i )exi − ci(exi )

subject the energy price qe. Since energy is traded without friction on international markets, this

price is set to clear the supply and demand:

eN + eS = exN + exS

Heterogeneity North and South are symmetric in all regards, except for differences in three

parameters. First, the South and the North are different in terms of productivity zi: zS < zN .

Here, we consider a wide definition of zi as productivity residuals that can account for technology,

efficiency, market frictions, and institutions. This results in the North producing more, and being

richer, leading to inequality in consumption.3 Second, we furthermore inequality in energy reserves,

and assume that c′N (e) > c′S(e). This implies that northern countries have larger production and

energy rent. Third, we consider that the Southern country is subject to stronger damages of climate,

DS(S) < DN (S) for all S the stock of carbon emissions. In this sense, the damage parameter

γi = − D
′
i(S)

SDi(S) is higher in the South such that γS > γN . All these differences yield heterogeneity in

consumption in the competitive equilibrium and motives for redistribution.

The Competitive Equilibrium is a system of price qe and allocation {ci, ei, exi }i such that (i)

3Indeed, assuming F (e) is Cobb Douglas F (e) = ¯̀1−αeα, with ¯̀= cst, we obtain αDi(S)zie
α−1
i = qe leading to

ei =
(
αDi(S)zi/q

e)1/(1−α)
yi − qeei =

(
Di(S)zi

)1/(1−α)
(qe)−α/(1−α)[αα/(1−α) − α1/(1−α)]

which is increasing in zi and Di(S).
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the good firm maximizes profits, and (ii) the energy producers choose production exi to maximize

profit, and market clear for both goods and energy:

∑
i=N,S

ci + ci(e
x
i ) =

∑
i=N,S

Di(S)ziF (ei) eN + eS = exN + exS

The competitive equilibrium results in the following optimality conditions. First, for con-

sumption, the multiplier λi represents the marginal value of wealth, i.e. marginal utility of con-

sumption.

λi = U ′(ci) with ci = Di(S)ziF (ei) + qe(exi − ei) + ci(e
x
i ) + tlsi

where consumption depends on production, energy cost, and net energy export.

The second optimality for energy use for production writes as follow:

MPei = qe + tei with MPei := Di(S)ziF
′(ei)

This corresponds to the standard tradeoff Marginal Product of Energy = Energy Price.

This competitive equilibrium is inefficient: Indeed, the climate damages Di(S) are not in-

ternalized, and energy consumption might be too high depending on the economic cost of global

warming Di(S).

Moreover, economic inequality results from the heterogeneity in productivity and climate

damage since cN > cS we have λS > λN . Redistribution from the North to the South could

be desirable from a utilitarian point of view. This inequality in consumption and damages arises

despite trade openness4.

We explore how the Ramsey planner would allocate consumption and energy in such an

environment.

2.1 Social planner allocation with full transfers

Consider a Social Planner who could make the agent’s decisions, subject to the resource

constraints in goods and energy as well as the climate externality.

max
{ci,ei}i=N,S

∑
i=N,S

ωiU(ci)∑
i=N,S

ci + ci(e
x
i ) =

∑
i=N,S

Di(S)ziF (ei) [λ]

eN + eS = exN + exS [µe]

S := S0 + eS + eN

4One could also consider trade and financial autarky and lack of redistribution across countries: production in
one country can not be exported or transferred to another country. That would strengthen that heterogeneity
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where λ is the shadow value of the good market clearing and µe the one of the energy market

clearing. We consider a welfare function, where the countries are weighted with Pareto weights

ωi. In the following, we denote the social planner allocation {ĉi, êi}i=N,S to distinguish it from the

competitive equilibrium.

Choosing the consumption on behalf of the agents yields a redistribution motive:

[ci] λ = ωiU
′(ci) ⇒ ωNU

′(ĉN ) = ωSU
′(ĉS)

Depending on the Pareto weights there is a motive for transferring consumption across countries.

Regarding the choice of energy inputs:

[ei] & [exi ] c′(exi ) =
µe

λ
= Di(S)ziF

′(ei) +
∑
j=N,S

D′j(S)ziF (ei)︸ ︷︷ ︸
=SCC

we see an additional term that represents the cost of emitting one ton of carbon in terms of forgone

production. This term is the social cost of carbon (SCC) in the social planner allocation and

represents the marginal global damage of climate change.

We turn now to how to decentralize such allocation. We consider a planner who has access

to all instruments {tei , tlsi }i, and in particular lump-sum transfers tlsi across countries. The energy

optimality rewrites:

MPei := Di(S)ziF
′(êi) = qe + te

with qe = c′(exi ) te = SCC =
∑
j=N,S

D′j(S)ziF (êj)

Importantly, the carbon tax tei = te is equal to the social cost of carbon. We see that this result

relies on the existence of lump-sum transfers. Indeed, the budget constraint in this equilibrium

allocation writes

ĉi = Di(S)ziF (êi)− (qe + te)êi + qeêxi + ci(ê
x
i ) + tlsi

where the transfers tlsi are such that ωNU ′(ĉN ) = ωSU
′(ĉS). In particular, summing the two budget

constraints5 yields:

tlsN + tlsS = te
∑
i

êi tlsS > 0 tlsN < 0

implying there is potentially lump-sum redistri[[[bution from North to South as we assumed6zS <

zN and θS < θN , under reasonable parametrization for the Pareto weight7. There exists a set of

5with E = êN + êS ∑
i

ĉi + qeE + te
∑
i

êi =
∑
i

Di(S)ziF (êi) + qeE −
∑
i

c(exi ) +
∑
i

tlsi

6Given that tlsi = u′−1( λ
ωi

)−Di(S)ziF (êi)− πei (exit)− (qe + te)êi
7In particular, if the Pareto weight are large enough, i.e. ωS ≥ λ/u′(cS) i.e. more than the weight imposed by

the shadow value of good discounted by marginal utility of the South consumption
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Pareto weights ωi = 1/U ′(ci) – the so-called Negishi weights – such that this motive disappears

tlsS = tlsN .

In the following, we forbid this assumption of lump-sum transfers: indeed if development

aid exists, in practice full redistribution to cover the difference in technology, market frictions and

institutions with lump-sum transfers and taxes is politically unfeasible.

2.2 Ramsey Problem with uniform carbon tax & limited transfers

Consider now a Social Planner that takes into account the constraints that prevent the full

lump-sum redistribution. Subject to competitive equilibrium optimality conditions, and the same

market frictions – climate externality and the absence of financial instruments for transfers across

countries, the planner takes the decisions of consumption and energy to maximize the welfare

function with weights ωi for each country. We denote the Ramsey allocation {c̃i, ẽi}i to distinguish

it from the competitive equilibrium {ci, ei} and the First-best planner allocation {ĉi, êi}.

W = max
{c̃i,ẽi}i

∑
i=N,S

ωiU(ci)

The consumption and energy allocation are subject to the budget constraint, where the household

is imposed a uniform energy tax te. As in Weitzmann (2014), I consider a uniform carbon tax for all

countries, as a social-planner policy resulting from every country agreement. In the next section,

I will consider different tax rates for each country. In both cases, I assume away cross-country

transfers, as the revenue of the tax is redistributed lump-sum t̃lsi = teei. The household-firm

constraint writes:

c̃i + (qe + te)ẽi = Di(S)ziF (ẽi) + (qeẽxi − ci(ẽxi )) + tlsi

A particularity of the Second-Best policy is that agents are still acting optimally. Therefore,

energy is still priced at competitive prices by energy firms, and household/firms still consume energy

optimally:

qe = c′(exi ) qe + te = MPei

As a result, using the Primal Approach in public finance, the Ramsey maximization problem

states

W = max
{c̃i,ẽi,}i

∑
i=N,S

ωi U(ci)

s.t c̃i + (qe+te)ẽi = Di(S)ziF (ẽi) + qeẽxi − ci(ẽxi ) + teẽi [φi] ∀ i = N,S

qe = c′i(ẽ
x
i ) qe+te = MPei [υi] ∀ i = N,S

E = eN + eS = exN + exS S := S0 + eN + eS [µe]
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Before going over the main formula for the Optimal Carbon Taxation, let us introduce some

of the key objects. First, the Lagrange Multipliers φi represent the Social Value of relaxing the

budget constraint. The consumption allocation yield simply:

ωiU
′(ci) = φi

Let us define an inequality factor that will be important in all the following tax formulas:

φ̂i =
φi

φ
=

ωiU
′(ci)

1
2(ωNU ′(cN ) + ωSU ′(cS))

≶ 1

where φ = 1
2(ωNU

′(cN )+ωSU
′(cS)) the average marginal utility, which will be the "money-welfare"

conversion factor for the social planner in the context where there is no full redistribution. This

factor φ̂i will be high for relatively poorer countries – or countries with a high Pareto weight ωi.

Now, we derive the choice of energy, that will integrate all of the distortions of that model.

The combination of optimality conditions for demand ei and supply exi gives:

φit
e = υiDi(S)ziF

′′(ẽi)︸ ︷︷ ︸
=demand distortion

+ µe︸︷︷︸
=supply distortion

−
∑

j φjD′j(S)zjF (ej)︸ ︷︷ ︸
∝ Social Cost of Carbon

Before, providing a general formula for the tax, note that we need to aggregate the different

countries since we consider a single tax instrument for the world. We see that the energy choice of

the planner can into account several forms of redistribution.

First, climate change affects countries differently according to their marginal damages Dj(S),

but this damage is now scaled by the marginal utility/inequality factor φ̂i ∝ ωiU
′(ci) since the

planner doesn’t implement full redistribution. Rescaled in monetary unit, with the conversion

factor φi, the SCC writes:

SCC := −∂W/∂S
∂W/∂c

= − 1

φ

∑
j

φjD′j(S)zjF (ej) = −
∑
j

φ̂jD′j(S)zjF (ej)

In particular, in this heterogeneous countries model with limited redistribution, the Social Cost of

Carbon integrates the distribution of consumption/income under the factor φ̂i,

SCC := −
∑
j

φ̂jD′j(S)zjF (ej) = −2Ej
(
φ̂jD′j(S)zjF (ej)

)
= 2Ej [−D′j(S)zjF (ej)] + 2Covj

( ωjU
′(cj)

1
2

∑
jωjU

′(cj)
,−D′j(S)zjF (ej)

)
≶ 2Ej [−D′j(S)zjF (ej)] = SCC

where SCC = 2Ej [−D′j(S)zjF (ej)] is the Social Cost of Carbon in the model where full redistri-

bution is available, or equivalently a representative agent model where redistributive concerns are
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absent. Note that since Ej(·) is a mean8s over countries j, we need to multiply by the number of

countries (2 here) to obtain the sum of local damages.

Is the SCC higher in the model with inequality compared to the one-agent setting? First,

we have that low-income countries have a lower consumption and hence higher marginal utility of

consumption, cS < cN and φ̂S > φ̂N . Second, we assumed stronger damages D′S(S) > D′N (S).

However, third, productivity and income are higher in high-income countries, and zN > zS im-

plies F (eN ) > F (eS). Therefore, the covariance between φ̂i, ȳi=ziF (ei) and Di(S) is ambiguous.

Quantitatively, in most Integrated Assessment models, the local cost of climate change D′i(S)yi

is strongly correlated with income yi, as there larger production loss of climate change in richer

countries.

Second, we explore the distortion on the energy supply imposed by carbon taxation. Changing

the price, affect the market clearing, with shadow value µe. Manipulating the terms in our simple we

can define this supply distortion as a redistributive effect between importer and exporter, weighted

by a factor representing the aggregate energy supply curve:

Supply Dist. = µe = CEE
1

2

∑
j

φj

φ
(ej − exj ) with CEE =

(∑
j

c′′j (e
x
j )−1

)−1

= CEE Ej
(
φ̂j(ej − exj )

)
= CEE Covj

(
ωjU

′(cj)
1
2
∑
jωjU

′(cj)
, ej − exj

)
> 0

where the last inequality comes from the assumption that the North has a larger endowment

in energy resources and hence higher net energy exports eN − exN < eS − exS . Therefore, since

the net import of energy correlates with lower consumption, and hence a higher marginal value of

consumption U ′(ci), the covariance term is positive. Moreover, since we assume perfect competition,

this terms-of-trade distortion ultimately depends on the aggregate supply elasticity

CEE =
(∑

j

c′′j (e
x
j )−1

)−1
=
qe

E
νe

with νe the inverse supply elasticity, constant in the iso-elastic case qe = c′i(e) = ν̄ie
νe . As a

result, this Social "Supply Distortion" is positive. It is larger when the energy supply is inelastic –

price and profit vary a lot for small changes in quantity produced – and it is null when the energy

production is Constant Return to Scale (CRS) when νe = 0.

Third, changing the energy price and quantity redistributes across energy users through the

8Moreover, we also use the formula for the expectation of a product:

Ei[xiyi] = Ei[xi]Ei[yi] + Covi[xiyi]
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change in price along the demand curve. We derive the Social “Demand Distortion” as:

Demand Dist. =
1

2

∑
j

υj

φ
Dj(S)zjF

′′(ej) = Ej
(
υ̂j Dj(S)zjF

′′(ej)
)

= Covj
(

ωjυj
1
2
∑
jωjU

′(cj)
,Dj(S)zjF

′′(ej)
)
≶ 0

with υj is the multiplier on the energy demand optimality condition: positive value implies that the

planner would like to relax the constraint, increase the quantity ei, lower theMPei, and conversely

for negative values. The second line comes from Ej
(
υ̂j
)

= 0, as there is no aggregate distortion,

only redistributive distortion across countries. The last inequality comes from the fact that lower-

income economies have energy demand more sensitive to price distortion. This comes from the fact

that ziF ′′(ei) is related to the energy share and demand elasticity:

Di(S)ziF
′′(ei) =

qe

eiσe
(sei − 1) ⇒ DS(S)zSF

′′(eS) > DN (S)zNF
′′(eN )

where sei = eiq
e

yi
< 1 is the energy share in production and σe is energy demand elasticity. One can

derive – in the CES case9 – that sei ∝ (zi/q
e)σ

e−1. In the case where energy is a low-substitution

input, such that σe < 1, we have that zN > zS implies that seN < seS . However, we also have that

eN > eS in equilibrium, as more productive countries have higher energy demand ceteris paribus.

Therefore, we will see empirical evidence to show that emerging economies rely more strongly on

fossil-fuel supply to conclude whether or not their production function is more or less inelastic

to changes in energy prices. Note that again that term is null if the energy demand/production

function is constant return to scale in energy such that sei = 1, or if energy is perfectly substitutable

σe → ∞, or if we are in a representative agent economy DN (S)zNF
′′(eN ) = DS(S)zSF

′′(eS) and

there is no heterogeneity in demand across countries.

As a result, the level of the optimal energy taxation policy account for these three distribu-

tional motives (i) climate damage in SCC, (ii) distortion in energy supply and terms-of-trade effects

in Supply Dist and (iii) energy demand distortion in Demand Dist.. For (ii) and (iii), taxation

is isomorphic to a terms-of-trade manipulation between the exporters and the importers in trade

theory. This include redistribution motives due to the presence of the inequality factor terms φ̂j .

9With CRS production F (e, `) = z
(

(1− ε)
1
σ `

σ−1
σ + ε

1
σ e

σ−1
σ

)
we obtain that sei = eq

y
= ε(zi/q

e)σ−1
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As a result, the optimal energy tax writes:

MPei = c′(E) + te

tei = SCC + Supply Dist.+Demand Dist.

= −
∑
j

φ̂jD′j(S)zjF (ej) + CEE
1

2

∑
j

φ̂j(ej − exj ) +
1

2

∑
j

υ̂jDj(S)zjF
′′(ej)

= 2Ej
(
φ̂jyjγjS

)
+
qeν

E
Covj

(
φ̂j , ej − exi

)
+
qe

σe
Covj(υ̂j ,

1−sei
ei

)
where γi = − D

′
i(S)

Di(S)S is the marginal damage of climate change10, yi = Di(S)ziF (ei) is total produc-

tion, νei the inverse energy supply elasticity, sei the energy cost shares, and σei the energy demand

elasticity. We see these three motives matter with a single tax and lump-sum rebate. Compared

to the economy with full redistribution, the tax can be smaller if (i) the cost of climate γjyj is

concentrated in richer countries, with low φ̂i, (ii) the net energy imports are high – higher ei − exi
– in poorer countries, high φ̂i, (iii) the effective demand elasticity (sie−1)

σeei
is concentrated in poorer,

high distortion υ̂i, countries.

However, if the planner has access to a distribution of carbon tax rates (or carbon price),

with the presence of inequality, the distribution of the tax changes as we will see in the next section.

2.3 Ramsey Problem with heterogeneous carbon tax & limited transfers

We consider a case where the Social Planner would implement a policy with a distribution

of country-specific carbon tax. I again assume away cross-country transfers, and the revenue of

the carbon tax is rebated lump-sum t̃lsi = tei ei. The welfare objective is the same, and the budget

constraints become:

c̃i + (qe + tei )ẽi = Di(S)ziF (ẽi) + (qeẽxi − ci(ẽxi )) + tlsi

All the optimality conditions, for energy demand and supply are internalized by the planner and

remain identical:

qe = c′(exi ) πei (e
x
i ) = c′(exi )exi − ci(exi )

qe + te = MPei

eN + eS = exN + exS

10In particular, this is a constant parameter in the Damage function used in DICE model Di(S) = e−γiS
2

.
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The planner keeps the same motive for redistribution given the inequality factor coming from the

shadow value φi of the budget constraint and the Household consumption decisions:

ωiU
′(ci) = φi φ̂i =

φi

φ
=

ωiU
′(ci)

1
2(ωNU ′(cN ) + ωSU ′(cS))

≶ 1

However, since now the planner can choose one instrument per country, the distortion of demand

is absent

υj = 0 ⇒ Demand Dist. = 0

This is in part to to the fact that the country-specific tax is rebated

The optimality condition for energy choice therefore become:

tei =
1

φ̂i

∑
j

φ̂j
(
−D′j(S)zjF (ẽj)

)
︸ ︷︷ ︸

∝ SCC

− 1

φ̂i
CEE

∑
j

φ̂jc
′′
j (ẽ

x
j )ẽxj︸ ︷︷ ︸

=Supply Dist.

tei =
1

φ̂i

(
SCC + Supply Dist.

)
tei =

1

φ̂i
2Ej

(
φ̂jγjSyj

)
+

1

φ̂i

qeνe

E
Covj

(
φ̂j , ei − exi

)

where γi = − D
′
i(S)

Di(S)S is the marginal damage of climate change, yi is total output and νei the inverse

energy supply elasticity.

We see that the planner would accommodate country-specific levels of inequality for the

distribution of carbon prices. Indeed, for a given – potentially arbitrary – distribution of Pareto

weights ωi, the optimal carbon tax is relatively lower for poorer countries for several reasons:

(i) the Pigouvian Social Cost of Carbon is discounted by the country level of inequality φ̂i: the

planner understand that energy is used in production and would not reduce consumption even

further than it already is. The global climate damage leads to a high carbon tax for rich countries

that have a low marginal utility of consumption φ̂i ∝ ωiU
′(ci) ≈ 0 and can in some sort "afford"

the distortion brought by the carbon tax.

Similarly, (ii) the General Equilibrium effect on the energy supply affects every country’s

energy terms-of-trade, as represented by the Supply Distortion term. This tax motive is also

discounted by the level of income φ̂i, for the same reason as for the SCC. Lastly, (iii) the energy

demand is not affected by this country-specific tax.

These main findings – that the level and the distribution of carbon taxes change with in-

equality – are general and hold in a dynamic quantitative model that I develop in the next sections.
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3 Quantitative model

We develop a framework with neoclassical foundations and rich heterogeneity across regions.

The time is continuous t ∈ [t0,∞), where11 t0 = 2000. The countries/regions are indexed by i ∈ I.
They can be heterogenous in an arbitrary number of dimensions12 s.

In each country, we consider 4 representative agents: (i) a household doing consumption/saving

decisions, (ii) a homogeneous good producer using capital, labor and energy, (iii) an energy firm

that extracts fossil-fuels and (iv) a renewable energy producer.

As of now, this model includes several individual states si = {zi, Pi, ν̄i, γi,∆i, ξi, wi, τi,Ri},
respectively productivity z, population Pi, marginal cost of producing fossil fuels ν̄, climate vulner-

ability γi, geographic factors for temperature scaling ∆, and carbon intensity of the fossil energy

mix ξ, which are six dimensions of heterogeneity that are time-invariant. In addition, country

wealth w, local temperature τ , and local reserve of fossil fuel energy sources R change over time.

Moreover, the world is subject to global states which can also time-varying S = {T ,S} which are

respectively world atmospheric temperature T , world atmospheric carbon concentration S. All

these variables will be explained in turn below.

Countries interact with the rest of the world through several channels: (i) Each country can

trade financial assets bi in world markets, with bit > 0 for saving and bit < 0 for borrowing. (ii)

The consumption of fossil-fuel energy is traded in a world energy market at price qft and (iii) Fossil

consumption releases carbon emissions in the atmosphere St which increase world temperatures Tt
and local temperature τit. Moreover, in a later extension, we will consider bilateral trade in goods

between countries. We will present the four different agents in turn.

3.1 Country Household

At each instant t, each region i ∈ I is populated by a representative household of population

size Pit. This population is increasing at a growth rate exogenously determined n, and Ṗit = nPit.

As a result, the population is given as Pit = Pi0e
nt.

This representative household owns the representative firm that is producing output with

total factor productivity zit. This total factor productivity also grows with a deterministic growth

rate ḡ, giving a TFP level of zit = zi0e
ḡt. In the tradition of the Neoclassical model, we normalize

all the economic variables of the model by the rate of effective population ztPt = e(n+ḡ)t, leaving

only the relative difference between countries’ population Pi ≡ Pi0 and productivity zi ≡ zi0. In

the following, each country’s agent solves an independent dynamic control problem and is subject

to global variables that we shall denote with capital letters – for example, Tt for global temperature

11In the application we will consider an interval t ∈ [t0, tT ] with t0 = 2000 and tT = 2100.
12More precisely, state variables of heterogeneity can be split in two, s = {s, s}, where ex-ante heterogeneity is

constant over time or relate to initial conditions and is denoted s, while ex-post heterogeneity s changes over time
depending on the fluctuations of the regions variables. In practice, with the method used, s can be arbitrarily large,
but the size of ex-post heterogeneity s needs to be controlled, as we will explained in the computational section
below.
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or Et for global emissions explained below.

The household in the country i ∈ I consumes the homogeneous final good ct ≡ cit and is

subject to the region’s temperature τt ≡ τit. They can save and borrow in a liquid financial asset

bit at a world interest rate r?t . Moreover, they can invest and hold that wealth in capital kit to be

rented to the homogeneous good producer at rate rkit.

Household supply their inelastic labor ¯̀
i = Pi to the final good firms, receiving the wage

income vit. Moreover, the household receives the profit that the fossil sector generates πfi =

πfi (qft , e
x
it,Rit), that will be detailed below. They maximize the present discounted utility, with the

discount rate ρ, and solves the following intertemporal problem.

Vit0 = max
{cit,bit,kit}

∫ ∞
t0

e−(ρ−n)tui(cit, τit) dt

The utility that households receive from consumption is also scaled by a damage function, which

represents the direct impact of temperature.

ui(cit, τit) = u
(
Dui (τit)cit

)
u(D c) =

(Dc)1−η

1− η

We aggregate the bond and capital of the individual country as a single wealth variable

wit = kit + bit, and rescale labor income and wealth per effective unit of labor vit, accounting for

TFP and population growth ḡ + n, it yields the dynamics:

ẇit =
(
r?t − (n+ ḡ)

)
wit + vit + πeit + tlsit

on t ∈ [t0, tT ] where the dynamics of wealth starts from initial condition wt0 = k0 + b0. The return

on capital is rkit = MPkit − δ which is equalized to the bond return rkit = r?t in the absence of

other financial market frictions. Capital is thus a control variable. Furthermore, the Household

receives the profit from the energy firms πeit = πfit + πrit, both fossil and renewable producers that

they own. Finally, the household also receives lump-sum transfers tlsi that are now arbitrary. We

will go at length on the various policy designs in later sections. This wealth level constitutes the

first dimension of ex-post heterogeneity.

3.2 Final good firms

In each country i ∈ I, a representative firm is producing the homogeneous final good using

different inputs: labor, capital, and energy13, coming for fossil or renewable sources. The firm

13The original – unnormalized – production function:

Yt = F (Kt, Et, Lt) = D(τt)zt
[
(1− ε)

1
σ
(
Kα
t L

1−α
t

)σ−1
σ + ε

1
σ
(
zetEt

)σ−1
σ

] σ
σ−1

We divide the output level Yt by the growth trend in population and TFP e(n+ḡ)t and by initial population P0 ≡ Lt
to obtain output per effective capita.
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maximizing profit, i.e. output per capita y = Dy(τ)zf(·), net of input costs:

max
kit,eit

Dyi (τit)zif(kit, eit)− vit − qeiteit − (r?t + δ)kit

where temperature τ , relative productivity z, capital stock per effective capita k and energy input

per effective capita e all affect production. The temperature τit affects the productivity through

damages Dy(τit). This is the source of climate externality as will detailed below. The gross

production function is a CES aggregate between the capital-labor bundle k and energy e:

f(kit, eit) =
[
(1− ε)

1
σ k

ασ−1
σ

it + ε
1
σ
(
zet eit

)σ−1
σ

] σ
σ−1

with σ < 1, such as energy is complementary in production14 and where directed technical change

zet is exogenous and deterministic. This directed – energy augmenting – technical change allows

an increase in output for a given energy consumption mix. An upward trend in such technology

is sometimes argued to be behind the “relative decoupling” of developed economies: an increase in

production and value-added simultaneous to a decline in energy consumption. For now, this trend

is taken exogenously increasing at rate zet = z̄eeget, but in an extension of the model, we consider

an endogenous directed technical change. Moreover, energy used in production comes from two

sources: either fossil efit and renewable erit for every country i, as detailed below.

Energy demand

Given the demand for energy inputs et in each country, the firm has the choice among two

sources of energy: one fossil-fuel source in finite supply eft and one renewable source ert . We consider

that these two sources are substitutable, and total energy inputs quantity et is given by the CES

aggregator, where σe represents the elasticity of substitution.

et =
(
ω

1
σe
f (eft )

σe−1
σe + (1− ωf )

1
σe (ert )

σe−1
σe

) σe
σe−1 if σe ∈ (0,∞)

et = eft + ert if σe →∞

subject to the budget for energy expenditures:

qet et = eft
(
qft + tfit) + ert q

r
t

14If σ = 1 we have the Cobb Douglas : f(kt, et) = ε̄ze εt kαt e
ε
t
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As a result, demand curves for both fossil and renewable energies are given by usual CES demands:

eft
et

= ωf
(qft
qe

)−σe
&

ert
et

= (1− ωf )
(qrt
qet

)−σe
qet =

(
ωf (qrt )

1−σe + (1− ωf )(ert )
1−σe

) 1
1−σe if σe ∈ (0,∞)

qet = min{qft , qrt } if σe →∞

where the price of the energy bundle qt is some weighted sum of the energy price of fossil fuel qft
and renewable qe,rt .

Climate damage and externality

Change in temperatures τit in each country i ∈ I – given in degree Celsius, ◦C – affects the

productivity with a Damage function Dy(τt). This scaler increase with τ < τ?i and decreases when

τ < τ?i , where the "optimal temperature" τ?i such that Dy(τ?i ) = 1. We consider the “optimal”

temperature as:

τ?i = αττit0 + (1− ατ )τ?

where τit0 is the initial temperature in country i and τ? = 15.5◦C is an optimal level of yearly

temperature for temperate climates, as used in Kotlikoff et al. (2021b). This flexible formulation

allows for differing degrees of adaptability depending on the value of ατ . Hot temperatures do not

affect countries with long histories of cold vs. hot climates in the same way, due to the presence of

adaptation structures – i.e. air conditioning vs. heating infrastructures.

Productivity decays to zero when temperatures are extremely cold or hot limτ→−∞Dy(τ) =

limτ→∞Dy(τ) = 0. We follow Nordhaus formalism and use a quadratic function for the damage

function:

Dy(τ) =

 e−γ
⊕
y

1
2

(τ−τ?i )2
if τ > τ?i

e−γ
	
y

1
2

(τ−τ?i )2
if τ < τ?i

where γ⊕y and γ	y represent damage parameters on output respectively for hot v.s. cold temperatures

– and they are different to allow for asymmetry on climate impact.

The utility that households receive from consumption is also scaled by a similar damage

function, which represents the direct impact on population likelihood of mortality – for example,

due to heatwaves or extreme weather events – as a direct scaler of consumption.

Du(τ) =

 e−γ
⊕
u

1
2

(τ−τ?i )2
if τ > τ?i

e−γ
	
u

1
2

(τ−τ?i )2
if τ < τ?i

where γ⊕u and γ	u represent also the damage parameters, but on the direct impact on utility and

mortality, respectively, for hot v.s. cold temperatures.

In the previous graph, we present an example of such damage function for two countries,

USA and India, with the distribution of temperature (approximated by a normal distribution),
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Figure 5: Damage function for two example countries, US and India

their average yearly temperature (respectively 13.5◦C and 25◦C) in dashed lines and their optimal

temperature in dotted black lines (respectively 15◦C and 20◦C)

3.3 Energy firms

Fossil fuel extraction and exploration

Fossil energy is produced and sold in a centralized market at the world level. A continuum

of competitive producers is extracting the fuel quantity exit from their respective pool of resources

Rit, with production cost νi(exit,Rit).
Fossil energy can be shipped costlessly around the world, where the global market in energy

clears: ∑
I
exit =

∑
I
e(n+ḡ)t Pi e

f
it

where the demand comes from the aggregation of individual energy per capita inputs in each country

i ∈ I and energy input is rescaled by the population and technology exponential trends e(n+ḡ)t.

Moreover, the fossil-fuel reserves Rit are depleted with extraction exit, but can be regenerated

by exploration, which require investment ιxt to obtain δRιxt additional reserves for an exploration

cost µ(ιxt ,Rt)
Ṙit = −exit + δRιxit

The parameter δR can be interpreted in two ways: first, it can represent the probability intensity

δRιxt of finding developable reserves among possible reserves ιxit in a continuum of fossil fuel fields

and mines. Second, it can also represent the fraction of individual producers discovering developable

reserves, aggregating up a representative producer. This stylized model is a simplified version of

the rich framework developed in Bornstein et al. (2023).

Moreover, the fossil-fuel producer hence faces a modified Hotelling finite-resources problem

– c.f. Heal and Schlenker – allowing for exploration of additional reserves. As a result, its dynamic
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problem is given by :

vf (Rit0) = max
{ext ,ιxt }t≥t0

∫ ∞
t0

e−ρtπfi
(
qft ,Rit, exit, ιxit

)
dt

with πi(q
f
t ,Rit, exit, ιxit) = qft e

x
it − νi(exit,Rit)− µi(ιxit,Rit)

s.t. Ṙt = −exit + δRιxit
∑
I
exit =

∑
I
Pi0e

(n+ḡ)tefit

This can be solved using the Pontryagin maximum principle, where we denote λRt the Hotelling

rent, which is the costate of the resource depletion dynamics. The price of the fossil energy supplied

and the optimal exploration are given by optimality conditions:

[exit] qft = νex(ex ?
it ,Rit) + λRit

[ιxit] δRλRit = µι(ι
x ?
it ,Rit)

Price is hence the sum of marginal cost, plus an additional rent meant to price the finiteness of the

resource. Moreover, the dynamics of that Hotelling rent are given by the equation:

λ̇Rit = ρλRit + νR(ext ,Rit) + µR(ιxit,Rit)

In standard Hotelling models without stock effects – i.e. where νR(ex,R) = 0 and no exploration

µ(ιx,R) = 0 – we have the standard expression for the finite resource rent λ̇Rt = ρλRt and λRt =

eρtλRt0 , and Rt → 0 as t → ∞. In our context, the rent grows less fast because (i) the producer

anticipate that the depletion of reserves will increase marginal cost in the future νR(ex,R) < 0 and

(ii) it can invest in exploration, increasing future reserves which can lower even further the future

cost of exploring µR(ιx,R) < 0.

As a result, with functional forms that yield isoelastic supply curves for fossil energy extrac-

tion and exploration, we can solve the dynamics of the rent price.15

νi(e
x
it,Rit) =

ν̄i
1 + ν

( exit
Rit

)1+ν
Rit µi(ι

x
it,Rit) =

µ̄i
1 + µ

( ιxit
Rit

)1+µ
Rit

Note that this market for fossil fuels is in equilibrium: an aggregate supply curve (qft , E
f
t )

determined by the aggregation of fossil-fuel producers Eft =
∑

i e
x
it meets the demand coming from

the aggregation of all individual countries (qft , e
f
it). Moreover, fossil fuels emit CO2 and other GHG

emissions, as we will see in the next section.

15Details of the fossil energy producers can be found in appendix .
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Renewable energy production

Renewable energy is not subject to the finiteness of the stock of reserves and is produced

with the cost function νr(·), analogous to the one used for fossil energy.

πrit = max
erit

qrt e
r
it − κi(erit, Crit)

where erit is the production of energy, Crit the capacity in renewable available in country i. We

assume that the cost is convex and it has the following iso-elastic functional form:

κi(e
r
it, Crit) =

κ̄i
1 + κ

( erit
Crit

)1+κCrit

Furthermore, carbon emissions associated with renewable energy are null, minimizing the exter-

nality on the climate when the energy transition is complete. As a result, given the cost for the

renewable energy, the price becomes:

qrt = κ̄i
( erit
Crit

)κ
where qrt is the price of that renewable energy demanded. We make these stylized assumptions

to keep the model tractable. In further analysis, we will develop the study of the dynamics of

renewable capacity as an investment decisions and motive for industrial policy to fight climate

change.

For the first numerical application, the renewable energy production is assumed constant

return to scale, i.e. κ =. As a result, the price of non-fossil energy qrit is given exogenously by:

qrit = κ̄i

Moreover, if the two sources of energy are perfectly substitutable, i.e. σe → ∞, then we obtain

that renewables act as a perfect “backstop” technology to fossil fuel. If qft grows up to qrit then all

the energy is produced using renewable et = ert and emissions collapse to zero. This example is

analyzed in Heal and Schlenker (2019) in a simpler model.

3.4 Climate system, emissions and externality

Economic activity are emitting carbon and other greenhouse gas emissions, which change the

climate and increase the temperature of the atmosphere. Due to these activities coming from the

energy sector, each country is emitting CO2 per effective capita:

εit = ξfi Pie
f
it
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where ξf denote the carbon content of fossil fuels16. As a result, since the energy use is normalized

by growth of TFP and population, the absolute amount of global emissions aggregates to:

Et =
∑
i∈I

e(n+ḡ)tεit = e(n+ḡ)t
∑
I
ξfi Pie

f
itdi

These emissions are released in the atmosphere, adding up to the cumulative stock of greenhouse

gas St.
Ṡt = Et − δsSt

However, a part of these emissions exit the atmosphere and can be stored in oceans or the biosphere,

discounting the current stocks by an amount δs. Moreover, these cumulative emissions push the

global atmospheric temperature Tt upward linearly with parameter χ with some inertia and delay

represented by parameter ζ

Ṫt = ζ
(
χSt − (Tt − T̄t0)

)
This simple two-equations climate system is a good approximation of large-scale climate models17

with a small set of parameters ξf , δs, ζ, χ.

More particularly, ζ is the inverse of persistence, and modern calibrations set ζ ≈ 0.1 is such

that the pick of emissions happens after 10 years. Dietz et al (2021) show that classical IAM models

such at Nordhaus’ DICE tend to set ζ too low, generating a too large inertia of the climate system,

as shown in the figure below. Moreover, if ζ →∞, temperature reacts immediately and we obtain

a linear model – which is a good long-run approximation:

Tt = T̄t0 + χSt = T̄t0 + χ

∫ t

t0

∑
I
e(n+ḡ)tεit ds

∣∣∣
GtC

As we see, the global externality depends on the path of individual policies εit ∝ efit as of

function of the endogenous states of the country {wi, τi}, as well as the growth rates ḡ + n of the

16We can consider an alternative, like in Nordhaus’ DICE model, with

εit = ξf (1− ϑit)efitPi & Et = e(n+ḡ)t
∑
I

ξf (1− ϑit)efitPi

where ϑt represents the abatement policy taken in country i. It represents all the policies that allow reducing the
emissions for a given choice of the energy mix – for example, additional environmental regulations or investment in
carbon capture technology – with a convex cost c(ϑit)efit. Its optimal choice can be determined as solution of the
FOC c′(ϑi)e

f
it = 0 ⇒ ϑi = 0 (business as usual) or c′(ϑi) = −ξitfit (second best with carbon tax).

17These climate models have typically much more complex climate block, adding 3 to 4 more state variables, with
J the vector of carbon “boxes”: layers of the atmosphere and sinks such as layers of oceans:

J̇t = ΦJJt + ρe
∑
I

ξfPie
f
i

Ft = F
(
Jt
)

Ṫt = ΦTT + ηFt

with Ft Carbon forcing and ρe, vector of parameters, ΦJ and ΦT Markovian transition matrices and F(·) a non-linear
function.
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Linear temperature model - IPCC report / Dietz, van der Ploeg, Rezai, Venmans (2021)

economy, i.e. TFP and population.

The temperature in country i is affected by global warming of the atmosphere Tt with sensi-

tivity ∆i

τ̇it = ∆i Ṫt

Atmospheric temperature Tt translates into local temperature τit according to a pattern scaler

∆i that depends on the geographic properties of country i – like temperature, latitude, longitude,

elevation, distance from coasts and water bodies, vegetation, and albedo (sunlight reflexivity due

to ice, vegetation and soil properties)18. Evidence of this temperature scaling is displayed in the

following map from the IPCC report.

18This pattern scaling could be simplified with a simple linear equation as a first-order approximation
∆i = 1.537− 0.0288×τit0 . Moreover, this scaling could be made more realistic and time-varying using a non-linear
function of temperature ∆i ≡ ∆(τit).
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4 Competitive equilibrium and Business as usual

4.1 Household / Firm

First, since the Household owns the three firms – final good, fossil, and renewable energy –

we can aggregate profits and household budget constraint, which gives:

ẇit=
(
r?t − (n+ ḡ)

)
wit + πfit +Dy(τit)zitf(kit, e

f
it, e

r
it)− (r? + δ)kit −

(
qft + tfit

)
efit − q

r
ite

r
it − cit + tlsi

which yields a single optimal control problem. However, the consumption/saving that relates to

the path of wealth wit and the firms decisions in energy eit and capital kit are still separated, which

provide different optimality conditions.

To solve for the competitive equilibrium and the optimal decision of the Household, we

use the Pontryagin Maximum Principle. The Hamiltonian of the individual country with indi-

vidual states s = {si}i = {zi, Pi, ν̄i, γi,∆i, ξi, wi, τi}i, individual controls c = {c, b, k, ef , er}i and
costates/Lagrange multipliers, λ = {λw, λτ , λS} writes as follow:

H(s, c, λ) = u(c, τ) + λwẇ + λτ τ̇ + λSṠ

The equilibrium relations for the household consumption/saving problem boil down to the standard

neoclassical model dynamics and for each country i ∈ I, we obtain a system of coupled ODEs. λ̇wit = λwit(ρ+ ηḡ − r?t )

λwit = uc(cit, τit)

where λwit is the costate for the wealth wit of country i, i.e. the marginal value of an additional

unit of wealth optimal should be increasing if the world interest rate exceeds the discount factor

ρ. Using the law of motion and the definition of the marginal value of wealth, we obtain the Euler

equation:
ċit
cit

=
1

η
(r?t + ηḡ − ρ) + γi(τit − τ?i )τ̇it

The dynamics of local temperature appear in the Euler equation. Indeed, because the marginal

utility of consumption is affected directly by changes in temperature, an increase in temperature

in the future triggers substitution from present to future consumption through saving.

Moreover, the capital and energy choices simply result from static optimization between

price/cost and marginal return of those inputs in the production.{
qft + tfit = MPefit qrit = MPerit

r?it = MPkit − δ

whereMPx = ∂x[Dy(τ)zf(k, ef , er)] for x ∈ {k, ef , er}. Moreover, the bonds are in zero net supply,
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and hence the aggregate wealth should equal the aggregate capital stock

∑
i∈I
Pibit = 0 ⇒

∑
i∈I
Piwit =

∑
i∈I
Pikit

4.2 Fossil energy market

The dynamics of Hoteling rents λRit for the fossil energy price qft are described above and

listed here for completeness:
qft = νex(exit,Rit) + λRit δRλRit = µι(ι

x
it,Rit)

λ̇Rit = ρλRit + νR(exit,Rit) + µR(ιxt ,Rit)
Ṙit = −exit + δRιxit

where the optimal extraction and exploration depend on the dynamic Hoteling rent λRit that varies

with stock effects due to depleting reserves Rit.
Moreover, the energy market clears between the demand of individual countries and supply

from the fossil energy firm:

Eft =
∑
i∈I

exit =
∑
i∈I
Pie

(n+ḡ)tefit

4.3 Local cost of carbon and Climate system

In addition, the climate block for carbon stock St and temperature τit are valued with the

costates λSit and λτit, representing respectively the marginal value of adding an additional unit of

carbon in the atmosphere St and the marginal value of increasing local temperature by an additional

degree. Recalling the dynamics of the climate system,
Et =

∑
i∈I εit =

∑
I e

(n+ḡ)tξiPie
f
it

Ṡt = Et − δsSt

τ̇it = ζ
(
∆iχSt − (τit − τit0)

)
we can use the Pontryagin principle to pin down the dynamics of the local cost of carbon. First, the

shadow value of increasing temperatures is affected by the cost of climate on both the productivity

effect Dy(τ)zf(k, e) and the utility effect u(Du(τ)c).

λ̇τit = λτit(ρ+ ζ) + γyi (τit − τ?i )Dy(τit)︸ ︷︷ ︸
−∂τDy

f(kit, eit)λ
w
it + γui (τit − τ?i )Du(τit)︸ ︷︷ ︸

−∂τDu

u′(Du(τ)cit)cit

Indeed, this shadow value increases with marginal damages, scaled by both marginal utility of

wealth λwit and consumption u′(Du(τ)cit). This change in the marginal value of temperature affects
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directly the shadow value of adding carbon in the atmosphere according to the dynamics of λSit:

λ̇Sit = λSit(ρ+ δs)− ζ χ∆i λ
τ
it

We hence see why adding an extra unit of carbon in the atmosphere has a differential impact of

different regions due to heterogeneous costs of temperature and vulnerability to climate synthesized

by the pattern scaling parameters ∆i and marginal damages γyi and γui .

The Local Cost of carbon is a common measure used by climate scientists and climate

economists to summarize the marginal welfare cost of carbon in monetary terms. The Cost of

Carbon is an equilibrium concept, in the sense that it depends on the trajectories of temperatures

but also on production and consumption. In the competitive equilibrium, the climate externality

of fossil fuel use is not internalized and households do not take climate damage into account for

choosing consumption, production, and energy decisions. A typical microfoundation of such an

assumption is to consider infinitesimal agents and regions, such that ∂
efi
Et = 0. However, one

doesn’t need such an assumption to analyze the cost of externality, especially when looking at large

countries with the United States, China or India that have large carbon footprints.

Moreover, with or without infinitesimal agents, it doesn’t prevent the households to be ra-

tional and to anticipate perfectly the evolution of climate in the region. The Local Cost of Carbon

(LCC) represents such a welfare measure that is normalized into monetary units according to the

marginal utility of wealth/consumption in the region, as indeed the monetary value of one unit of

welfare is different across regions due to inequality in consumption ∂Vit
∂cit

= λwit = uc(cit) 6= uc(cjt) =

λwjt.

In continuous time, and using our framework of the Pontryagin Maximum Principle, this

local cost of carbon rewrite easily as the ratio of the two costates:

LCCit :=
∂Vit
∂St
∂Vit
∂cit

= −λ
S
it

λwit

In the competitive equilibrium, this measure integrates the cost of climate on locality i even in any

suboptimal policy. Note that is not the social cost of carbon (SCC) as the SCC would integrate

spillovers of each country on the rest of the world and a potentially optimal path of consump-

tion. However, this notion is exactly analogous to the Local Cost of Carbon concept developed in

Cruz Álvarez and Rossi-Hansberg (2022).

As a result, following the dynamics of the LCC amounts to solve for the dynamics of both

costates λwit and λ
S
it.

4.4 General Equilibrium

A complete description of the system can be found in appendix B. In this framework, there

are types of interaction mechanisms between the different countries i ∈ I.
First, the emissions from each country affect the global climate and local temperatures,
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creating these heterogeneous impacts and costs of climate change λ. Second, fossil energy markets

clear such that the energy demand from all the individual countries impact the fossil fuel price qft
and has redistributive effects on the fossil energy rent πt(Ef ,R). Third, the bonds market also

clears as assets are in zero net supply, and individual savings and consumptions depend on the

path of world interest rate as well as collateral constraints. However, there are no bilateral flows

between individual countries, such as migration or bilateral trade and capital flow.

This makes this system of ordinary differential equations (ODEs) the specificity of being

strongly coupled. Despite the infinite dimensionality of this system, this problem is well-posed, as

it is the solution of Forward Backward McKean Vlasov system of ordinary differential equations.

Despite the possibility many global interactions, i.e. each country interacts with global variables

affected by the entire distribution of agents – atmospheric temperature Tt, fossil energy price qft ,

world interest rate r?t – one can not add bilateral flow. Allowing bilateral/local interaction may

make the problem ill-posed, as explained in Boucekkine, Camacho and Zou (2009) and in the sense

that there is no existence of solutions to the problem. We hence assume solely global interactions

in the scope of this paper. The definition of competitive equilibrium is as follows:

Definition 4.1. Given, ex-ante heterogeneity {zi, Pi, ν̄i, γi,∆i, ξi} and initial conditions {wit0 , τit0 ,Rit0}
and {St0 , Tt0}a competitive equilibrium is a continuum of sequences of states {wit, τit,Rit}it and

{St, Tt}t, policies {cit, bit, kit, efit, erit, exit, ιxit}it, and price sequences {qft , qrt , r?t } such that:

◦ Households choose policies {cit, bit}it to maximize their utility subject to budget constraint

◦ Final good firms choose policies {kit, efit, erit} to maximize profit.

◦ Renewable energy firm produce {erit} to maximize static profits

◦ The fossil fuels firms extract and explores {exit, ιxit} to maximize profit

◦ Emissions Et affect climate {St, Tt}t, & {τit}it following the climate system dynamics.

◦ Prices {qft , qrit, r?t } adjust to clear the markets for fossil and renewable energy and bonds,

Eft =
∑
I
exit =

∑
I
e(ḡ+n)tPie

f
it erit = ērit

∑
i∈I
bit = 0

while the last good market clears by Walras law

∑
I
Picit+

∑
I
Pi[νi(e

x
it,Rit)+µi(ιxit,Rit)+κi(erit, Crit)]+

∑
I
Pi[k̇it+(n+ḡ+δ)kit] =

∑
I
PiDyi (τit)zif(kit, eit)

This Business-as-usual scenario features unrestricted use of fossil energy until its price in-

creases when resources are depleted. In particular, temperatures increase to high levels, and climate

damages are large. We will analyze the result in the quantitative section below. We now turn to

the optimal policy to take into account the climate externalities.
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5 Optimal climate policy – First-Best

We consider the optimal policy of a social planner that maximizes the weighted sum of

the Household utility, where the Pareto weights ωi are arbitrary19, and subject to the resource

constraints of the economy.

By choosing all the agent decisions, consumption cit, bonds and capital bit and kit, energy e
f
it

and erit, it would internalize the climate externality due to emissions Et and increase in temperature

τit. We denote by Vt the aggregate welfare in this social planner equilibrium.

Wt0 = max
{c,b,k,ef ,er,ex,ι,E}

∫ ∞
t0

∑
I
e−(ρ+n)t ωi Pi u

(
Du(τit) cit

)
dt

subject to the resource constraints of the economy and the energy and climate system:∑
I
Picit +

∑
i∈I

ν(exit,Rit)+µ(ιxit,Rit)+κ(erit, Cit) +
∑
I
Pi[k̇it+(n+ḡ+δ)kit] =

∑
I
PiDyi (τit)zif(kit, eit) [λ̂t]

Eft =
∑
I
exit =

∑
I
e(ḡ+n)tPie

f
it Et =

∑
I
e(n+ḡ)tξiPie

f
it

Ṡt = Et − δsSt [λ̂St ]

τ̇it = ζ
(
∆iχSt − (τit − τit0)

)
[λ̂τit]

Ṙit = −ext + δRιxt [λ̂Rt ]

The Social planner choses, consumption/saving cit, energy mix efit, extraction e
x
t and exploration

ιxt , as well as the trajectories of dynamic states {w, τ,R}it. Note that the planner has discount

factor ρ̃ which might be different than the agent discount parameter ρ, and notably smaller, if we

believe the planner could be more patient. Moreover, we denote the Lagrange multiplier of the

Social Planner allocation by λ̂’s. We observe now that the market clearing for goods has a common

shadow value λ̂t for all locations i ∈ I at the difference to the competitive equilibrium.

The result is analogous to the toy model example. The choice of consumption solves for

redistribution motive, as the planner searches for equalizing marginal utility, subject to the Pareto

weights:

ωiuc(cit, τit) = λ̂t = ωjuc(cjt, τjt)

with marginal utility uc(cit, τit) = Du(τit)u
′(Du(τit)c) = Du(τit)

1−ηc−ηit , with the CRRA functional

form. Despite the possibility, in the competitive equilibrium, to trade in goods, bonds, and energy,

strong inequality exists due to differences in productivity, energy rents or climate damage. As a

result, the social planner, would like to redistribute consumption and this would be done using

lump-cum transfers in the decentralized equilibrium.

The fossil energy choice is similar to the toy model since the marginal utility of consumption

19The only constraint we impose is that they integrate to one
∑

I ωi = 1
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are equalized to λ̂ across countries.

MPefit λ̂t = νex(exit,Rit) λ̂t + λ̂Rt − ξi λ̂St

We see that the planner equalizes the marginal product of fossil energyMPef = Dy(τ)zfef (k, ef , er)

to its shadow cost. This marginal cost is the sum of different channels: first, the marginal extraction

cost ν(·), second, the social Hoteling rent λ̂Rt /λ̂t and third integrates the climate damage λ̂St /λ̂t as

we will see in the next section.

The conditions for the choice of renewable energy, capital and savings are standard in the

neoclassical model:
˙̂
λt = (r̂t + ηḡ − ρ̃) λ̂t r̂t = MPkit

κer(e
r
it, Crit) = MPerit

where r̂t is the shadow price of capital which is equalized across countries. Moreover, the capital

choice is not constrained by borrowing limits, because goods can be allocated and transferred freely

between regions and time periods.

5.1 Social Cost of Carbon

In this optimal allocation, the marginal cost of adding one unit of carbon in the atmosphere

St can be summarized by the Social Cost of Carbon:

SCCt := −
∂Vt
∂St
∂Vt
∂ĉit

= − λ̂
S
t

λ̂t

We see that since the marginal utility of consumption/ marginal value of wealth is equalized across

countries ∂Vt/∂ĉit = ωiuc(cit, τit) = λ̂t, the normalization of the welfare cost λ̂St into monetary

unit is not ambiguous, and doesn’t depend on the country one chooses. The welfare cost of carbon

evolve again with the marginal damage of temperature:

˙̂
λ
τ

it = λ̂τit(ρ+ ζ) + γyi (τit − τ?i )Dy(τit)︸ ︷︷ ︸
−∂τDy

f(kit, eit)λ̂t + γui (τit − τ?i )Du(τit)︸ ︷︷ ︸
−∂τDu

u′(Du(τit)cit)cit

Again, the shadow value increases with marginal damages, scaled by the common marginal value

of wealth λ̂it and consumption u′(Du(τ)cit). The marginal value of temperature again affects the

shadow value of carbon, but this time in an aggregate fashion, where all of the costs for all countries

λτit,∀i ∈ I:
˙̂
λ
S

it = λ̂Sit(ρ+ δs)− ζ χ
∑
I

∆i λ̂
τ
it
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Given the dynamics of this welfare cost of carbon, the fossil energy choice boils down

MPefit = νe(e
x
it,Rit) +

λ̂Rt

λ̂t
−ξi

λ̂St

λ̂t︸ ︷︷ ︸
=ξiSCCt

with the conversion parameter “energy to carbon” ξi for each country.

From this optimality condition, we recover the standard Representative agent’s result that

Pigouvian Taxation should equal the marginal damage from the externality, exactly as in the result

of Golosov et al. (2014). In particular, the carbon tax is equal across countries. To see that taxation

result, let us analyze the decentralization of such allocation in the competitive equilibrium.

5.2 Decentralization, taxation, and transfers

We recall the budget constraint of each agent and augment it with two tax instruments that

will be necessary for the planner to decentralize the optimal allocation: first, a fossil fuel tax tfit is

used to account for the climate externality, second, lump-sum transfers are used to tax or transfers

lump-sum to each country.

ẇit= r?twit +Dy(τit)zitf(kit, e
f
it, e

r
it) + θRi π

R
t − (n+ ḡ + δ)kit − (qft + tfit)e

f
it − q

r
ite

r
it − cit + tlsit

First, turning to the energy tax, we see how the planner’s first-order condition can be decentralized:

MPefit = νex(exit,Rit) +
λ̂Rt

λ̂t︸ ︷︷ ︸
=price qft

− ξi
λ̂St

λ̂t︸︷︷︸
=−SCCt

MPefit = qft + ξit
S
t tSt = SCCt

In particular, the carbon tax is equal across countries, thanks to the adjacent equalization of

marginal utility of consumption / marginal value of wealth. To achieve such equalization in the

decentralization, the planner needs to use lump-sum transfers:

ωiuc(cit, τit) = λ̂t = ωjuc(cjt, τjt) ⇒ cit = u−1
c (λ̂t

∣∣τit)
and, using the budget constraint above, one obtains such consumption levels using lump-sum trans-

fers:

cit = (r?t−n−ḡ)wit +Dy(τit)zitf(kit, e
f
it, e

r
it) + πfit − δkit − (qft + ξit

S
t )efit − q

r
ite

r
it − ẇit + tlsit
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In particular, lump-sum transfers (per efficient unit of population) allow redistributing across coun-

tries and across time: ∫ ∞
t0

e(n+ḡ)t
∑
I
Pit

ls
it dt = 0

In particular, in situations where the technology difference zi, energy comparative advantage ν̄i,

vulnerability to climate γi or Pareto weights ωi are very heterogeneous such that consumption dif-

ferentials in the equilibrium without policy intervention are large, one can show that some countries

would receive positive lump-sum transfers ∃j, s.t. tlsj > 0 and some would have to pay lump-sum

taxes ∃j′, s.t. tlsj′ < 0. This implies that such decentralized allocation features direct lump-sum

transfers across countries.

The question is whether such lump-sum transfers are feasible politically. Would a world

central planner be able to solve world inequality by imposing lump-sum transfers, for example taxing

North America and Europe and rebating it lump-sum to Africa or South Asia? The representative

agent framework such as Golosov et al. (2014) or heterogeneous agent models with unrestricted

redistribution such as Hillebrand and Hillebrand (2019) all assume the availability of such lump-

sum transfers.

In the next section, we will analyze the policies where this family of policies is not feasible

for political, governance, or economic reasons. Imposing such constraints prevents redistribution

and equalization of marginal utilities across countries, and requires to solve for different kinds of

optimal policy problems.

6 Ramsey problem and optimal energy policy

We again consider the optimal policy of a social planner that maximizes the weighted sum

of the Household utility, now subject to the optimality conditions of the agents. In this context, it

would not only internalize all the dynamics of economic variables, the climate, and energy markets

but also the decisions that households and firms take.

The Ramsey planner chooses consumption/saving cit, energy mix efit and e
r
it, the extraction

and exploration efit and ι
x
it as well as the trajectories of dynamic states (wit, τit,St,Rit) indirectly:

Wt0 = max
{c,b,k,ef ,er,ex,ιx}

∫ ∞
t0

∑
I
e−(ρ+n)t ωi Pi u

(
D(τit)cit

)
dt

subject to (i) the optimality conditions of households, for ci, bi, ki, e
f
i , e

r
i , (ii) the optimality

conditions of the Fossil fuel producers for exi , ι
x
i and Ri and (iii) the Climate and temperature

dynamics τi and S. We apply the Pontryagin Maximum Principle in I-dimension20 – the details of

the entire system can be found in appendix appendix C. The Lagrange multipliers corresponding

20Note that a previous version of this work studied a continuum of countries, resulting in a Mean-Field Game for
the competitive equilibrium and a system of McKean Vlasov differential equations for the Ramsey policy
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to states dynamics equations are denoted ψ’s and the ones corresponding to market clearing are

named with µ’s. Note that the social planner has full commitment, in the sense that decisions

taken in the initial period t0 are binding until the end of times and there is no time inconsistency.

We provide some intuitions of the most important results and those that connect with the

rest of the literature.

First, the optimality for consumption yields the marginal value of wealth ψwit . This multiplier

informs on the value of consumption in country i and measures directly the extent of inequality

across countries. This is directly related to the marginal utility of consumption and the distortion

of the saving decisions:

[cit] ωiψ
w
it = ωiuc(ci, τit)︸ ︷︷ ︸

=direct effect

+ ωiψ
c
itucc(ci, τi)︸ ︷︷ ︸

=indirect effect on savings

This expression for the social shadow value of wealth is analogous to the “marginal value of liquidity”

in heterogenous agents analysis like Le Grand, Martin-Baillon and Ragot (2021) and Dávila and

Schaab (2023). Unlike the previous analysis in section 5, there is inequality in consumption, and

the planner can not equalize marginal utilities:

ωiuc(cit, τit) 6= ωjuc(cjt, τjt)

ωiψ
w
it 6= ωjψ

w
jt

Moreover, appendix C shows under what specific conditions the consumption/saving choice

of the planner and the household coincide. In such cases, we obtain that ψcit = 0 and there is

no time-varying difference between household’s marginal value of wealth λwit = uc(c, τ) and social

planner marginal value of wealth ψwit = ωiPiuc(c, τ), except for the population and Pareto weight.

In that context, the agent and the planner would make the same consumption/saving decisions

along the transition path.

That shadow value for wealth ψwit allows us to build a measure of inequality, by comparing

the individual value with the average value:

ψ̂wit =
ωiPiψ

w
it

ψ
w
t

≶ 1 with ψ
w
t =

1

P
∑
I
ωiPiψ

w
it

If the ratio is higher than 1, we can argue that the country is relatively poorer, with a lower welfare

than the average household.

Given this inequality factor, we can derive the Social Cost of Carbon, as an aggregation of

the Local Cost of Carbon in the different locations i ∈ I. This relies on the costate for the Carbon

Stock in the atmosphere ψSt , which matters for the Ramsey energy policy.
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6.1 Second Best – Social cost(s) of carbon

In this model, the social cost of carbon is written simply:

SCCt := −
∂Wt
∂St
∂Wt
∂ct

= −ψ
S
t

ψ
w
t

The costate for the stock of carbon St measures the social shadow value of an additional ton of

GHG emitted in the atmosphere. To convert this welfare measure into monetary units, one should

renormalize it using the marginal value of wealth or capital ∂Wt/∂ct ≡ ∂Wt/∂wt. As the cost of

climate is a global measure, the standard naive intuition from the “representative agent” framework

is to use the average marginal value ψwt . This allows us to consider an average SCC, but we will

see that redistribution terms need to be accounted for in the optimal taxation results.

To measure the welfare cost of climate damage, one can follow the dynamics of ψSt along the

trajectories of climate and aggregate temperatures. Applying the Pontryagin Max Principle in this

Ramsey problem – or using integration by part as in the proof of the PMP – we can follow this

shadow value for carbon S that depends on the costate for local temperatures.

ψ̇τit = ψτit(ρ+ ζ) + γyi (τit − τ?i )Dy(τit)︸ ︷︷ ︸
−∂τDy

f(kit, eit)ψ
w
it + γui (τit − τ?i )Du(τit)︸ ︷︷ ︸

−∂τDu

u′(Ducit)cit

+ γyi (τit − τ?i )Dy(τit)zi
[
υkitfk(kit, eit) + υfitfef (kit, eit) + υritfer(kit, eit)

]
+ γui (τit − τ?i )Du(τit)u

′(Duc)(1− γ)ψcit

The marginal value for country i of being subject to an increase in local temperature is measured

by ψτt . It increases with different terms: the temperature gap τit − τ?i , due to the convexity of

the damage function, the damage sensitivity to temperature for TFP γyi and utility/mortality γui .

Moreover, in contrast to the costate in the competitive equilibrium and the first-best allocations, the

Ramsey planner needs to take into account the optimal decisions of agents, and how temperature

changes distort the first-order conditions of the optimizing agents. These terms depend on how the

decisions on consumption uc(c, τ), the capital and energy choices – related to MPefi , MPerit and

MPki – are changed with temperature τit. If the Ramsey planner would make the same decisions as

the agents – for example if they have the same preference and the climate externality doesn’t distort

those choices – then we would recover the same Social Cost of Carbon exposed in the First-Best

allocation. In Ramsey plans, this is in general not true, and therefore the SCC and the Pigouvian

tax would account for these distortions.

Furthermore, as before, the marginal cost for country i of releasing carbon in atmosphere ψSt
is directly and globally affected by the marginal value of temperatures:

ψ̇St = ψSt (ρ̃+ δs)− ζ χ
∑
I

∆i ωiPiψ
τ
it
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through the climate parameters: ζ the climate inverse persistence (e.g. lags), χ the climate sensi-

tivity and ∆i the catching up effect” of temperature in cold locations.

Moreover, the marginal damage affects all the countries locally and symmetrically through

a value ψτit. These gain/costs are cumulated additively, as we see from the previous ODE for ψSt ,

and we can perform this (exact) decomposition:

ψSt =
∑
I
ωiPiψ

S
it ψ̇Sit = ψSit(ρ̃+ δs)− ζ χ∆i ψ

τ
it

where the local costate ψSit follow an analogous ODE for each location i ∈ I.
More particularly, the Social Cost of Carbon can hence be expressed as a weighted sum of

this local measure that we denote Local Social Cost of carbon LCCit. This cost is local as it takes

into account the individual damages in location i ∈ I, and it is normalized in monetary unit ψwit ,

which is the marginal value of wealth/income in location i. However, it is also social because the

Ramsey planner is choosing the optimal energy, emissions, and temperature paths internalizing the

global damages across countries.

LCCit = −ψ
S
it

ψwit

SCCt = −ψ
S
t

ψ
w
t

= −
∑
I

=inequality
measure︷ ︸︸ ︷
ωiPiψ

w
it

ψ
w
t

=−LCCit︷︸︸︷
ψSit
ψwit

SCCt = −
∑
I

ψ̂wit LCCit

As a result, we can express the Social Cost of Carbon as:

SCCt = −
∑
I

ψ̂wit LCCit

= P EI[LCCit]+ P CovI
(
ψ̂wit , LCCit

)
≶ EI[LCCit] =: SCCt

where the last inequality depends on whether the marginal damage – i.e. high local temperature τit
– tends to be correlated with development levels yi, i.e. lower production, consumption and hence

a higher marginal utility of consumption ψ̂wit . Note, as in the First Section, the total SCC is a sum

over location – and not an average as suggested by the mean EI[·] – and one needs to rescale it by

world population P.
To conclude, the presence of heterogeneity and the correlation between local damage and

poverty increases the Social Cost of Carbon from the Social Planner’s perspective. In the following

section, we summarize the different concepts of the social cost of carbon and we solve closed-form

for the SCC in the long-run in appendix E.
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6.2 Redistributive and distortive effect of energy taxes

As in the Toy model presented in the first section, energy taxes have strong redistributive

through energy markets.

Energy supply and reserve distortion

First, let us turn toward the distortion of fossil energy supply: it represents the global value

of changing marginally the global fossil market, by manipulating supply, profits, and reserves:

Supply Dist. = νEE
1

P
∑
I
ψ̂wit(e

f
it −

exit
Pi )︸ ︷︷ ︸

=direct supply distortion

+ νEE
1

P
∑
I
ψ̂wit
(
ψRit − λRit

)
︸ ︷︷ ︸

=planner vs. agents reserve valuation

− νEE
1

P
∑
I

ψ̂λ,Rit
νR,e(e

x
it,Rit)

νee(exit,Rit)︸ ︷︷ ︸
=distortion of agents valuation

with νEE =
(∑

I
νee(e

x
it,Rit)−1

)−1

This Supply Distortion of Fossil Production accounts for the three different redistributive

effects of lowering the energy demand / relaxing the energy market clearing: (i) it implies moving

down the supply curve, which lower the price and hurts exporters of fossil energy per capita.

That terms in high if these exporters have large marginal values of wealth ψ̂wit , i.e. a low value

of consumption cit or high temperature τit since ψ̂wit ∝ uc(cit, τit). This effect is weighted by the

aggregate supply elasticity which relates to νEE , an aggregation of all the country supply elasticity,

where again:

νEE =
(∑

I
νee(e

x
it,Rit)−1

)−1
= ν

(∑
I

exit
qf−λRit

)−1

in the isoelastic case. Note that due to Hotelling rent, the supply elasticity is distorted and no

longer equates: νEE = νqf/Ef .

Moreover, this first term is reminiscent of the terms-of-trade redistribution term in the toy

model. Empirically, it equals CovI
(
efjt − exjt, ψ̂

w
jt

)
, which tends to be negative, since the richer

countries are using large quantities of fossil fuels per capita. Also, note that here the relative share

in the energy mix ef/(ef +er) does not matter, only the absolute quantity used. In the quantitative

section, we explore a measure of such covariance.

Second, (ii) decreasing demand and extraction also imply “leaving fossil fuels in the ground”,

which is proportional to the valuation of reserves. However, since fossil fuels are already valued by

the energy firms, this term only accounts for the additional value of the social planner that accounts

for the extraction exit and exploration ιxit distortions, which writes ψRit − λRit , as ψRit is the Lagrange

multiplier of the planner on the reserve depletion dynamics Ṙit. Note that using Pontryagin

principle, ψRit follows a dynamic equation, as explained in appendix C. Again the planner would

weight the different agents according to their inequality weights ψ̂wit .

Third, (iii) “leaving fossil fuels in the ground” also changes the reserves path and hence the

valuation of agents, which then translates into their path of extraction and exploration decisions.
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The planner would anticipate such an effect and would value it with the term ψ̂λ,Rit , which is the

Lagrange multiplier on the dynamics of λRit , the agents’ Hotelling rent. The costate ψ̂λ,Rit also have

a dynamics described in appendix C. This term is weighted by the passthrough of the change in

production ex on the change in reserve valuation, hence νR,e. In the isoelastic case, this implies

simply:
νR,e(e

x
it,Rit)

νee(exit,Rit)
=

exit
Rit

As a result, accounting for the three different motives, the supply distortion term for the

energy taxation writes:

Supply Dist. = νEE CovI
(
efjt−e

x
it/Pi, ψ̂

w
jt

)︸ ︷︷ ︸
=direct terms-of-trade effect

+ νEE EI(ψ̂wit (ψRit − λRit)
)︸ ︷︷ ︸

=planner vs. agents reserve value

+ νEE EI(ψ̂λ,Rit exit
Rit
)

︸ ︷︷ ︸
=distortion of agents value

Energy demand distortion

Lastly, we see how a change in energy price affects demand for fossil fuels. Denoting it the

Social Cost of Energy, like in the toy model section, it rewrites the same way, for a more general

production function.

Demand Dist. =
1

P
∑
I

∂

∂efit

[
υ̂fitMPefit + υ̂ritMPerit + υ̂kitMPkit

]
where υ̂fit, υ̂

r
it and υ̂

k
it are rescaled versions of the Lagrange multipliers for fossil energy, renewables,

and capital respectively.

In our context, since the Planner controls a uniform tax on fossil energy, we find that at the

optimum: ∑
I
υ̂fit = 0

implying that the remaining demand distortions are caused by redistribution across countries: some

firms have their marginal product of energy higher and others lower than the optimal price of energy

chosen by the planner.

With CES functional form we have

MPefit = MPei
( eft
ωet

)− 1
σe

⇒ ∂efMPefit = − q
f
t

efit

[1− sfit
σe

+ sfit
(1− seit)
σy

]

where sfit =
qft e

f
it

qeiteit
is the fossil energy share in the energy mix, σe the elasticity of substitution between

renewable and fossils, seit =
eitq

e
it

yit
the energy share in GDP, and σy the elasticity of substitution

between energy and the capital/labor bundle.

We see that this demand channel of taxation has two effects: the first channel of increasing
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fossil consumption is the direct effect of the substitution between the two energy inputs, lowering

the marginal product with elasticity σe, and the second is the indirect effect through the total

energy use – proportional to the current share sfit.

Similarly, for the distortion of the renewable and capital, we have with our functional forms:

∂efMPerit =
qft
erit
srit

[ 1

σe
− 1− seit

σy

]
∂efMPekit =

qft
kit
skit

1

σy

Increasing fossil energy use implies a positive change in the marginal product of capital, and an

ambiguous effect on the marginal product of renewable: the direct effect increases renewable value,

but the indirect effect of increasing the total quantity of energy consumed eit may decrease it.

As a result, weighting these different distortions with the shadow values υ̂fit, υ̂
r
it and υ̂kit,

rescaled for inequality, we have that the demand distortion motives for energy taxation can be

summarized:

Demand Dist. = −qft CovI
(
υ̂fit,

1

efit

[1−sfit
σe

+sfit
1−seit
σy

])
+ qft CovI

(
υ̂rit,

srit
erit

[ 1

σe
−1−seit

σy
])

+ qft CovI
(
υ̂kit,

skit
kit

1

σy

)

which is proportional to fossil energy price qft .

6.3 Optimal energy policy and decentralization

In this section, we uncover our main result that derives the optimal policy for energy. We

derive the optimality conditions for the Ramsey planner, in particular for fossil energy efit and the

other equilibrium relations are detailed in appendix C. We will see that it integrates the different

redistribution motives that we detailed above. However, the Ramsey planner, by internalizing

these externalities, would like to distort agents’ optimality conditions, which include the curvature

of demand and supply functions.

Despite these numerous notations, a sufficient optimal policy for satisfying this condition is

the following:

tft = SCCt + Supply Dist.t +Demand Dist.t

where
SCCt =

∑
I
ψ̂itLCCit

= PEI[LCCit]+ PCovI
(
ψ̂wit , LCCit

)
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Supply Dist.t = νEE CovI
(
efjt−e

x
it/Pi, ψ̂

w
jt

)︸ ︷︷ ︸
=direct terms-of-trade effect

+ νEE EI(ψ̂wit (ψRit − λRit)
)︸ ︷︷ ︸

=planner vs. agents reserve value

+ νEE EI(ψ̂λ,Rit exit
Rit
)

︸ ︷︷ ︸
=distortion of agents value

Demand Dist.t = −qft CovI
(
υ̂fit,

1

efit

[1−sfit
σe

+sfit
1−seit
σy

])
︸ ︷︷ ︸

=fossil demand distortion

+qft Cov
I
(
υ̂rit,

srit
erit

[ 1

σe
−1−seit

σy
])

︸ ︷︷ ︸
=renewable demand distortion

+qft CovI
(
υ̂kit,

skit
kit

1

σy

)
︸ ︷︷ ︸

=capital choice distortion

Where the SCC the social value of carbon, and LCCit the local social cost of carbon studied in

section 6.1 and Demand Dist.t and Supply Dist.t the social value of distorting demand and supply

of energy are detailed in the section above. As in the Toy model of section 1, these terms account

for both externality and redistribution effects.

In that formula, similarly to the Toy model of section 2, we see that the level of the uniform

carbon tax accounts for (i) the climate externality, (ii) the distortion of the supply curve for fossil

producers and (iii) the demand distortion for importer and firms relying on fossil fuels. As a result,

even without climate externality SCCt = 0, the fossil fuel tax tft would not be zero. It accounts

for these manipulations of the terms-of-trade because of the wealthy exporters and the relatively

poorer importers. Such a result holds as long as the fossil production is traded internationally

in a market where agents have different marginal utilities of consumption, i.e. different ψ̂wit . The

taxation changes the price along the demand curve for importers and the supply curve for importers.

These motives would be absent in models like Golosov et al. (2014) for two reasons: First

the supply curve for energy is perfectly elastic, because of constant return to scale, which yields

νee(·) ∝ ν = 0. Second, because there is a single representative agent/firm and a single energy tax

instrument in the First-Best, the social planner is not per-se “distorting” the energy demand: the

planner and the agents would achieve the same optimality condition for fossil fuel demand.

6.4 Optimal policy with country-specific carbon tax

As in the Toy Model section, consider an experiment with country-specific taxes that would

allow to correct some of these redistributive concerns. In that case, not only the level but also

the distribution of the fossil fuel/carbon tax is affected by redistribution motives. The optimal tax

would be:
tfit =

1

ψ̂wit

[
SCCt + Supply Dist.t

]
with the Social Cost of Carbon SCCt and SupplyDist.t are the terms developed above. We see that

two taxation motives: one for correcting the climate externality and one for doing terms of trade

redistribution and changing the value of reserves. However, we observe that the demand distortion

is absent: the reason is that υfit the Lagrange multipliers for fossil energy is zero in equilibrium

where the planner can choose a country-specific tax level.

The tax is country i specific and depends on redistribution motives. Indeed the ratio 1/ψ̂wit

is the inverse of our inequality index developed at the beginning of this section. It implies that

richer/colder countries, which have higher consumption and lower marginal utilities will be charged
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a higher carbon tax, and conversely poorer countries should be charged a lower tax:

low cit high τit ⇒ high ψ̂wit ∝ ∂cu(cit, τit) ⇒ low tfit

everything else being constant, in particular SCCt and SupplyDist.t.

7 Calibration

The calibration of this model is preliminary, and will be updated to match (i) empirical

moments on output growth, production, population demographic and energy markets (ii) reasonable

estimates of the SCC. In particular, parameters denoted by ? are subject to future changes. As

of now, this calibration is aimed at simulating a first version of the model to provide intuitions of

economic and climate mechanisms. Many of the parameters are taken or inspired by the rest of the

literature.

Table 1: Baseline calibration

Technology & Energy markets
α 0.35 Capital share in f(·) Capital/Output ratio
ε 0.12 Energy share in f(·) Energy cost share (8.5%)
σ 0.3 Elasticity capital-labor vs. energy Complementarity in production (c.f. Bourany 2020)
ω 0.8 Fossil energy share in e(·) Fossil/Energy ratio
σe 2.0 Elasticity fossil-renewable Slight substitutability & Study by Stern
δ 0.06 Depreciation rate Investment/Output ratio
ḡ 0.01? Long run TFP growth Conservative estimate for growth
ge 0.01? Long run energy directed technical change Conservative / Acemoglu et al (2012)
gr 0.01? Long run renewable price increase Conservative / Match price fall in renewable
ν 2? Extraction elasticity of fossil energy Conservative extraction / Krusell et al (2022)
µ 2? Exploration elasticity of fossil energy Cubic exploration cost / Krusell et al (2022)
δR 0.45? Probability of new reserves discovery Conservative / Krusell et al (2022)

Preferences & Time horizon
ρ 0.03 HH Discount factor Long term interest rate & usual calib. in IAMs
ρ̃ 0.03? SP Discount factor Planner as patient as Households
η 2.5 Risk aversion Positive utility in steady state
n 0.01? Long run population growth Conservative estimate for growth
ωi 1 Pareto weights Uniforms / Utilitarian Social Planner
T 90 Time horizon Horizon 2100 years since 2011

Climate parameters
ξ 0.81 Emission factor Conversion 1 MTOE ⇒ 1 MT Carbon
ζ 0.3 Inverse climate persistence / inertia Sluggishness of temperature ∼ 10−15 years
χ 2.1/1e6 Climate sensitivity Pulse experiment: 100GtC ≡ 0.21◦C medium-term warming
δs 0.0014 Carbon exit from atmosphere Pulse experiment: 100GtC ≡ 0.16◦C long-term warming
γ⊕ 0.00234? Damage sensitivity Conservative estimate: Nordhaus’ DICE
γ	 0.2×γ⊕ ? Damage sensitivity Conservative estimate: Nordhaus’ DICE
ατ 0.2? Weight historical climate for optimal temp. Marginal damage decorrelated with initial temp.
τ? 15.5 Optimal yearly temperature Average spring temperature / Developed economies

Parameters calibrated to match data
Pi Population Data – World Bank 2011
Ri Fossil reserves Data – BP Energy review
zi TFP To match GDP Data – World Bank 2011
τi Local Temperature To match temperature of largest city
ν̄i Fossil Extraction Marginal Cost To match fossil production – BP Energy Review
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8 Quantitative Experiment

We collect data on 24 countries, selected as the union of the 15 largest in terms of population

and the 15 largest in terms of total GDP. As a result, it includes both small but rich countries as

well as large but lower-income economies.

We use the local temperatures of the largest city as well as GDP, energy use, CO2 emissions,

population from international data from the World Bank. In particular, I calibrate productivity

residual z to match the distribution of output per capita at the steady state, assumed to be the

mean over the years 2000-2011.

More work is needed to match the data and to make the model empirically grounded.

In the following two graphs, I plot the difference, in the long run stationary competitive

equilibrium, between the distribution of local cost of carbon

LCCit =
λSit
λwit

and the local cost of carbon reweighted by our measure of inequality

λ̂wit =
λwit
λ
w
it

This is the measure that will be relevant for the optimal carbon taxation:

LWCCit = λ̂wit LCCit =
λSit
λ̄wt

Those measures are plotted in the following graph, both in the First best, where, because of the

availability of lump-sum transfers across countries, we have equalization of the marginal value of

wealth λwit = λwit, for all i ∈ I and ∀t.

However, in the Ramsey plan, i.e. the second best, we see that the two measures differ.

For arbitrary Pareto weights ωi, we see that the planner would put more weight on countries that

have a higher marginal value of wealth/marginal utility of consumption, i.e. poorer countries. The

42



consequence of that is a lowering of the overall carbon tax. Using the naive sum for the Social

Cost of Carbon, we would find a tax to be $75 per tons of Carbon. Using the optimal reweighting,

a planner would lower the tax, to accommodate the poor countries’s lower income, resulting in a

tax of $47. The main explanation for that change in the level of taxation is that the "effective"

conversion rate λ̄w between welfare and monetary value for the planner is much larger.

This understand this channel, in the following graph, I plot a decomposition of the SCC.

In the long-run stationary competitive equilibrium, the Social Cost of Carbon can be decomposed

between what is driven by the marginal utility of consumption λ̄t and what is driven by the welfare

impact of climate change λSt .

SCCt := −∂Wt/∂St
∂Wt/∂ct

= −λ
S
t

λwt
= −

∑
I λ

S
it

1
I

∑
I λit

with the decomposition:

log(SCCt) = log(−λSt )− log(λwt )

We see that in the First-Best, the Social Cost of Carbon is much larger. The main reason is

43



that the marginal value of wealth is much lower due to bilateral wealth transfers. Poor countries

receive lump-sum transfers, consume more and therefore lower their marginal utility of consumption.

All those results show that redistribution motives are important for correcting the climate

externality. However, in our analysis above, we see that energy supply terms-of-trade effects are an

important motive behind the optimal taxation of carbon. In the next picture, I plot the terms of

trade adjustment, which are

LCFit = λ̂wit
(
efit − e

x
it

)
which stands for the Local Cost of Fossil (LCF), i.e. the terms-of-trade adjustment, weighted by

our inequality measure.

This implies that this additional motive for theÂ supply distortion = E[λ̂wit
(
efit− exit

)
] is high

and imply to doubling the energy taxation. The redistribution motive puts a high weight on poor

importers, like India, Brazil, Mexico, Egypt, Thailand or Nigeria.

To conclude, in the next graph, I display the difference between the second-best climate

policy Wi and the competitive equilibrium Vi in consumption equivalent welfare units.

We see that not all countries benefit from Global Cooperation on Carbon policy: cold and

fossil-exporter countries.
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9 Conclusion

In this paper, I show how to design optimal climate policy in presence of inequalities and

constraints on redistribution instruments. Indeed, if the optimal policy can not transfer across

countries as in the First-Best allocation, then second-best policy would account for the redistributive

effects of taxation and lower the burden for developing countries while increasing taxes for richer

countries. Additional constraints, such as countries’ political incentives to participate in a climate

agreement are analyzed in subsequent work to provide policy recommendations for climate policy.
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A Energy producers – fossil fuel company

We consider the simplest functional forms, yielding isoelastic supply curves for fossil energy

extraction and exploration:

ν(ex,R) =
ν̄

1 + ν

(ex
R

)1+ν
R µ(ιx,R) =

µ̄

1 + µ

( ιx
R

)1+µ
R

Setting up the Hamiltonian,

H(Rt, λRt , ext , ιxt ) = πt(Rt, ext , ιxt ) + λRt (δRιxt − ext )

The optimal decisions are given by:

[ext ] qe,ft = νex(ex, R) + λRt = ν̄
( ext
Rt

)ν
+ λRt

[ιxt ] λRt δ
R = µI(ι

x
t ,Rt) = µ̄

( ιxt
Rt

)µ
ιxt = Rt

(λRt δ
µ̄

)1/µ
The Pontryagin Maximum Principle yields the dynamics of the costate :

−λ̇Rt + ρλRt = ∂RH(R, ex, ιx)

λ̇Rt = ρλRt + ∂Rν(ext ,Rt) + ∂Rµ(ιxt ,Rt)

λ̇Rt = ρλRt −
ν̄ν

1 + ν

( ext
Rt

)1+ν
− µ̄µ

1 + µ

( ιxt
Rt

)1+µ

Replacing it with the optimal decisions, we obtain a non-linear equation for the Hotelling rent:

λ̇Rt = ρλRt −
ν̄−1/νν

1 + ν

(
qf − λRt

)1+1/ν − µ̄−1/µµ

1 + µ

(
δRλRt

)1+1/µ

Moreover, we should add the transversality conditions

lim
t→∞

e−ρtλRt Rt = 0

and since we know that λRt grows less fast than eρt, we have the transversality respected even if

Rt 6→ 0 when t→∞.

This implies a (highly!) non-linear ODE for the Hotelling rent λRt , where λR0 is chosen such

that Rt = 0 by terminal time t = t̄. We can "simplify" the ODE, in the case where the cost are

quadratic µ = ν = 1 and

λ̇Rt = ρλRt +
1

2ν̄

(
qe,ft − λRt

)2
+

1

2µ̄

(
δRλRt

)2
We see that the Hotelling rent account for the extraction cost (scaled by ν̄) and the exploration

cost (scaling in µ̄) and depend on the price/inverse demand for determining the quantity produced

50



in equilibrium.

A stationary solution can be found in the case where λ̇Rt = 0

ρλRt +
1

2ν̄

(
qe,ft − λRt

)2
+

1

2µ̄

(
δRλRt

)2
= 0

ρλRt −
1

ν̄
qe,ft λRt +

1

2ν̄
(λRt )2 +

1

2ν̄
(qe,ft )2 +

1

2µ̄
(δR)2(λRt )2 = 0

λR∞ =

qe,ft
ν̄ − ρ±

√
(
qe,ft
ν̄ − ρ)2 − ( 1

ν̄ + δ2

µ̄ ) 1
ν̄ (qe,ft )2

1
ν̄ + δ2

µ̄

We obtain two stationary positive solutions: for a given energy price (demanded) qe,f , in one

equilibrium, the rent is very high, incentiving a lot of exploration as a share of reserve (ιx/R is

high) but the production is relatively low (qe,f −λR is low and so is the marginal cost and quantity

ex/R). In a second stationary equilibrium, the rent is lower and the marginal cost is higher since the

extraction is larger as a share of reserves. Note, that this stationary equilibrium is not consistent

with state Rt dynamics since the reserves are depleting at different rates: only the first case is

consistent with a sustainable level of extraction and exploration.

In the non-quadratic case, the stationary equilibrium for the extraction-exploration solves

the following system:

Ṙt = δRιxt − ext = 0 λ̇Rt = ρλRt −
ν̄−1/νν

1 + ν

(
qe,f − λRt

)1+1/ν − µ̄−1/µµ

1 + µ

(
δRλRt

)1+1/µ
= 0

This implies the system:

δRιx∞ = ex∞

ρλR∞ =
ν̄−1/νν

1 + ν

(
qf − λR∞

)1+1/ν
+
µ̄−1/µµ

1 + µ

(
δRλR∞

)1+1/µ

qf∞ = ν̄
( ex∞
R∞

)ν
+ λR∞

ιx∞ = R∞
(λR∞δR

µ̄

)1/µ
with 4 equations and 4 unknowns ex∞, ιx∞, q

f
∞, λR∞, for any R.

For I countries, reformulating:{
qf∞ = ν̄(δR)ν(1+1/µ)µ̄−ν/µ(λR∞)ν/µ + λR∞

ρλR∞ = ν̄−1/νν
1+ν

(
qf − λR∞

)1+1/ν
+ µ̄−1/µµ

1+µ

(
δRλR∞

)1+1/µ

We can plot these two functions are prove that a unique equilibrium exists on the energy market.
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B Competitive equilibrium

Dynamics of the individual state variables sit = (kit, τit, zi, pi, θi, γi,∆i, ξi) and aggregate

ones (St, Tt,Rt):

ẇt = r?twit +D(τt)f(kt, et)− (n+ ḡ + δ + r?t )kt + θπft − ct − qet et − c(ϑt)e
f
t

Et = e(n+ḡ)t

∫
S
ξ(1− ϑit)efitpitds

τ̇it = ζ(∆i χSt − (τit − τit0)) Ṡt = Et − δsSt

Ṙt = −Eft + δRι
x
t qe,ft = ν̄(Eft /Rt)ν

Household problem: Pontryagin Maximum Principle

Hhh(s, {c, k, ef , er}, {λ}) = u(ci, τi) + λwit

(
r?twit +D(τit)f(kt, et)− (n+ ḡ + δ + r?t )kt + θπft − q

f
t e
f
it − q

r
ite

r
it − ct

)
[ct] u′(cit) = λwit

[kt] MPkit = r?t

[eft ] MPefit = D(τit)z ∂ef(kit, eit)
( efit
ωeit

)− 1
σe = qft

[ert ] MPerit = D(τit)z ∂ef(kit, eit)
( erit

(1− ω)eit

)− 1
σe = qrit

[kt] λ̇wt = λwt
(
ρ− r?t

)
Fossil Energy Monopoly problem:

Hm(Rt, λRt , ext , ιxt ) = πt(e
x
t , ι

x
t ,Rt) + λRt (δRιxt − ext )

[Rt] λ̇Rt = ρλRt −
ν̄ν

1 + ν

( ext
Rt

)1+ν
− µ̄µ

1 + µ

( ιxt
Rt

)1+µ

[ext ] qft = νe(e
x,R) + λRt = ν̄

( ext
Rt

)ν
+ λRt

[ιxt ] λRt δ
R = µι(ι

x
t ,Rt) = µ̄

( ιxt
Rt

)µ
ιxt = Rt

(λRt δR
µ̄

)1/µ
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C Optimal policy and Ramsey problem

Welfare criterion:

Wt0 = max
{c,b,k,ef ,er,ex,ιx}

∫ ∞
t0

∫
I
e−(ρ+n)t ωi Pi u

(
D(τit)cit

)
dt

Household:
ẇit =

(
r?t − (n+ ḡ)

)
wit + vit + tlsit

vit = Dyi (τit)zif(kit, eit)− qeiteit − (r?t + δ)kit

Combine:

ẇit=
(
r?t − (n+ ḡ)

)
wit + πfit +Dy(τit)zitf(kit, e

f
it, e

r
it)− (r? + δ)kit −

(
qft + tfit

)
efit − q

r
ite

r
it − cit + tlsi

Optimality conditions of the Household: λ̇wit = λwit(ρ+ ηḡ − r?t )

λwit = uc(cit, τit)

Climate system:  Ṡt =
∑

I e
(n+ḡ)tξiPie

f
it − δsSt

τ̇it = ζ
(
∆iχSt − (τit − τit0)

)
Firms inputs optimality conditions, capital and energy demand{

qft + tfit = MPefit qrit = MPerit

r?it = MPkit − δ

Energy firms dynamic decisions:
qft = νe(e

x
it,Rit) + λRit δRλRit = µι(ι

x
it,Rit)

λ̇Rit = ρλRit + νR(exit,Rit) + µR(ιxt ,Rit)
Ṙit = −exit + δRιxit

Energy market clears

Eft =
∑
i∈I

exit =
∑
i∈I
Pie

(n+ḡ)tefit

Bond market clears:

∑
i∈I
Pibit = 0 ⇒

∑
i∈I
Piwit =

∑
i∈I
Pikit
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Reformulation of Energy firm profit.

Piπ
f
it(q

f
t , e

x
it, ιit,Rit) = qft e

x
it − ν(exit,Rit)− µ(ιxt ,Rit)

Ramsey problem, Hamiltonian:

- States: s = {wit, τit,Rit, λit, λRit}.
- Controls c = {cit, kit, efit, erit, exit, ιxit, q

f
t , r

?
t }i,t [for now qrit is constant for now],

- Costates: ψ = {ψwit , ψsit, ψτit, ψRit , ψλit, ψ
λ,R
it , φcit, θ

e
it, θ

ι
it, υ

f
it, υ

r
it, υ

k
it, µ

b
t , µ

e
t}it - Other parameters P =∑

i Pi and ω̄ =
∑

I ωi

The Hamiltonian writes:

H(s, c, ψ) =
∑
I
ωiPiu(cit, τit) +

∑
I
ωiPiψ

w
it

((
r?t − (n+ ḡ)

)
wit

+
1

Pi

[
qft e

x
it − ν(exit,Rit)− µ(ιxt ,Rit)

]
+Dy(τit)zitf(kit, e

f
it, e

r
it)− (r?t + δ)kit − (qft +tfit)e

f
it − q

r
ite

r
it − cit + tlsi

)
+
∑
I
ωiPiψ

S
it︸ ︷︷ ︸

=ψSt

(∑
I
e(n+ḡ)tξiPie

f
it − δ

sSt
)

+
∑
I
ωiPiψ

τ
it

(
ζ
(
∆iχSt − (τit − τit0)

))
+
∑
I
ωiψ

R
it

(
− exit + δRιxit

)
+
∑
I
ωiψ

λ,R
it

(
ρλRit + νR(exit,Rit) + µR(ιxt ,Rit)

)
+
∑
I
ωiPiψ

λ
it

(
λit(ρ+ ηḡ − r?t

))
+
∑
I
ωiPiφ

c
it

(
uc(cit, τit)− λwit

)
+ µbt

∑
i∈I
Pi
(
wit − kit

)
+ µet

∑
i∈I

(
exit − Pie

f
it

)
+
∑
I
ωi θ

e
it

[
νe(e

x
it,Rit) + λRit − q

f
t

]
+
∑
I
ωi θ

ι
it

[
µι(ι

x
it,Rit)− λRitδR

]
+
∑
I
ωiPi υ

f
it

[
qft +tft −MPefit

]
+
∑
I
ωiPi υ

r
it

[
qrt −MPerit

]
+
∑
I
ωiPi υ

k
it

[
r?t + δ −MPkit

]
Static optimality conditions:

• Consumption: [cit]

ωiPiψ
w
it = ωiPiuc(ci, τit) + ωiPiψ

c
itucc(cit, τit)

• Capital [kit]

ωiPiψ
w
it [MPkit − δ − r?t ]− µbtPi − ωiPi

[
υfit∂kMPefit + υfit∂kMPerit + υkit∂kMPkit

]
= 0

µbt = − 1

P
∑
I
ωiPi

[
υfit∂kMPefit + υfit∂kMPerit + υkit∂kMPkit

]
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• Interest rate r?t∑
I
ωiPiψ

w
it(wit − kit)−

∑
I
ωiPiψ

λ
itλit(+

∑
I
ωiPiψ

λ,R
it λRit) +

∑
I
ωiPiυ

k
it = 0

• Energy extraction [exit]

µet + ωiψ
w
it [q

f
t − νe(ex,R)]− ωiψRit + ωiψ

λ,R
it νR,e(e

x
it,Rit) + ωiθ

e
itνee(e

x
it,Rit) = 0

µet = − 1

ω̄

∑
I
ωiθ

e
itνee(e

x
it,Rit)︸ ︷︷ ︸

=supply distortion

+
1

ω̄

∑
I
ωi
(
ψRit − λRitψwit

)
︸ ︷︷ ︸

=planner vs. agents reserve valuation

− 1

ω̄

∑
I
ωiψ

λ,R
it νR,e(e

x
it,Rit)︸ ︷︷ ︸

=distortion of agents valuation

• Energy exploration [ιxit]

−ωiψwitµι(ιxit,Rit) + ωiψ
R
itδ

R + ωiθ
ι
itµιι(ι

x
it,Rit) + ωiψ

λ,R
it µR,ι(ι

x
it,Rit) = 0

ωi
(
ψRit − λRitψwit

)
δR︸ ︷︷ ︸

=planner vs. agents reserve valuation

+ ωiθ
ι
itµιι(ι

x
it,Rit)︸ ︷︷ ︸

=exploration distortion

+ ωiψ
λ,R
it µR,ι(ι

x
it,Rit)︸ ︷︷ ︸

=distortion of agents valuation

= 0

• Fossil energy consumption [efit]

ωiPiψ
w
it [

=tft︷ ︸︸ ︷
MPefit − q

f
t ] + ψSt e

(n+ḡ)tξiPi − Piµet
− ωiPi

[
υfit∂efMPefit + υrit∂efMPerit + υkit∂efMPkit

]
= 0( 1

P
∑
I
ωiPiψ

w
it

)
︸ ︷︷ ︸

=ψ
w
t

tft = −ψSt︸︷︷︸
∝SCCt

e(n+ḡ)tξ +
1

P
∑
I
ωiPi

[
υfit∂efMPefit + υrit∂efMPerit + υkit∂efMPkit

]
︸ ︷︷ ︸

=demand distortion

+ µet︸︷︷︸
=supply distortion

with ξ = 1
P
∑

i Piξi

• Renewable energy consumption [erit]

ωiPiψ
w
it [MPerit − qrit]− ωiPi

[
υfit∂erMPefit + υrit∂erMPerit + υkit∂erMPkit

]
= 0

• Fossil Energy price ∑
I
ωiPiψ

w
it(
exit
Pi
− efit) =

∑
I
ωiθ

e
it −

∑
I
ωiυ

f
it
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Pontryagin Principle: Optimality wrt dynamic variables

• Wealth [wit] – effectively bonds [bit]

Hw(·) = ωiPiψ
w
it(r

?
t − (n+ ḡ))− Piµbt

• Temperature [τit]:

Hτ (·) = ωiPiuτ (cit, τit) + ωiPiψ
c
itucτ (cit, τit)

+ ωiPiψ
w
it

[
Dyτ (τit)zitf(kit, e

f
it, e

r
it)− ∂

∂τ

(
MPkitkit +MPefite

f
it +MPerite

r
it

)]
− ζωiPiψτit

• Carbon atmospheric stock: [St]:

HSi(·) = ζωiPiψ
τ
it∆iχ− δsωiPiψSit

HS(·) = ζχ
∑
I
ωiPiψ

τ
it∆i − δs

∑
I
ωiPiψ

S
it

HS(·) = ζψτt − δsψSt
ζ → 1 ⇒ ψSt =

∑
I
ωiPiψ

S
it ≈

∑
I
ωiPiψ

τ
it ∆iχ

• Fossil reserves [Rit]

HRi(·) = −ωiψwit [νR(exit,Rit) + µR(exit,Rit)] + ωiψ
λ,R
it [νRR(exit,Rit) + µRR(exit,Rit)]

+ ωiθ
e
itνeR(exit,Rit) + ωiθ

ι
itµιR(exit,Rit)

• Marginal value of wealth [λit]

Hλ(·) = ωiPiψ
λ
it(ρ+ ηḡ − r?t )− ωiPiψcit

• Marginal value of fossil reserves [λRit ]

Hλ,R(·) = ωiPiψ
λ,R
it ρ+ ωi(θ

e
it − θιitδR)
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D Long-run analysis

In this section, we provide analytical results of the Competitive equilibrium, First-Best and

Ramsey allocations on the cost of carbon, the path of emissions, and temperature in the asymptotic

stationary equilibrium.

D.1 The Social Cost of Carbon

Given the path for the costate that informs on the social value of carbon emission, we

canÂ find a balance-growth path that keeps the SCC stationary. We consider the long-run equilib-

rium where the terminal time horizon T → ∞. In this context, only a stable temperature makes

the system stationary, such that the emissions entering the atmosphere Et are exactly offset by the

one rejected outside the climate system δi

Et = δsSt and τt → τ∞

Depending on the trajectory of emissions between t0 and tT – when Et ≈ δsSt – there are differ-

ent cumulative emission/atmospheric carbon level St possible and hence different distribution of

temperature TT and {τi}i.
In particular, it is not difficult to guess the ordering between Competitive equilibrium (CE),

Unilateral policy (UP), Ramsey allocation (RA), and First Best Allocation (FB) :

T FBT < T RAT < T UPT < T CET

Solving the stationary differential equations at the limit t → T → ∞, we find an analytical

characterization for the Social Cost of Carbon.

Proposition:

In the stationary competitive equilibrium, the Ramsey or the First Best allocations, the Social Cost

of Carbon can be expressed as:

SCCt ≡
1

ψ
w
t

χ

ρ̃+ δs

∫
I
∆i(τi,∞ − τ?i )

(
γyi D

y(τi,∞)yi,∞ψ
k
i,∞ + γui Du(τi,∞)ωi u

′(Duci,∞) ci

)
di

This formula is analogous to the Social Cost of Carbon expressed in Golosov et al. (2014).

Considering a linear instead of quadratic damage function – and only applied to TFP, without

direct effects on mortality, would yield an exactly identical expression. We rely on a different set of

assumptions – stationarity and continuous time – while the analysis in Golosov et al. (2014) relies

on a representative agent, full depreciation every discrete period, and log-utility assumptions such

that income and substitution forces in consumption/saving offset each other to yield such formula.

In particular, the noticeable feature is the proportionality of the SCC with yi,∞ and ci∞ and

the temperature gap (τi,∞− τ?i ). If countries are richer, and more developed, the marginal damage
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has a larger economic impact. Moreover, due to the convexity of the damage function, the cost of

carbon increases with temperature: hotter countries have more to lose from an additional increase

in temperature. The extent of this proportionality depends on the exact calibration of the damage

parameters γyi = γ⊕i or γ	i for productivity impact and γui = γ⊕u,i or γ
	
u,i for mortality effects. More

work is needed to make these damage parameters empirically grounded, as studied in Carleton

et al. (2022)

Moreover, the SCC is proportional to the extent that the country is warming faster than the

world’s atmosphere due to geographical factors ∆i.

Finally, these different effects are scaled with the effective discount factor – the rate of the

social planner and including the depreciating of carbon due to the exit of the greenhouse gas from

the atmosphere. This highlight in a very clear fashion how the discount factor affects the Social

Cost of Carbon, as raised in the debate Stern and Stern (2007) and Nordhaus (2007).

Moreover, the ratio 1/ψ
w
t and ψwit in the expression of the Social Cost of Carbon highlight

the importance of inequality for the computation of carbon price.

To study this, one could also consider the “Local cost of carbon” as the marginal damage for

the region i ∈ I:
LCCit =

χ

ρ̃+ δs
∆i(τi,∞ − τ?i )

(
γyi yi,∞ + γui ci,∞

)
with output yi,∞ = Dyi (τit)zif(kit, eit). Again, considering a single country, this formula boils down

to the SCC for a representative country. Taking heterogeneous countries and following the same

logic as above, we observe that:

SCCt =

∫
I
ψ̂wit LCCit di

= EI[LCCit]+ CovI
(
ψ̂wit , LCCit

)
> EI[LCCit] =: SCCt

This covariance between ψ̂wit = ψwit/ψ
w
t and the LCCi that is proportional to yi and τi,∞ − τ?i is

clearly positive as we will explore in our quantitative experiments. This is obviously identical to

the theoretical result we showed above in the non-stationary path. In this long-run context, the

covariance is easier to compute as it relies on less assumptions on preferences and technology as it

can be directly measured from the data on τit, yit and cit.

D.2 Green Growth and decoupling from energy

Empirically, energy use has correlated strongly with GDP levels and industrial production

in the last century, as seen in figures in ??. However, lowering GHG emissions tend to go hand

in hand with reducing energy consumption. This asks the question of the possibility of decoupling

between economic growth and energy supply, and fossils in particular.

To examine this in our framework, let us study the optimality conditions for energy and

58



express the energy share in the final output.
MPei = zi

1− 1
σ yit

1
σ ε

1
σ (zeit)

1− 1
σ e
− 1
σ

it = qet

MPei
( eft
ωet

)− 1
σe = qe,ft

MPei
( ert

(1−ω)et

)− 1
σe = qe,rt

As a result, the total energy share writes:

se,t :=
eitq

e
t

yit
= (qet )

1−σzσ−1
i (zet )

σ−1ε

Since all the variable are already expressed in efficient unit per capita, accounting for the trend

in population n and TFP growth ḡ, we have zi constant and all the variables growth in absolute

value. However, all the other variables can feature additional long-run trends, such as energy price

q̇et /q
e
t = gq or directed technical change żet /zet = ge.

We consider two case: (i) the cost share of energy stays stable in output and (ii) this share

falls to zeros.

(i) se,t →t→∞ s̄e ⇔ gq(1− σ) + ge(σ − 1) = 0

(ii) se,t →t→∞ 0 ⇔ gq − ge < 0

In our quantitative exercise, following empirical evidence that energy share se,t tends to comove

strongly with energy price qet , we assume that σ < 1 and energy is a complementary factor in

production. As result, ge = gq for (i) and ge > gq for (ii). For the energy share to stay stable or

decline, directed technical change should at least compensate for the increase in price.

To determine the path of price in our context, recall the supply side of the energy market,

we have:
q̇et
qet

= sef,t
q̇e,ft

qe,ft
+ ser,t

q̇e,rt
qe,rt

where sef,t =
eft q

e,f
t

etqt
is the expenditure share in fossil and ser,t = 1 − sef,t the share in renewable.

Recall that in our context,

qft =
(Eft
Rt

)ν
+ λRt ⇒ q̇ft

qft
= sCν

(Ėft
Eft
− Ṙt
Rt

)
+ (1− sC)

λ̇Rt
λRt

where sC = CE(·)
qft

is the share of marginal in the fossil price, and λ̇Rt
λRt

is the growth of the Hotelling

rent, which is ρ at the first order. Obviously if extraction rate is faster than exploration of new

reserves, the price will grow to infinity. Moreover, the rent of the monopolist will at least grow at

the speed ρ in the first order,

Similarly, to get decoupling from fossils in the energy mix, we must have gr =
q̇e,rt
qe,rt

<
q̇e,ft
qe,ft

= gf .

In this case, gq → gr.
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To conclude, to obtain a balance green growth equilibrium in our context, we need: (i) fossil

prices to grow sufficiently fast due to extraction or rise in Hotelling rents, (ii) the price of renewables

to grow less fast than fossils and (iii) that the directed technical change grows at a rate at least

faster than the growth in the relative price of the resulting energy.

D.3 Path of emissions and temperature

We saw that the cost of carbon depends mostly on the resulting final temperatures once the

economy and climate reach a stationary path where temperatures stay constant. This level matters

and varies enormously as it depends linearly on the path of emissions:

τit − τit0 = ∆i χ

∫ T

t0

e−δs(T−t)Etdt

As a result, replacing the aggregate emissions, we obtain:

τit − τit0 = ∆i χ ξ ω

∫ T

t0

e(n+ḡ)t−δs(T−t)qf −σet

∫
j∈I

(
zjz

e
j,tD(τj,t)

)σ−1
yj,t q

σe−σ
j,t dj dt

where the path of world emissions {εj}j has been expressed by fossil energy demand efj (qft , zj , z
e
j,t).

In the long-run, the local temperature will uniquely be affected by the externality of the world econ-

omy, along with geographical factors determining warming ∆i, the climate sensitivity parameter χ

and the carbon exit from atmosphere δs,

We observe that the path of emissions depends positively on the growth of population n and

aggregate productivity ḡ, the deviation of output from trend yj & relative TFP zj , the directed

technical change zet . Fossil demand is also shaped by the elasticity of energy in output σ, the Fossil

energy price qe,f and its long run growth rate gqf , as expressed above. Finally, the change in energy

mix, renewable share ω and price qrt & elasticity of the energy source σe are factors that would help

reduce these paths of emissions.

To analyze this asymptotic behavior, we perform an approximation of this resulting temper-

ature at terminal time. T .

τ̇T
τT
∝ n + ḡy − (1− σ)

(
ge − γ̃

)
+ (σe − σ)(1− ω)gq

r − (σe(1− ω) + σω)gq
f

This decomposition is reminiscent of a Generalized Kaya (or I = PAT ) identity, where

Emission growth can be decomposed as

εit =
εit
eit

eit
yit

yit
pit

pit

where yit is already the output per capita. Taking the growth rate of this decomposition, we obtain

the formula above. This show how important the path of energy prices gqf and gqr and technology

ge matter for future path of emissions and climate.
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E Closed form solution for the Social Cost of Carbon

Solving for the shadow cost of carbon and temperature ⇔ solving ODE

ψ̇τit = ψτt (ρ̃+ ∆ζ) + γyj (τ − τ?)Dy(τ)f(k, e)ψwt + γuj (τ − τ?)Du(τ)u′(Du(τ)c)︸ ︷︷ ︸
=ψwit

c

ψ̇St = ψSt(ρ̃+ δs)−
∫
I
∆iζχψ

τ
it

We need to solve for ψτt and ψSt . In stationary equilibrium ψ̇St = ψ̇τt = 0. As a result, we obtain:

ψτit = −
∫ ∞
t
e−(ρ̃+ζ)u(τu − τ?)

(
γyjD

y(τu)yτψ
w
u + γuj Du(τu)u′(Du(τu)cu)cu

)
du

ψτit = − 1

ρ̃+ ∆ζ
(τ∞ − τ?)

(
γyjD

y(τ∞)y∞ + γuj Du(τ∞)c∞

)
ψw∞

ψSt = −
∫ ∞
t
e−(ρ̃+δs)uζχ

∫
I
∆jψ

τ
j,udj du

=
1

ρ̃+ δs
ζχ

∫
I
∆jψ

τ
j,∞dj

= − χ

ρ̃+ δs
ζ

ρ̃+ ζ

∫
I
∆j(τj,∞ − τ?)

(
γyjD

y(τj,∞)y∞ + γuj Du(τj,∞)cj,∞

)
ψwj,∞dj

ψSt −−−→
ζ→∞

− χ

ρ̃+ δs

∫
I
∆j(τj,∞ − τ?)

(
γyjD

y(τj,∞)yj,∞ + γuj Du(τj,∞)cj,∞

)
ψwj,∞dj

which proves the analytical formula in the main text.

Moreover, observing that we obtained an expression for the Social Cost, we can rewrite it as

the integral of Local Cost, invoking Fubini’s theorem:

ψSt = −
∫ ∞
t
e−(ρ̃+δs)uζχ∆jψ

τ
j,udj du

= −
∫
I

∫ ∞
t
e−(ρ̃+δs)uζχ∆jψ

τ
j,u du dj

=

∫
I
ψSj,tdj

with ψSj,t =

∫ ∞
t
e−(ρ̃+δs)uζχ∆jψ

τ
j,u du

−−−→
ζ→∞

− χ

ρ̃+ δs
∆j(τj,∞ − τ?)

(
γyjD

y(τj,∞)yj,∞ + γuj Du(τj,∞)cj,∞

)
ψwj,∞
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