The Optimal Design of Climate Agreements Inequality, Trade, and Incentives for Carbon Policy

Thomas Bourany The University of Chicago

October 2024

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

► Fighting climate change requires implementing ambitious carbon reduction policies

- ▶ Fighting climate change requires implementing ambitious carbon reduction policies
 - The "free-riding problem" causes climate inaction individual countries have no incentives to implement globally optimal policies

- ► Fighting climate change requires implementing ambitious carbon reduction policies
 - The "free-riding problem" causes climate inaction individual countries have no incentives to implement globally optimal policies
 - Climate policy redistributes across countries through: (i) change in climate (ii) energy markets, and (iii) reallocation of activity through trade

- ▶ Fighting climate change requires implementing ambitious carbon reduction policies
 - The "free-riding problem" causes climate inaction individual countries have no incentives to implement globally optimal policies
 - Climate policy redistributes across countries through: (i) change in climate (ii) energy markets, and (iii) reallocation of activity through trade
- Proposals to fight climate inaction and the free-riding problem:
 - International cooperation through climate agreements

- ▶ Fighting climate change requires implementing ambitious carbon reduction policies
 - The "free-riding problem" causes climate inaction individual countries have no incentives to implement globally optimal policies
 - Climate policy redistributes across countries through: (i) change in climate (ii) energy markets, and (iii) reallocation of activity through trade
- Proposals to fight climate inaction and the free-riding problem:
 - International cooperation through climate agreements
 - Trade sanctions needed to give incentives to countries to reduce emissions meaningfully
 - "Climate club", Nordhaus (2015): trade sanctions on non-participations to sustain larger "clubs"
 - Carbon Border Adjustment mechanisms (CBAM), EU policy: carbon tariffs

Introduction

⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?

Introduction

- ⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?
 - Climate club setting: The agreement boils down to a carbon tax, a tariff rate and a choice of countries
 - Social "designer" maximizing world welfare
 - Trade-off:

Intensive margin: a "climate club" with few countries and large emission reductions vs. *Extensive margin:* a larger set of countries, at the cost of lowering the carbon tax

Introduction

- ⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?
 - Climate club setting: The agreement boils down to a carbon tax, a tariff rate and a choice of countries
 - Social "designer" maximizing world welfare
 - Trade-off:

Intensive margin: a "climate club" with few countries and large emission reductions vs. *Extensive margin:* a larger set of countries, at the cost of lowering the carbon tax

- Build a Climate-Macro model (IAM) with heterogeneous countries and trade to study the strategic implications of climate agreements and the optimal club design
 - Analyze the redistributive effects of climate policy and trade policy across countries

Main results:

- Despite complete freedom of policy instruments, impossible to achieve the world's optimal policy with complete participation
 - Need to lower carbon tax from \$150 to \$100 to accommodate participation of South-Asia and Middle-East
 - Beneficial to leave fossil fuels producing countries, like Russia, outside of the climate agreement

Main results:

- Despite complete freedom of policy instruments, impossible to achieve the world's optimal policy with complete participation
 - Need to lower carbon tax from \$150 to \$100 to accommodate participation of South-Asia and Middle-East
 - Beneficial to leave fossil fuels producing countries, like Russia, outside of the climate agreement

• Mechanism:

Participation relies on a trade-off between {

(i) the cost of distortionary carbon taxation(ii) the cost of tariffs (= the gains from trade)

- For countries like Russia/Middle-East/South-Asia: cost of taxing fossil-fuels ≫ cost of tariffs they do not join the club with high carbon tax – for any tariffs
 - \Rightarrow need to decrease the carbon tax

► Theoretical model of climate agreements: cooperation

- Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
- *Dynamics of coalition building:* Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
- \Rightarrow Quantitative analysis of climate agreements and policy recommendation

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
 - *Dynamics of coalition building:* Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - \Rightarrow Quantitative analysis of climate agreements and policy recommendation

► Theoretical model of climate agreements: cooperation

- Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
- *Dynamics of coalition building:* Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)

\Rightarrow Quantitative analysis of climate agreements and policy recommendation

► Trade policy and environment policies:

- *Trade and carbon policies:* Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al. (2024)
- Tariff policy: Ossa (2014), Costinot et al. (2015), Adao, Costinot (2022), Antràs et al. (2022)
- \Rightarrow Optimal design of climate agreements with free-riding incentives

► Theoretical model of climate agreements: cooperation

- Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
- *Dynamics of coalition building:* Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)

\Rightarrow Quantitative analysis of climate agreements and policy recommendation

► Trade policy and environment policies:

- *Trade and carbon policies:* Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al. (2024)
- Tariff policy: Ossa (2014), Costinot et al. (2015), Adao, Costinot (2022), Antràs et al. (2022)
- \Rightarrow Optimal design of climate agreements with free-riding incentives

► Theoretical model of climate agreements: cooperation

- Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
- *Dynamics of coalition building:* Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)

\Rightarrow Quantitative analysis of climate agreements and policy recommendation

► Trade policy and environment policies:

- *Trade and carbon policies:* Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al. (2024)
- Tariff policy: Ossa (2014), Costinot et al. (2015), Adao, Costinot (2022), Antràs et al. (2022)
- \Rightarrow Optimal design of climate agreements with free-riding incentives
- ▶ IAM and macroeconomics of climate change and carbon taxation
 - *RA model:* Nordhaus DICE (1996-), Weitzman (2014), Golosov et al. (2014), Hassler et al (2019)
 - HA model: Krusell Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others

⇒ Strategic and constrained policy with heterogeneous countries & trade

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

October 2024 5 / 34

► Theoretical model of climate agreements: cooperation

- Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
- *Dynamics of coalition building:* Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)

\Rightarrow Quantitative analysis of climate agreements and policy recommendation

► Trade policy and environment policies:

- *Trade and carbon policies:* Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al. (2024)
- Tariff policy: Ossa (2014), Costinot et al. (2015), Adao, Costinot (2022), Antràs et al. (2022)
- \Rightarrow Optimal design of climate agreements with free-riding incentives
- ▶ IAM and macroeconomics of climate change and carbon taxation
 - *RA model:* Nordhaus DICE (1996-), Weitzman (2014), Golosov et al. (2014), Hassler et al (2019)
 - HA model: Krusell Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others

⇒ Strategic and constrained policy with heterogeneous countries & trade

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

October 2024 5 / 34

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- 5. Policy Benchmarks: Optimal Policy without endogenous participation
- 6. Main result: The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- 5. Policy Benchmarks: Optimal Policy without endogenous participation
- 6. Main result: The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Model – Household & Firms

- Deterministic Neoclassical economy
 - countries $i \in \mathbb{I}$, heterogeneous in many dimensions: income, temperature, energy production, etc.
 - In each country, five agents:
 - 1. Representative household $U_i = \max_{c_{ij}} u(c_i)$, Trade, à la Armington

$$c_{i} = \left(\sum_{j} a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} \sum_{j \in \mathbb{I}} c_{ij} \underbrace{(1+t_{ij}^{b})}_{\text{tariff iceberg cost}} p_{j} = \underbrace{w_{i}\ell_{i}}_{\text{income}} + \underbrace{\pi_{i}^{f}}_{\text{fossil firm lump-sum profit transfers}} \mathbb{P}_{i} = \left(\sum_{j} a_{ij}(\tau_{ij}(1+t_{ij}^{b})\mathbf{p}_{j})^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

Model – Household & Firms

- Deterministic Neoclassical economy
 - countries $i \in \mathbb{I}$, heterogeneous in many dimensions: income, temperature, energy production, etc.
 - In each country, five agents:
 - 1. Representative household $U_i = \max_{c_{ij}} u(c_i)$, Trade, à la Armington

$$c_{i} = \left(\sum_{j} a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} \sum_{j \in \mathbb{I}} c_{ij} \underbrace{(1+t_{ij}^{b})}_{\text{tariff iceberg cost}} p_{j} = \underbrace{w_{i}\ell_{i}}_{\text{income}} + \underbrace{\pi_{i}^{f}}_{\text{fossil firm lump-sum transfers}} \sum_{i=1}^{n} c_{ij} \underbrace{(1+t_{ij}^{b})}_{\text{tariff iceberg cost}} p_{j} = \underbrace{w_{i}\ell_{i}}_{\text{income}} + \underbrace{\pi_{i}^{f}}_{\text{fossil firm lump-sum transfers}} \sum_{i=1}^{n} c_{ij} \underbrace{(1+t_{ij}^{b})}_{\text{tariff iceberg cost}} p_{j} = \underbrace{w_{i}\ell_{i}}_{\text{income}} + \underbrace{\pi_{i}^{f}}_{\text{fossil firm lump-sum transfers}} p_{i} = \underbrace{\sum_{j=1}^{n} a_{ij}(\tau_{ij}(1+t_{ij}^{b})p_{j})^{1-\theta}}_{\text{tariff iceberg cost}} \sum_{i=1}^{n} c_{ij} \underbrace{(1+t_{ij}^{b})}_{\text{tariff iceberg cost}} p_{i} = \underbrace{\sum_{j=1}^{n} a_{ij}(\tau_{ij}(1+t_{ij}^{b})p_{j})^{1-\theta}}_{\text{tariff iceberg cost}} \sum_{i=1}^{n} c_{ij} \underbrace{(1+t_{ij}^{b})}_{\text{tariff iceberg cost}} p_{i} = \underbrace{\sum_{j=1}^{n} a_{ij}(\tau_{ij}(1+t_{ij}^{b})p_{j})^{1-\theta}}_{\text{tariff iceberg cost}} p_{i} = \underbrace{\sum_{j=1}^{n} a_{ij}(\tau_{ij}(1+t_{ij}^{b})p_{j}}^{1-\theta}}_{\text{tariff iceberg cost}} p_{i} = \underbrace{\sum_{j=1}^{n} a_{ij}(\tau_{ij}(1+t_{ij}^{b})p_{j}^{1-\theta}}_{\text{tariff iceberg cost}} p_{i} = \underbrace{\sum_{j=1}^{n} a_{ij}(\tau_{ij}(1+t_{ij}^{b})p_{j}^{1-\theta}}_{\text{tariff iceberg cost}} p_{i} = \underbrace{\sum_{j=1}^{n} a_{ij}(\tau_{ij}(1+t_{ij}^{b})p_{j}^{1-\theta}}_{\text{tariff iceberg cost}} p_{i} = \underbrace{\sum_{j=1}^{n} a_{i}(\tau_{ij}(1+t_{ij}^{b})p_{j}^{1-\theta}}_{\text{tariff iceberg cost}} p_{i} = \underbrace{\sum_{j=1}^{n} a_{i}(\tau_{ij}(1+t_{ij}^{b})p_{j}^{1-\theta}}_{\text{tariff iceberg cost}} p_{i} = \underbrace{\sum$$

2. Competitive final good firm:

$$\max_{\ell_i, e_i^c, e_i^c} p_i \mathcal{D}_i(\mathcal{E}) z_i F(\ell_i, e_i^f, e_i^c, e_i^r) - w_i \ell_i - (q^f + t_i^{\varepsilon}) e_i^f - (q_i^c + t_i^{\varepsilon}) e_i^c - q_i^r e_i^r$$

– Externality: Damage function $\mathcal{D}_i(\mathcal{E})$, Income inequality from z_i , Carbon tax: t_i^{ε}

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

Model - Energy markets & Emissions

3. Competitive fossil fuels (oil-gas) producer, extracting e_i^x

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x) \mathbb{P}_i$$

– Energy traded in international markets, at price q^f

$$E^f = \sum_{i \in \mathbb{I}} e^f_i = \sum_{i \in \mathbb{I}} e^x_i$$

Model - Energy markets & Emissions

3. Competitive fossil fuels (oil-gas) producer, extracting e_i^x

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x) \mathbb{P}_i$$

– Energy traded in international markets, at price q^f

$$E^{f} = \sum_{i \in \mathbb{I}} e^{f}_{i} = \sum_{i \in \mathbb{I}} e^{x}_{i}$$

- 4. Coal energy firm, CRS: $e_i^c = \frac{1}{z_i^c} x_i^c \implies \text{price } q_i^c = z_i^c \mathbb{P}_i$
- 5. Renewable energy firm, CRS: $e_i^r = \frac{1}{z_i^r} x_i^r \implies \text{price } q_i^r = z_i^r \mathbb{P}_i$ with $x_i^f = \mathcal{C}_i^f(e_i^x)$, x_i^c , x_i^r same CES aggregator as c_i .

Model - Energy markets & Emissions

3. Competitive fossil fuels (oil-gas) producer, extracting e_i^x

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x) \mathbb{P}_i$$

– Energy traded in international markets, at price q^f

$$E^f = \sum_{i \in \mathbb{I}} e^f_i = \sum_{i \in \mathbb{I}} e^x_i$$

- 4. Coal energy firm, CRS: $e_i^c = \frac{1}{z_i^c} x_i^c \implies \text{price } q_i^c = z_i^c \mathbb{P}_i$
- 5. Renewable energy firm, CRS: $e_i^r = \frac{1}{z_i^r} x_i^r \implies \text{price } q_i^r = z_i^r \mathbb{P}_i$ with $x_i^f = \mathcal{C}_i^f(e_i^x)$, x_i^c , x_i^r same CES aggregator as c_i .
- Climate system: mapping from emission $\mathcal{E} = \sum_{\mathbf{I}} e_i^f + e_i^c$ to damage $\mathcal{D}_i(\mathcal{E})$

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

Model – Equilibrium

- Given policies $\{t_i^{\varepsilon}, t_{ij}^{b}, t_i^{ls}\}_i$, a **competitive equilibrium** is a set of decisions $\{c_{ij}, e_i^{f}, e_i^{c}, e_i^{r}, e_i^{x}\}_{ij}$, emission $\{\mathcal{E}\}_i$ changing climate and prices $\{p_i, w_i, q_i^{c}, q_i^{r}\}_i, q^{f}$ such that:
- Households choose $\{c_{ij}\}_{ij}$ to max. utility s.t. budget constraint
- Firm choose inputs $\{e_i^f, e_i^c, e_i^r\}_i$ to max. profit
- Oil-gas firms extract/produce $\{e_i^x\}_i$ to max. profit. + Elastic renewable, coal supplies $\{e_i^c, e_i^r\}$
- Emissions \mathcal{E} affects climate and damages $\mathcal{D}_i(\mathcal{E})$
- Government budget clear $\sum_i t_i^{ls} = \sum_i t_i^{\varepsilon} (e_i^f + e_i^c) + \sum_{i,j} t_{ij}^b c_{ij} \tau_{ij} p_j$
- Prices $\{p_i, w_i, q^f\}$ adjust to clear the markets for energy $\sum_{\mathbb{I}} e_{it}^x = \sum_{\mathbb{I}} e_{it}^f$ and for each good

$$y_{i} := \mathcal{D}_{i}(\mathcal{E}) z_{i} F(\ell_{i}, e_{i}^{f}, e_{i}^{r}, e_{i}^{r}) = \sum_{k \in \mathbb{I}} \tau_{ki} c_{ki} + \sum_{k \in \mathbb{I}} \tau_{ki} (x_{ki}^{f} + x_{ki}^{c} + x_{ki}^{r})$$

with x_{ki}^{ℓ} export of good *i* as input in ℓ -energy production in *k*

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- 5. Policy Benchmarks: Optimal Policy without endogenous participation
- 6. Main result: The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Ramsey Problem with endogenous participation

- **Definition:** A climate agreement is a set $\{J, t^{\varepsilon}, t^{b}\}$ of $J \subseteq I$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If *j* exits agreement, club members $i \in J$ impose uniform tariffs $t_{ij}^b = t^b$ on goods from *j* They still trade with club members in oil-gas at price q^f
 - Local, lump-sum rebate of taxes $\mathbf{t}_i^{ls} = \mathbf{t}^{\varepsilon}(e_i^f + e_i^c) + \sum_{j \notin \mathbb{J}} \mathbf{t}^b \tau_{ij} c_{ij} \mathbf{p}_j$
 - Indirect utility $\mathcal{U}_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \equiv u(c_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b))$

Why a uniform tax?

Ramsey Problem with endogenous participation

- **Definition:** A climate agreement is a set $\{J, t^{\varepsilon}, t^{b}\}$ of $J \subseteq I$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If *j* exits agreement, club members *i* ∈ J impose uniform tariffs t^b_{ij} = t^b on goods from *j* They still trade with club members in oil-gas at price q^f
 - Local, lump-sum rebate of taxes $\mathbf{t}_i^{ls} = \mathbf{t}^{\varepsilon}(e_i^f + e_i^c) + \sum_{j \notin \mathbb{J}} \mathbf{t}^b \tau_{ij} c_{ij} \mathbf{p}_j$
 - Indirect utility $\mathcal{U}_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \equiv u(c_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b))$

Why a uniform tax?

- Two equilibrium concepts:
 - Exit: unilateral deviation of i, $\mathbb{J} \setminus \{i\}$, \Rightarrow *Nash equilibrium*

Coalition \mathbb{J} stable if $\mathcal{U}_i(\mathbb{J}, t^{\varepsilon}, t^b) \geq \mathcal{U}_i(\mathbb{J} \setminus \{i\}, t^{\varepsilon}, t^b) \quad \forall i \in \mathbb{J}$

- Sub-coalitional deviation \Rightarrow *Coalitional Nash equilibrium*
 - No country *i* and subcoalition \hat{J} would be better off in $\mathbb{J}\setminus\hat{J}$ than in the current agreement \mathbb{J}
 - Under such equilibrium, the optimal agreement results are identical
 - \Rightarrow more in the paper and details here

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

Optimal design with endogenous participation

• Objective: search for the optimal *and stable* climate agreement

$$\max_{\mathbb{J}, t^{\varepsilon}, t^{b}} \mathcal{W}(\mathbb{J}, t^{\varepsilon}, t^{b}) = \max_{t^{\varepsilon}, t^{b}} \max_{\mathbb{J}} \sum_{i \in \mathbb{I}} \omega_{i} \mathcal{U}_{i}(\mathbb{J}, t^{\varepsilon}, t^{b})$$
s.t.
$$\mathcal{U}_{i}(\mathbb{J}, t^{\varepsilon}, t^{b}) \geq \mathcal{U}_{i}(\mathbb{J} \setminus \{i\}, t^{\varepsilon}, t^{b})$$

Current design:

- (i) choose taxes $\{t^{\varepsilon}, t^{b}\}$ [outer problem]
- (ii) choose the coalition \mathbb{J} s.t. participation constraints hold [inner problem] \Rightarrow Combinatorial Discrete Choice Problem for $\mathbb{J} \in \mathcal{P}(\mathbb{I})$

Solution method

- Current design: $\max_{\mathbf{t}} \max_{\mathbf{J}} \mathcal{W}(\mathbf{J}, \mathbf{t}) \text{ s.t. } \mathcal{U}_{j}(\mathcal{J}, \mathbf{t}) \geq \mathcal{U}_{j}(\mathcal{J} \setminus \{i\}, \mathbf{t})$
- ► Inner problem: CDCP Solution method
 - Use a "squeezing procedure", as in Jia (2008), Arkolakis, Eckert, Shi (2023) extended to handle participation constraints

Solution method

• Current design: $\max_{t} \max_{\mathbb{J}} \mathcal{W}(\mathbb{J}, t)$ s.t. $\mathcal{U}_{j}(\mathcal{J}, t) \geq \mathcal{U}_{j}(\mathcal{J} \setminus \{i\}, t)$

- ► Inner problem: CDCP Solution method
 - Use a "squeezing procedure", as in Jia (2008), Arkolakis, Eckert, Shi (2023) extended to handle participation constraints
 - Squeezing step:

$$\Phi(\mathcal{J}) \equiv \left\{ j \in \mathbb{I} \, \middle| \, \Delta_j \mathcal{W}(\mathcal{J}) > 0 \ \& \ \Delta_j \mathcal{U}_j(\mathcal{J}, \mathbf{t})) > 0, \forall j \in \mathcal{J} \right\}$$

where the marginal values for global welfare and individual welfare is

$$\Delta_{j}\mathcal{W}(\mathcal{J},\mathbf{t}) \equiv \mathcal{W}(\mathcal{J}\cup\{j\},\mathbf{t}) - \mathcal{W}(\mathcal{J}\setminus\{j\},\mathbf{t}) = \sum_{i\in\mathbb{I}}\mathcal{P}_{i}\omega_{i}\left(\mathcal{U}_{i}(\mathcal{J}\cup\{j\},\mathbf{t}) - \mathcal{U}_{i}(\mathcal{J}\setminus\{j\},\mathbf{t})\right)$$
$$\Delta_{j}\mathcal{U}_{j}(\mathcal{J}),\mathbf{t}) \equiv \mathcal{U}_{j}(\mathcal{J}\cup\{j\},\mathbf{t}) - \mathcal{U}_{j}(\mathcal{J}\setminus\{j\},\mathbf{t})$$

Solution method

• Current design: $\max_{\mathbf{t}} \max_{\mathbf{J}} \mathcal{W}(\mathbf{J}, \mathbf{t}) \text{ s.t. } \mathcal{U}_{j}(\mathcal{J}, \mathbf{t}) \geq \mathcal{U}_{j}(\mathcal{J} \setminus \{i\}, \mathbf{t})$

- ► Inner problem: CDCP Solution method
 - Use a "squeezing procedure", as in Jia (2008), Arkolakis, Eckert, Shi (2023) extended to handle participation constraints
 - Squeezing step:

$$\Phi(\mathcal{J}) \equiv \left\{ j \in \mathbb{I} \, \middle| \, \Delta_j \mathcal{W}(\mathcal{J}) > 0 \ \& \ \Delta_j \mathcal{U}_j(\mathcal{J}, \mathbf{t})) > 0, \forall j \in \mathcal{J} \right\}$$

where the marginal values for global welfare and individual welfare is

$$\Delta_{j}\mathcal{W}(\mathcal{J},\mathbf{t}) \equiv \mathcal{W}(\mathcal{J}\cup\{j\},\mathbf{t}) - \mathcal{W}(\mathcal{J}\setminus\{j\},\mathbf{t}) = \sum_{i\in\mathbb{I}} \mathcal{P}_{i}\omega_{i}\left(\mathcal{U}_{i}(\mathcal{J}\cup\{j\},\mathbf{t}) - \mathcal{U}_{i}(\mathcal{J}\setminus\{j\},\mathbf{t})\right)$$
$$\Delta_{j}\mathcal{U}_{j}(\mathcal{J}),\mathbf{t}) \equiv \mathcal{U}_{j}(\mathcal{J}\cup\{j\},\mathbf{t}) - \mathcal{U}_{j}(\mathcal{J}\setminus\{j\},\mathbf{t})$$

– Iterative procedure build lower bound $\underline{\mathcal{J}}$ and upper bound $\overline{\mathcal{J}}$ by successive squeezing steps

$$\underline{\mathcal{J}}^{(k+1)} = \Phi(\underline{\mathcal{J}}^{(k)}) \qquad \qquad \overline{\mathcal{J}}^{(k+1)} = \Phi(\overline{\mathcal{J}}^{(k)})$$

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- 5. Policy Benchmarks: Optimal Policy without endogenous participation
- 6. Main result: The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Quantification - Climate system and damage

- Static economic model: decisions $e_i^f + e_i^c$ taken "once and for all", $\mathcal{E} = \sum_i e_i^f + e_i^c$
 - Climate system:

$$\dot{\mathcal{S}}_t = \mathcal{E} - \delta_s \mathcal{S}_t$$
$$T_{it} = \bar{T}_{i0} + \Delta_i \mathcal{S}_t$$

• Path damages heterogeneous across countries Quadratic, c.f. Nordhaus-DICE / IAM

$$\mathcal{D}(T_{it} - T_i^{\star}) = e^{-\gamma (T_{it} - T_i^{\star})^2}$$

· Economic feedback in Present discounted value

$$\mathcal{D}_{i}(\mathcal{E}) = \bar{\rho}_{i} \int_{0}^{\infty} e^{-(\overline{\rho - n_{i} + \eta \bar{g}_{i}})t} \mathcal{D}(T_{it} - T_{i}^{\star}) dt$$

• Similarly for $LCC_i, SCC_i \dots$

Quantification

• Pareto weights ω_i : Imply no redistribution motive \bar{c}_i conso in initial equilbrium t = 2020 w/o climate change

$$\omega_i = \frac{1}{u'(\bar{c}_i)} \qquad \qquad \Leftrightarrow \qquad C.E.(\bar{c}_i) \in \operatorname*{argmax}_{\bar{c}_i} \sum_i \omega_i u(\bar{c}_i)$$

Details Pareto weights

Quantification

• Pareto weights ω_i : Imply no redistribution motive \bar{c}_i conso in initial equilbrium t = 2020 w/o climate change

$$\omega_i = \frac{1}{u'(\bar{c}_i)} \qquad \qquad \Leftrightarrow \qquad C.E.(\bar{c}_i) \in \operatorname*{argmax}_{\bar{c}_i} \sum_i \omega_i u(\bar{c}_i)$$

Details Pareto weights

- Functional forms:
 - Utility: CRRA η
 - Production function $\bar{y} = zF(\ell_i, k_i, e_i^f, e_i^c, e_i^r)$
 - Nested CES energy e_i vs. labor-capital Cobb-Douglas bundle $k_i^{\alpha} \ell_i^{1-\alpha}$, elasticity $\sigma_y < 1$
 - Energy: fossil/coal/renewable $\sigma_e > 1$, $CES(e_i^f, e_i^c, e_i^r)$, elasticity σ^e
 - Energy extraction of oil-gas: isoelastic $C^f(e^x) = \bar{\nu}_i (e^x_i/\mathcal{R}_i)^{1+\nu_i} \mathcal{R}_i$

More details

Parameters calibrated from the literature

► Parameters to match "world" moments from the data Details calibration

► Parameters to match (exactly) country level variables:

- Parameters calibrated from the literature
 - Macro parameter: Household utility, Production function, Trade elasticities
 - Damage parameter: γ from Krusell, Smith (2022) & Barrage, Nordhaus (2023) Target temperature: $T_i^* = \alpha T^* + (1-\alpha)T_{it_0}$ with $T^* = 14.5$, $\alpha = 0.5$.
- Parameters to match "world" moments from the data Details calibration

Parameters to match (exactly) country level variables:

- Parameters calibrated from the literature
 - Macro parameter: Household utility, Production function, Trade elasticities
 - Damage parameter: γ from Krusell, Smith (2022) & Barrage, Nordhaus (2023) Target temperature: $T_i^* = \alpha T^* + (1-\alpha)T_{it_0}$ with $T^* = 14.5$, $\alpha = 0.5$.
- Parameters to match "world" moments from the data Details calibration
 - Climate parameters: match IAM's Pulse experiment
 - CES shares in capital/labor/energy to match aggregate shares
- Parameters to match (exactly) country level variables:

- Parameters calibrated from the literature
 - Macro parameter: Household utility, Production function, Trade elasticities
 - Damage parameter: γ from Krusell, Smith (2022) & Barrage, Nordhaus (2023) Target temperature: $T_i^* = \alpha T^* + (1-\alpha)T_{it_0}$ with $T^* = 14.5$, $\alpha = 0.5$.
- ▶ Parameters to match "world" moments from the data Details calibration
 - Climate parameters: match IAM's Pulse experiment
 - CES shares in capital/labor/energy to match aggregate shares
- Parameters to match (exactly) country level variables:
 - GDP, Population, Temperature, Pattern scaling
 - Energy mix (Oil-gas, Coal, Non-carbon), energy share, oil-gas production, reserves, rents
 - Trade: cost τ_{ii} projected on distance, preferences a_{ii} to match import shares

Matching country-level moments

Table: Heterogeneity across countries

Dimension of heterogeneity	Model parameter	Matched variable from the data	Source
Population	Country size \mathcal{P}_i	Population	UN
TFP/technology/institutions	Firm productivity z_i	GDP per capita (2019-PPP)	WDI
Productivity in energy	Energy-augmenting productivity z_i^e	Energy cost share	SRE
Cost of coal energy	Cost of coal production C_i^c	Energy mix/coal share e_i^c/e_i	SRE
Cost of non-carbon energy	Cost of non-carbon production C_i^r	Energy mix/coal share e_i^r/e_i	SRE
Local temperature	Initial temperature T_{it_0}	Pop-weighted yearly temperature	Burke et al
Pattern scaling	Pattern scaling Δ_i	Sensitivity of T_{it} to world \mathcal{T}_t	Burke et al
Oil-gas reserves	Reserves \mathcal{R}_i	Proved Oil-gas reserves	SRE
Cost of oil-gas extraction	Slope of extraction cost $\bar{\nu}_i$	Oil-gas extracted/produced e_i^x	SRE
Cost of oil-gas extraction	Curvature of extraction cost ν_i	Profit π_i^f / energy rent	WDI
Trade costs	Distance iceberg costs τ_{ij}	Geographical distance $ au_{ij} = d_{ij}^{\beta}$	CEPII
Armington preferences	CES preferences a_{ij}	Trade flows	CEPII

Matching country-level moments

Table: Heterogeneity across countries

Dimension of heterogeneity	Model parameter	Matched variable from the data	Source
Population	Country size \mathcal{P}_i	Population	UN
TFP/technology/institutions	Firm productivity z_i	GDP per capita (2019-PPP)	WDI
Productivity in energy	Energy-augmenting productivity z_i^e	Energy cost share	SRE
Cost of coal energy	Cost of coal production C_i^c	Energy mix/coal share e_i^c/e_i	SRE
Cost of non-carbon energy	Cost of non-carbon production C_i^r	Energy mix/coal share e_i^r/e_i	SRE
Local temperature	Initial temperature T_{it_0}	Pop-weighted yearly temperature	Burke et al
Pattern scaling	Pattern scaling Δ_i	Sensitivity of T_{it} to world \mathcal{T}_t	Burke et al
Oil-gas reserves	Reserves \mathcal{R}_i	Proved Oil-gas reserves	SRE
Cost of oil-gas extraction	Slope of extraction cost $\bar{\nu}_i$	Oil-gas extracted/produced e_i^x	SRE
Cost of oil-gas extraction	Curvature of extraction cost ν_i	Profit π_i^f / energy rent	WDI
Trade costs	Distance iceberg costs τ_{ij}	Geographical distance $ au_{ij} = d_{ij}^{\beta}$	CEPII
Armington preferences	CES preferences a_{ij}	Trade flows	CEPII

Quantitative application - Sample of 10 "regions"

- Sample of 10 "regions": (i) US+Canada, (ii) China+HK, (iii) EU+UK+Schengen, (iv) South Asia,
 (v) Sub-saharian Africa, (vi) Middle-East+North Africa, (vii) Russia+CIS, (viii) Japan+Korea+Australia+Taiwan+Singap.,
 (ix) South-East Asia (Asean), (x) Latin America WIP: 25 countries + 7 regions
- Data (Avg. 2018-2023)

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- 5. Policy Benchmarks: Optimal Policy without endogenous participation
- 6. Main result: The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Optimal policy : benchmarks

- Policy benchmarks, without endogenous participation
 - First-Best, Social planner maximizing global welfare with unlimited instruments
 - Pigouvian result: Carbon tax = Social Cost of Carbon
 - Relies heavily on cross-country transfers to offset redistributive effects

Optimal policy : benchmarks

- Policy benchmarks, without endogenous participation
 - First-Best, Social planner maximizing global welfare with unlimited instruments
 - Pigouvian result: Carbon tax = Social Cost of Carbon
 - Relies heavily on cross-country transfers to offset redistributive effects
 - Second-Best: Social planner, single carbon tax without transfers
 - Optimal carbon tax t^ε correct climate externality, but also accounts for:
 (i) Redistribution motives, G.E. effects on (ii) energy markets and (iii) trade leakage

$$t^{\varepsilon} = \underbrace{\sum_{i} \phi_{i} LCC_{i}}_{=SCC} + \sum_{i} \phi_{i} \text{ Supply Redistrib}_{i}^{\circ} + \sum_{i} \phi_{i} \text{ Demand Distort}_{i}^{\circ} - \sum_{i} \text{Trade Redistrib}_{i}^{\circ} \qquad \phi_{i} \propto \omega_{i} u'(c_{i})$$

- Details: Competitive equilibrium Details eq 0, First-Best, with unlimited instruments Details eq 1, Second-best, Ramsey policy with limited instruments Details eq 2
- More details in companion paper: Bourany (2024)

Second-Best climate policy

- Accounting for redistribution and lack of transfers
 - \Rightarrow implies a carbon tax lower than the Social Cost of Carbon

Gains from cooperation - World Optimal policy

- ► Optimal carbon tax Second Best: ~ \$147/tCO₂
- Reduce fossil fuels / CO₂ emissions by 42% compared to Competitive equilibrium (Business as Usual, BAU)
- Welfare difference between world optimal policy vs. Comp. Eq./BAU

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- 5. Policy Benchmarks: Optimal Policy without endogenous participation
- 6. Main result: The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Trade-off - Cost of Carbon Taxation vs. Gains from trade

Gains from unilateral exit from agreement vs. Gains from trade, i.e. loss from tariffs/autarky

Trade-off - Cost of Carbon Taxation vs. Gains from trade

Gains from unilateral exit from agreement vs. Gains from trade, i.e. loss from tariffs/autarky

Optimal Climate Agreements

- Mechanisms behind participation

Theoretical investigation: decomposing the welfare effects

- Experiment:
 - Start from the equilibrium where carbon tax $t_j^{\varepsilon} = 0, t_{jk}^{b} = 0, \forall j$,
 - Change in welfare: Linear approximation around that point \Rightarrow small changes in carbon tax $dt_i^{\varepsilon}, \forall j$ and tariffs $dt_{i,k}^{b}, \forall j, k$ for a club J_i

$$\frac{d\mathcal{U}_i}{u'(c_i)} = \eta_i^c d\ln \mathbf{p}_i + \left[-\eta_i^c \bar{\gamma}_i \frac{1}{\bar{\nu}} - \eta_i^c s_i^e s_i^f + \eta_i^\pi (1 + \frac{1}{\bar{\nu}})\right] d\ln q^f - \left[\eta_i^c s_i^e (s_i^c + s_i^r) + \eta_i^\pi \frac{1}{\bar{\nu}} + 1\right] d\ln \mathbb{P}_i$$

• GE effect on energy markets $d \ln q^f \approx \bar{\nu} d \ln E^f + \dots$, due to taxation

$$d\ln q^{f} = -\frac{\bar{\nu}}{1 + \bar{\gamma} + \mathbb{C}\operatorname{ov}_{i}(\tilde{\lambda}_{i}^{f}, \bar{\gamma}_{i}) + \bar{\nu}\overline{\lambda}^{\sigma, f}} \sum_{i} \tilde{\lambda}_{i}^{f} \mathbf{J}_{i} d\mathfrak{t}^{\varepsilon} + \sum_{i} \beta_{i} d\ln \mathfrak{p}_{i}$$

- Climate damage $\bar{\gamma}_i = \gamma (T_i T_i^{\star}) T_i s^{E/S}$
- Trade and leakage effect: GE impact of t_j^{ε} and $t_{j_i}^{b}$ on y_i and p_i

 \circ Params: σ energy demand elast^y, s^e energy cost share, $\bar{\nu}$ energy supply inverse elas^y

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

- Optimal Climate Agreements

Mechanisms behind participation

Decomposing the welfare effects: gains from trade

- Start from the equilibrium where carbon tax $\mathbf{t}_{j}^{f} = 0, \mathbf{t}_{jk}^{b} = 0, \forall j$,
- Change in welfare: Linear approximation around that point \Rightarrow small changes in carbon tax $dt_j^f, \forall j$ and tariffs $dt_{j,k}^b, \forall j, k$

$$d\ln \mathbf{p} = \mathbf{A}^{-1} \Big[-(\mathbf{I} - \mathbf{T}_{\odot} v^{y}) \alpha^{y,qf} + \mathbf{T} (v^{e^{x}} \odot \frac{1}{\nu} + v^{e^{f}} \frac{\sigma^{y}}{1 - s^{e}} + v^{ne}) - \left((\mathbf{I} - \mathbf{T}_{\odot} v^{y}) \alpha^{y,z} - \frac{\sigma^{y}}{1 - s^{e}} \right) \bar{\gamma} \frac{1}{\bar{\nu}} \Big] d\ln q^{f} \\ + \Big[-(\mathbf{I} - \mathbf{T}_{\odot} v^{y}) \alpha^{y,qf} + \mathbf{T} (v^{e^{f}} \odot \frac{\sigma^{y}}{1 - s^{e}}) \Big] \odot J d\ln t^{\varepsilon} + \theta \big(\mathbf{T} \mathbf{S} \odot \mathbf{J} \odot d\ln t^{b} - \mathbf{T} (\mathbb{1} + \mathbf{S}') \odot (\mathbf{J} \odot d\ln t^{b})' \big) \Big]$$

Params: S Trade share matrix, T income flow matrix, θ, Armington CES
General equilibrium (and leakage) effects summarized in a complicated matrix A: price affect energy demand, oil-gas extraction, energy trade balance, output, etc.

Details Market Clearing for good

Optimal Design of Climate Agreements
Optimal Climate Agreements
Optimal design of agreements

Climate Agreements: Intensive vs. Extensive Margin

- ► Intensive margin: higher tax, emissions ↓, welfare ↑
- ► Extensive margin: higher tax, participation ↓,

free-riding and emissions \uparrow

Optimal Climate Agreement

 Despite full freedom of instruments (t^e, t^b)

 \Rightarrow can not sustain an agreement with Russia & Middle East

 \Rightarrow need to reduce carbon tax from \$147 to \$98

 Intuition: relatively cold and closed economy, and fossil-fuel producers

Climate agreement and welfare

Recover 90% of welfare gains, i.e. 5% out of 5.5% conso equivalent.

Carbon taxation, Participation and the Laffer Curve

Extensive margin: Higher tax may reduces participation, concentrates the cost of mitigation on the remaining members of the agreement \Rightarrow dampen welfare

Optimal Design of Climate Agreements
Optimal Climate Agreements
Optimal design of agreements

Welfare and emission reduction: Different metrics!

- Agreements with tariffs recover 91% of welfare gains from the Second-Best optimal carbon tax without transfers at a cost of increasing emissions by 13%
- First-best allocation relies heavily on transfers to be able to impose a higher carbon tax

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

Coalition building

- Sequence of countries joining the climate agreement?
 - Country with the most interest in joining the club? Can the club be constructed?

Coalition building

- Sequence of "rounds" of the static equilibrium
 - At each round (n), countries decide to enter or not depending on the gain

$$\Delta_{i}\mathcal{U}_{i}(\mathbb{J}^{(n)}) = \mathcal{U}_{i}(\mathbb{J}^{(n)} \cup \{i\}, \mathsf{t}^{\varepsilon}, \mathsf{t}^{b}) - \mathcal{U}_{i}(\mathbb{J}^{(n)} \setminus \{i\}, \mathsf{t}^{\varepsilon}, \mathsf{t}^{b})$$

- Construction evaluated at the optimal carbon tax $t^{\varepsilon} = 98$, and tariff $t^{b} = 50\%$.
- Sequential procedure coming for free from our CDCP algorithm / squeezing procedure
- Idea analogous to Farrokhi, Lashkaripour (2024)

Coalition building

- Sequence of "rounds" of the static equilibrium
 - At each round (n), countries decide to enter or not depending on the gain

$$\Delta_{i}\mathcal{U}_{i}(\mathbb{J}^{(n)}) = \mathcal{U}_{i}(\mathbb{J}^{(n)} \cup \{i\}, \mathsf{t}^{\varepsilon}, \mathsf{t}^{b}) - \mathcal{U}_{i}(\mathbb{J}^{(n)} \setminus \{i\}, \mathsf{t}^{\varepsilon}, \mathsf{t}^{b})$$

- Construction evaluated at the optimal carbon tax $t^{\varepsilon} = 98$, and tariff $t^{b} = 50\%$.
- Sequential procedure coming for free from our CDCP algorithm / squeezing procedure
- Idea analogous to Farrokhi, Lashkaripour (2024)

Result: sequence up to the optimal climate agreement

- Round 1: European Union
- Round 2: China, South East Asia (Asean)
- Round 3: North America, South Asia, Africa, Advanced East Asia, Latin America
- Round 4: Middle-East
- \notin Stay out of the agreement: Russia+CIS

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- 5. Policy Benchmarks: Optimal Policy without endogenous participation
- 6. Main result: The Optimal Climate Agreement

7. Extensions

8. Conclusion

Retaliation

Trade policy retaliation:

Suppose the regions outside the agreement impose retaliatory tariffs to club members

• Exercise:

• Countries outside the club $j \notin \mathbb{J}$ impose a tariffs $t_{ji} = \beta t_{ij}$ on club members *i*

Transfers - Loss and damage funds

- COP28 Major policy proposal: Loss and damage funds for countries vulnerable to the effects of climate change
- Simple implementation in our context: lump-sum receipts of carbon tax revenues:

$$\mathbf{t}_{i}^{ls} = (1 - \alpha) \, \mathbf{t}^{\varepsilon} \varepsilon_{i} + \alpha \frac{1}{\mathcal{P}} \sum_{j} \mathbf{t}^{\varepsilon} \varepsilon_{j}$$

 In practice: transfers from large emitters to low emitters

Taxation of fossil fuels energy inputs

- Current climate club: only imposes penalty tariffs on final goods, not on energy imports
 - Empirically relevant, c.f. Shapiro (2021): inputs are more emission-intensives but trade policy is biased against final goods output
- Alternative: tax energy import from non-participants t^{bf}_{ij} = βt^b 𝔅 {i ∈ 𝔅, j ∉ 𝔅}

Dynamic coalition formation

- Current "equilibrium": $t_i^{\varepsilon} = 0, t_{ij}^{b} = 0$
- Optimal club equilibrium $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon \star}, \mathbf{t}_{ij}^{b} = \mathbf{t}^{b \star} \mathbb{1}\{i \in \mathbb{J}, j \notin \mathbb{J}\}$
- Optimal agreement follows the planner taxes and participation decision: $\mathbb{J}^{\star} = \mathbb{J}(t^{\varepsilon \star}, t^{b \star})$
- What is driving the coordination failure?
 - Possible explanation: coalition building and *bargaining* may never reach such equilibrium:

$$ar{\mathbb{J}}_{t_0}(0,0) = \mathbb{I} \quad \stackrel{?}{\longrightarrow} \quad ar{\mathbb{J}}_Tig(t^{arepsilon\star},t^{b\star}ig) = \mathbb{J}^\star$$

Dynamic coalition formation

- Current "equilibrium": $t_i^{\varepsilon} = 0, t_{ij}^{b} = 0$
- Optimal club equilibrium $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon \star}, \mathbf{t}_{ij}^{b} = \mathbf{t}^{b \star} \mathbb{1}\{i \in \mathbb{J}, j \notin \mathbb{J}\}$
- Optimal agreement follows the planner taxes and participation decision: $\mathbb{J}^{\star} = \mathbb{J}(t^{\varepsilon_{\star}}, t^{b_{\star}})$
- What is driving the coordination failure?
 - Possible explanation: coalition building and *bargaining* may never reach such equilibrium:

$$ar{\mathbb{J}}_{t_0}(0,0) = \mathbb{I} \quad rac{?}{t o T} \quad ar{\mathbb{J}}_Tig(t^{arepsilon \star}, t^{b\star} ig) = \mathbb{J}^\star$$

- Toward a dynamic model:
 - Work in progress: dynamic game between US and China (or US+EU vs. China)
 - Can we achieve an agreement between those two countries using *paths* of bilateral tariffs and carbon tax?
 - First intuition in our context:

With aggravation of climate damage, free-riding incentives are strengthened: harder to achieve a climate club over time

Conclusion

- ▶ In this project, I solve for the optimal design of climate agreements
 - Correcting for inequality, redistribution effects through energy markets and trade leakage, as well as free-riding incentives
- Climate agreement design jointly solves for:
 - The optimal choice of countries participating
 - The carbon tax and tariff levels, accounting for both the climate externality, redistributive effects and the participation constraints
- Optimal coalition depends on the trade-off between
 - the gains from cooperation and free riding incentives
 - the gains from trade, i.e. the cost of retaliatory tariffs
 - $\Rightarrow\,$ Need a large coalition and a carbon at 65% of the world optimum
- Extensions:
 - Extend this to dynamic settings: coalition building and bargaining

Optimal Design of Climate Agreements

Conclusion

Thank you!

thomasbourany@uchicago.edu

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

Appendices

Optimal design with endogenous participation

- Why uniform policy instruments t^{ε} and t^{b} for all club members:
 - Our social planner/designer solution represents the outcome of a "bargaining process" between countries (with bargaining weights ω_i).
 - Deviation from Coase theorem:
 - With transaction/bargaining cost: impossible to reach a consensual decision on $I + I \times I$ instruments $\{t_i^{\varepsilon}, t_{ij}^{b}\}_{ij}$
 - Such costs increase exponentially in the number of countries I

Optimal design with endogenous participation

- Why uniform policy instruments t^{ε} and t^{b} for all club members:
 - Our social planner/designer solution represents the outcome of a "bargaining process" between countries (with bargaining weights ω_i).
 - Deviation from Coase theorem:
 - With transaction/bargaining cost: impossible to reach a consensual decision on $I + I \times I$ instruments $\{t_i^{\varepsilon}, t_{ij}^{b}\}_{ij}$
 - Such costs increase exponentially in the number of countries I
- Optimal country specific carbon taxes:
 - Without free-riding / exogeneous participation

$$\mathbf{t}_{i}^{\varepsilon} = \frac{1}{\phi_{i}} \, \mathbf{t}^{\varepsilon} \propto \frac{1}{\omega_{i} u'(c_{i})} \left[SCC + SCF - SCT \right]$$

• With participation constraints: multiplier $\nu_i(\mathbb{J})$

$$\mathbf{t}_i^arepsilon \propto rac{1}{ig(\omega_i+
u_i(\mathbb{J})ig)u'(c_i)}ig[SCC+SCF-SCTig]$$

back

Optimal design with endogenous participation

• Equilibrium concepts and participation constraints:

• *Nash equilibrium* \Rightarrow unilateral deviation $\mathbb{J} \setminus \{j\}$, $\mathbb{J} \in \mathbb{S}(\mathfrak{t}^f, \mathfrak{t}^b)$ if:

 $\mathcal{U}_{i}(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}) \geq \mathcal{U}_{i}(\mathbb{J} \setminus \{i\}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}) \qquad \forall i \in \mathbb{J}$

• *Coalitional Nash-equilibrium* $\mathbb{C}(\mathfrak{t}^f, \mathfrak{t}^b)$: robust of sub-coalitions deviations:

 $\mathcal{U}_{i}(\mathbb{J},\mathfrak{t}^{f},\mathfrak{t}^{b}) \geq \mathcal{U}_{i}(\mathbb{J}\backslash \hat{\mathbb{J}},\mathfrak{t}^{f},\mathfrak{t}^{b}) \ \forall i \in \hat{\mathbb{J}} \ \& \ \forall \ \hat{\mathbb{J}} \subseteq \mathbb{J} \cup \{i\}$

- Stability requires to check all potential coalitions J ∈ P(I) as all sub-coalitions J\Ĵ are considered as deviations in the equilibrium
- Requires to solve all the combination $\mathbb{J}, t^{\ell}, t^{\flat}$, by exhaustive enumeration.
 - \Rightarrow becomes very computationally costly for $I = \#(\mathbb{I}) > 10$

Welfare and Pareto weights

• Welfare:

$$\mathcal{W}(\mathbb{J}) = \sum_{i \in \mathbb{I}} \omega_i \, u(c_i)$$

• Pareto weights ω_i :

$$\omega_i = \frac{1}{u'(\bar{c}_i)}$$

for \bar{c}_i consumption in initial equilibrium "without climate change", i.e. year = 2020

• Imply no redistribution motive in t = 2020

$$\omega_i u'(\bar{c}_i) = \omega_j u'(\bar{c}_j) \qquad \forall i, j \in \mathbb{I}$$

 Climate change, taxation, and climate agreement (tax + tariffs) have redistributive effects
 ⇒ change distribution of c_i

Quantification – Trade model

• Armington Trade model:

$$s_{ij} \equiv \frac{c_{ij}p_{ij}}{c_i\mathbb{P}_i} = a_{ij}\frac{\left((1+t_{ij})\tau_{ij}\mathbf{p}_j\right)^{1-\theta}}{\sum_k a_{ik}\left((1+t_{ik})\tau_{ik}\mathbf{p}_k\right)^{1-\theta}}$$

- CES $\theta = 5.63$ estimated from a gravity regression
- Iceberg cost τ_{ij} as projection of distance log τ_{ij} = β log d_{ij}
- Preference parameters *a_{ij}* identified as remaining variation in the trade share *s_{ij}*
 - \Rightarrow policy invariant

Step 0: Competitive equilibrium & Trade

- Each household in country *i* maximize utility and firms maximize profit
- Standard trade model results:
 - Consumption and trade:

$$s_{ij} = \frac{c_{ij}p_{ij}}{c_i\mathbb{P}_i} = a_{ij}\frac{(\tau_{ij}(1+t^b_{ij})\mathbf{p}_j)^{1-\theta}}{\sum_k a_{ik}(\tau_{ik}(1+t^b_{ik})\mathbf{p}_k)^{1-\theta}} \qquad \qquad \& \qquad \mathbb{P}_i = \left(\sum_j a_{ij}(\tau_{ij}\mathbf{p}_j)^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

• Energy consumption doesn't internalize climate damage:

$$p_i MPe_i = q^e$$

• Inequality, as measured in local welfare units:

$$\lambda_i = u'(c_i)$$

• "Local Social Cost of Carbon", for region *i*

$$LCC_{i} = \frac{\partial \mathcal{W}_{i}/\partial \mathcal{E}}{\partial \mathcal{W}_{i}/\partial c_{i}} = \frac{\psi_{i}^{\mathcal{E}}}{\lambda_{i}} = \Delta_{i}\gamma(T_{i} - T_{i}^{\star})\mathbf{p}_{i}y_{i} \qquad (>0 \text{ for warm countries})$$

back

Step 1: World First-best policy

Maximizing welfare of the world Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- Full array of instruments: cross-countries lump-sum transfers t^{ls}_i, individual carbon taxes t^f_i on energy e^f_i, unrestricted bilateral tariffs t^b_{ij}
- Budget constraint: $\sum_{i} t_i^{ls} = \sum_{i} t_i^{f} e_i^{f} + \sum_{i,j} t_{ij}^{b} c_{ij} \tau_{ij} p_j$
- Maximize welfare subject to
 - Market clearing for good $[\mu_i]$, market clearing for energy μ^e

Step 1: World First-best policy

- Social planner results:
 - Consumption:

$$\omega_i u'(c_i) = \left[\sum_j a_{ij} (\tau_{ij} \omega_j \mu_j)^{1-\theta}\right]^{\frac{1}{1-\theta}} = \mathbb{P}_i \qquad \qquad \omega_i \frac{u'(c_i)}{\mathbb{P}_i} = \bar{\lambda}$$

• Energy use:

$$\omega_i \mu_i MPe_i = \mu^e + SCC$$

• Social cost of carbon:

$$SCC = \sum_{j} \omega_{j} \Delta_{j} \gamma (T_{i} - T_{i}^{\star}) y_{j} \mu_{j}$$

• Decentralization: large transfers to equalize marg. utility + carbon tax = SCC

$$\mathbf{t}^{\varepsilon} = SCC \qquad \qquad \mathbf{t}_{i}^{lb} = c_{i}^{\star} \mathbb{P}_{i} - w_{i} \ell_{i} + \pi_{i}^{f} \qquad s.t. \quad u'(c_{i}^{\star}) = \bar{\lambda} \mathbb{P}_{i} / \omega_{i}$$

back

Step 2: World optimal Ramsey policy

Maximizing welfare of the world Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \boldsymbol{e}, \boldsymbol{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- One single instrument: uniform carbon tax t^f on energy e_i^f
- Rebate tax lump-sum to HHs $t_i^{ls} = t^{\varepsilon} e_i^f + t^{\varepsilon} e_i^c$
- Ramsey policy: Primal approach, maximize welfare subject to
 - Budget constraint $[\lambda_i]$, Market clearing for good $[\mu_i]$, market clearing for energy
 - Optimality (FOC) conditions for good demands $[\eta_{ij}]$, energy demand $[v_i]$ & supply $[\theta_i]$, etc.
 - Trade-off faced by the planner:
 - (i) Correcting climate externality, (ii) Redistributive effects,
 - (iii) Distort energy demand and supply (iv) Distort good demand

Step 2: World optimal Ramsey policy

The planner takes into account

- (i) the marginal value of wealth λ_i
- (ii) the shadow value of good *i*, from market clearing, μ_i :
- (iii) the shadow value of bilateral trade *ij*, from household FOC, η_{ij} :

w/ free trade
$$u'(c_i) = \lambda_i$$

vs. w/ Armington trade $u'(c_i) = \lambda_i \Big(\sum_{j \in \mathbb{I}} a_{ij} (\tau_{ij} \mathbf{p}_j)^{1-\theta} \Big[1 + \frac{\omega_j}{\omega_i} \frac{\mu_j}{\lambda_i} - \frac{\eta_{ij}}{\theta \lambda_i} (1 - s_{ij}) \Big]^{1-\theta} \Big)^{\frac{1}{1-\theta}}$

Relative welfare weights, representing inequality

$$\widehat{\lambda}_{i} = \frac{\omega_{i}\lambda_{i}}{\overline{\lambda}} = \frac{\omega_{i}u'(c_{i})}{\frac{1}{I}\sum_{\mathbb{I}}\omega_{j}u'(c_{j})} \leq 1 \qquad \Rightarrow \qquad \begin{array}{c} \text{ceteris paribus, poorer} \\ \text{countries have higher } \widehat{\lambda}_{i} \end{array}$$

Step 2: Optimal policy – Social Cost of Carbon

► Key objects: Local vs. Global Social Cost of Carbon:

- Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country *i*
- "Local social cost of carbon" (LCC) for region *i*:

$$LCC_i := \frac{\partial \mathcal{W}_i / \partial \mathcal{E}}{\partial \mathcal{W}_i / \partial w_i} = \frac{\psi_i^{\mathcal{E}}}{\lambda_i} = \Delta_i \gamma (T_i - T_i^*) y_i \mathbf{p}_i$$

Step 2: Optimal policy – Social Cost of Carbon

- ► Key objects: Local vs. Global Social Cost of Carbon:
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country *i*
 - "Local social cost of carbon" (LCC) for region *i*:

$$LCC_i := \frac{\partial \mathcal{W}_i / \partial \mathcal{E}}{\partial \mathcal{W}_i / \partial w_i} = \frac{\psi_i^{\mathcal{E}}}{\lambda_i} = \Delta_i \gamma (T_i - T_i^{\star}) y_i \mathbf{p}_i$$

• Social Cost of Carbon for the planner:

$$SCC := \frac{\partial \mathcal{W} / \partial \mathcal{E}}{\partial \mathcal{W} / \partial w} = \frac{\sum_{\mathbb{I}} \omega_i \psi_i^{\mathcal{E}}}{\frac{1}{I} \sum_{\mathbb{I}} \omega_i \lambda_i}$$

• Social Cost of Carbon integrates these inequalities:

$$SCC = \sum_{\mathbb{I}} \widehat{\lambda}_i LCC_i = \sum_{\mathbb{I}} LCC_i + \mathbb{C}ov_i (\widehat{\lambda}_i, LCC_i)$$

Optimal Design of Climate Agreements

Step 2: Optimal policy – Other motives

Taxing fossil energy has additional redistributive effects:

- 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
- 2. Distort energy demand, of countries that need more or less energy
- 3. Reallocate goods production, which is then supplied internationally

• Params: C_{EE}^{f} agg. fossil inv. elasticity, s_{i}^{e} energy cost share and σ_{i} energy demand elasticity

Optimal Design of Climate Agreements

Step 2: Optimal policy – Other motives

Taxing fossil energy has additional redistributive effects:

- 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
- 2. Distort energy demand, of countries that need more or less energy
- 3. Reallocate goods production, which is then supplied internationally

• Params: C_{EE}^{f} agg. fossil inv. elasticity, s_{i}^{e} energy cost share and σ_{i} energy demand elasticity

Proposition 2: Optimal fossil energy tax:

 $\Rightarrow t^{f} = SCC^{sb} + \text{Supply Redistribution}^{sb} + \text{Demand Distortion}^{sb} - \text{Trade effect}^{sb}$

- Reexpressing demand terms:

$$\mathbf{t}^{\varepsilon} = \left(1 + \mathbb{C}\mathrm{ov}_{i}\left(\widehat{\lambda}_{i}^{w}, \widehat{\frac{\sigma_{i} e_{i}}{1 - s_{i}^{\varepsilon}}}\right)\right)^{-1} \left[\sum_{\mathbb{I}} LCC_{i} + \mathbb{C}\mathrm{ov}_{i}\left(\widehat{\lambda}_{i}^{w}, LCC_{i}\right) + \mathcal{C}_{EE}^{f} \mathbb{C}\mathrm{ov}_{i}\left(\widehat{\lambda}_{i}^{w}, \mathbf{e}_{i}^{f} - \mathbf{e}_{i}^{x}\right) - q^{f} \mathbb{E}_{j}[\widehat{\mu}_{j}]\right]$$

Thomas Bourany (UChicago)

hack

Step 3: Ramsey Problem with participation constraints

- Consider that countries can "exit" climate agreement.
- For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries:
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries *i* ∈ J can unilaterally leave, subject to retaliation tariff t^{b,r} on goods and get consumption *c̃_i*
 - Countries $i \notin J$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f

Step 3: Ramsey Problem with participation constraints

- Consider that countries can "exit" climate agreement.
- For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries:
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries *i* ∈ J can unilaterally leave, subject to retaliation tariff t^{b,r} on goods and get consumption *c̃_i*
 - Countries *i* ∉ J trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f
- Participation constraints:

$$u(c_i) \ge u(\tilde{c}_i) \qquad [\nu_i]$$

► Welfare:

$$\mathcal{W} = \max_{\{\mathbf{t}, \boldsymbol{e}, \boldsymbol{q}\}_i} \sum_{\mathbb{J}} \omega_i \, u(c_i) + \sum_{\mathbb{J}^c} \alpha \omega_i \, u(c_i)$$

Step 3: Ramsey Problem with participation constraints

Participation constraints

 $u(c_i) \geq u(\tilde{c}_i) \quad [\nu_i]$

▶ Proposition 3.1: Second-Best social valuation with participation constraints

• Participation incentives change our measure of inequality

• Similarly, the "effective Pareto weights" are $\alpha \omega_i$ for countries outside the club $i \notin \mathbb{J}$ and $\omega_i(\alpha - \nu_i)$ for retaliation policy on $i \in \mathbb{J}$

Thomas Bourany (UChicago)

Optimal Design of Climate Agreements

Step 3: Participation constraints & Optimal policy

Proposition 3.2: Second-Best taxes:

- Taxation with imperfect instruments:
 - Climate change & general equilibrium effects on fossil market affects all countries $i \in \mathbb{I}$

- Need to adjust for the "outside" countries $i \notin \mathbb{J}$ not subject to the tax, which weight on the energy market as $\vartheta_{\mathbb{J}^c} \approx \frac{E_{\mathbb{J}^c}}{E_{\mathbb{I}}} \frac{\nu\sigma}{q^f(1-s^f)}$

with ν fossil supply elasticity, σ energy demand elasticity and s^{f} energy cost share.

- Optimal fossil energy tax $t^{f}(\mathbb{J})$:
 - $\Rightarrow \quad \mathbf{t}^{f}(\mathbb{J}) = SCC + \underline{SVF}$

$$=\frac{1}{1-\vartheta_{\mathbb{J}^c}}\sum_{i\in\mathbb{I}}\widetilde{\lambda}_i LCC_i + \frac{1}{1-\vartheta_{\mathbb{J}^c}}\mathcal{C}^f_{EE}\sum_{i\in\mathbb{I}}\widetilde{\lambda}_i(\boldsymbol{e}^f_i-\boldsymbol{e}^x_i) - \sum_{i\in\mathbb{J}}\widetilde{\lambda}_i\frac{q^f(1-s^f_i)}{\sigma}$$

• Optimal tariffs/export taxes $t^{b,r}(\mathbb{J})$ and $t^b(\mathbb{J})$: In search for a closed-form expression As of now, only opaque system of equations (fixed point w/ demand/multipliers)

Welfare decomposition

- Armington model of trade with energy:
 - Linearized market clearing

$$\left(\frac{d\mathbf{p}_{i}}{d\mathbf{p}_{i}} + \frac{dy_{i}}{y_{i}}\right) = \sum_{k} \mathbf{t}_{ik} \left[\left(\frac{\mathbf{p}_{k}y_{k}}{v_{k}}\right) (d\ln \mathbf{p}_{k} + d\ln y_{k}) + \frac{q^{f}e_{k}^{x}}{v_{k}} d\ln e_{k}^{x} - \frac{q^{f}e_{k}^{f}}{v_{k}} d\ln e_{k}^{f} + \frac{q^{f}(e_{k}^{x} - e_{k}^{f})}{v_{k}} d\ln q^{f} + \theta \sum_{h} \left(s_{kh}d\ln \mathbf{t}_{kh} - (1 + s_{ki})d\ln \mathbf{t}_{ki} \right) + (\theta - 1) \sum_{h} \left(s_{kh}d\ln \mathbf{p}_{h} - d\ln \mathbf{p}_{i} \right) \right]$$

• Fixed point for price level $d \ln p_i$

$$\begin{split} \left[(\mathbf{I} - \mathbf{T}_{\odot} v^{y}) [\mathbf{I} - \alpha^{y,p} \odot \mathbf{I}] + \mathbf{T} (v^{e^{t}} \odot \frac{1}{\nu}) + \mathbf{T} v^{e^{f}} \frac{\sigma^{y}}{1 - s^{e}} - (\theta - 1) (\mathbf{TS} - \mathbf{T}') - \left((\mathbf{I} - \mathbf{T}_{\odot} v^{y}) \alpha^{y,z} - \frac{\sigma^{y}}{1 - s^{e}} \right) \odot \bar{\gamma} \mathbf{I}_{\odot} (\frac{\lambda^{x}}{\nu})' \right] d\ln \mathbf{p} \\ = \\ \left[- (\mathbf{I} - \mathbf{T}_{\odot} v^{y}) \alpha^{y,qf} + \mathbf{T} (v^{e^{t}} \odot \frac{1}{\nu} + v^{e^{f}} \frac{\sigma^{y}}{1 - s^{e}} + v^{ne}) - \left((\mathbf{I} - \mathbf{T}_{\odot} v^{y}) \alpha^{y,z} - \frac{\sigma^{y}}{1 - s^{e}} \right) \bar{\gamma} \frac{1}{\bar{\nu}} \right] d\ln q^{f} \\ + \left[- (\mathbf{I} - \mathbf{T}_{\odot} v^{y}) \alpha^{y,qf} + \mathbf{T} (v^{e^{f}} \odot \frac{\sigma^{y}}{1 - s^{e}}) \right] \odot \mathbf{J} d\ln t^{\varepsilon} + \theta \left(\mathbf{TS} \odot \mathbf{J} \odot d\ln t^{b} - \mathbf{T} (\mathbf{1} + \mathbf{S}') \odot (\mathbf{J} \odot d\ln t^{b})' \right) \end{split}$$

back

Quantification – Firms

• Production function
$$y_i = \mathcal{D}_i^y(T_i)z_iF(k,\varepsilon(e^{f},e^{r}))$$

$$F_i(\varepsilon(e^f, e^c, e^r), \ell) = \left[(1-\epsilon)^{\frac{1}{\sigma_y}} (\bar{k}^{\alpha} \ell^{1-\alpha})^{\frac{\sigma_y-1}{\sigma_y}} + \epsilon^{\frac{1}{\sigma_y}} (z_i^e \varepsilon_i(e^f, e^c, e^r))^{\frac{\sigma_y-1}{\sigma_y}} \right]^{\frac{\sigma_y}{\sigma_y-1}}$$
$$\varepsilon_i(e^f, e^c, e^r) = \left[(\omega^f)^{\frac{1}{\sigma_e}} (e^f)^{\frac{\sigma_e-1}{\sigma_e}} + (\omega^c)^{\frac{1}{\sigma_e}} (e^c)^{\frac{\sigma_e-1}{\sigma_e}} + (\omega^r)^{\frac{1}{\sigma_e}} (e^r)^{\frac{\sigma_e-1}{\sigma_e}} \right]^{\frac{\sigma_e}{\sigma_e-1}}$$

- Calibrate TFP z_i to match $y_i = GDP_i$ per capita in 2019-23 (avg. PPP).
- Technology: $\omega^f = 56\%, \omega^c = 27\%, \omega^f = 17\%, \epsilon = 12\%$ for all *i*
- Calibrate (z_i^e) to match Energy/GDP $q^e e_i/p_i y_i$

Damage functions in production function y:

$$\mathcal{D}_i^y(T) = e^{-\gamma_i^{\pm,y}(T - T_i^{\star})^2}$$

- Asymmetry in damage to match empirics with $\gamma^y = \gamma^{+,y} \mathbb{1}_{\{T > T_i^{\star}\}} + \gamma^{-,y} \mathbb{1}_{\{T < T_i^{\star}\}}$
- Today $\gamma_i^{\pm,y} = \bar{\gamma}^{\pm,y}$ & $T_i^{\star} = \bar{\alpha}T_{it_0} + (1-\bar{\alpha})T^{\star}$

Quantification - Energy markets

- Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\overline{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now: $\bar{\nu}_i$ to match extraction data e_i^x , \mathcal{R}_{it} calibrated to *proven reserves* data from BP. ν_i extraction cost curvature to match profit $\pi_i^f = \frac{\bar{\nu}_i \nu_i}{1+\nu_i} (\frac{e_i^x}{R_i})^{\nu_i} \mathcal{R}_i \mathbb{P}_i$
 - Future: Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost \mathcal{C}_e & extraction data e_i^x (BP, IEA)
- ► Coal and Renewable: Production \bar{e}_i^r , \bar{e}_i^x and price q_i^c , q_i^r
 - Calibrate q_i^c = z^c P_i, q_{it}^r = z^r P_i
 Choose z_i^c, z_i^r to match the energy mix (e_i^f, e_i^c, e_i^r)
- Population dynamics
 - Match UN forecast for growth rate / fertility

Calibration		Table: Baseline calibration (\star = subject to future changes) back	
Technology & Energy markets			
α	0.35	Capital share in $F(\cdot)$	Capital/Output ratio
ϵ	0.12	Energy share in $F(\cdot)$	Energy cost share (8.5%)
σ	0.3	Elasticity capital-labor vs. energy	Complementarity in production (c.f. Bourany 2022)
ω^{f}	0.56	Fossil energy share in $e(\cdot)$	Oil-gas/Energy ratio
ω^c	0.27	Coal energy share in $e(\cdot)$	Coal/Energy ratio
ω^r	0.17	Non-carbon energy share in $e(\cdot)$	Non-carbon/Energy ratio
σ_{e}	2.0	Elasticity fossil-renewable	Slight substitutability & Study by Stern
δ	0.06	Depreciation rate	Investment/Output ratio
\overline{g}	0.01*	Long run TFP growth	Conservative estimate for growth
Preferences & Time horizon			
ρ	0.015	HH Discount factor	Long term interest rate & usual calib. in IAMs
η	1.5	Risk aversion	Standard Calibration
n	0.0035	Long run population growth	Average world population growth
Climate parameters			
ξ^{f}	2.761	Emission factor - Oil & natural gas	Conversion 1 <i>MTOE</i> \Rightarrow 1 <i>MT CO</i> ₂
ξ^{c}	3.961	Emission factor - Oil & natural gas	Conversion 1 <i>MTOE</i> \Rightarrow 1 <i>MT CO</i> ₂
X	2.3/1e6	Climate sensitivity	Pulse experiment: $100 GtC \equiv 0.23^{\circ}C$ medium-term warming
δ_s	0.0004	Carbon exit from atmosphere	Pulse experiment: $100 GtC \equiv 0.15^{\circ}C$ long-term warming
γ^\oplus	0.003406	Damage sensitivity	Nordhaus, Barrage (2023)
γ^{\ominus}	$0.25 \times \gamma^{\oplus}$	Damage sensitivity	Nordhaus' DICE & Rudik et al (2022)
α^T	0.5	Weight historical climate for optimal temp.	Marginal damage correlated with initial temp.
T* 14.5 Optimal yearly temperature Average yearly temperature/Developed economies Optimal Design of Climate Agreements October 2024 19/19			