When is aggregation enough? Aggregation and Projection with the Master Equation WORK IN PROGRESS

Thomas Bourany The University of Chicago

April 2024

Thomas Bourany (UChicago)

Limitation of current methods for Heterogeneous Agents models

- Since Krusell, Smith (1998), a large array of methods have been developed to tackle *Heterogeneous Agent models with Aggregate Shocks*
 - Perturbation methods, Sequence space methods, Truncation methods, Machine Learning based methods
- Many of the recent operational methods rely on certainty equivalence
- By design, they can not speak about aggregate risk and decisions under aggregate uncertainty
- Some exceptions:
 - Second order perturbations, e.g. Bhandari, Bourany, Evans, Golosov (2024)
 ⇒ are still local approximations around a stationary equilibrium
 - Machine-Learning-based methods, e.g. Fernandez-Villaverde, Hurtado, Nuno (2023)
 Gu, Laurière, Merkel, Payne (2024) ⇒ might be a bit opaque / case specific

This project

- To solve Heterogeneous Agent models with Aggregate Shocks, new approaches have been developed by mathematician using the Master equation
 - Mean-Field Games with Common Noice: Cardaliaguet, Delarue, Lions, Lasry (2019)
 - Also used in economics by Schaab (2021), Bilal (2023), Gu, Laurière, Merkel, Payne (2024)
- My project is proposing a new method to talk about risk in H.A. models
 - Relying solely on "projection" to characterize the distribution of agents
 - Idea analogous to the original approach by Krusell-Smith (1998)
 - Extend it to more generic models of macro-finance

Krusell-Smith: General idea

- Take Krusell, Smith (1998) Consumption-saving model, *c*, *a*, with
 (i) idiosyncratic income risk *z*, (ii) incomplete market, (iii) credit constraints *a* ≥ <u>a</u>
 (iv) aggregate shock on aggregate TFP *Z*.
- Firm side:

$$Y = ZK^{\alpha} \qquad \Rightarrow \qquad r = \alpha K^{\alpha - 1} - \delta \qquad \qquad w = (1 - \alpha)K^{\alpha}$$

- Distribution of households g(a, z) over wealth and income
- Household decision (KS98)

$$V(a, z, g, Z) = \max_{c, a'} u(c) + \beta \mathbb{E}^{z', Z'} \left[V(a', z', g', Z') \mid z, Z \right]$$

s.t.
$$c + a' = zw + (1+r)a$$

 $g' = H(g, Z, Z')$

Equilibrium

$$K = \int_{a,z} a \, dg(a,z)$$

Thomas Bourany (UChicago)

General idea and KS98 global solution

- Difficulty: Value function V(a, z, g, Z) depends on the whole distribution g(!)
- ▶ Need to forecast the evolution of $g \Rightarrow$ very difficult with aggregate risk
 - Need to follow the distribution g_t on every path of $\{Z_t\}_t$
 - Brute force: computationally intensive, c.f. Bourany (2018)
- Krusell-Smith solution: two assumptions related to *bounded-rationality*
 - 1. Assume the Household only care about aggregate capital / First-moment $K = \int a dg(a, z)$
 - 2. Assume Linear forecasting-rule for future capital

$$K' = a_1^Z K + a_2^Z$$

- Choose parameters (a_1^Z, a_2^Z) to match the *realized* path of $\{K_t\}_t$
- Proposal today:
 - remove assumption $2 \Rightarrow$ bypass the linearity assumpt^o (in that sense close to FVHN)
 - test robustness to 1 and 2, using methods based on the Master equation

Primer on the Mean Field Games and the Master Equation

- Rewriting the Aiyagari model as a Mean Field Game involves a system of PDEs:
 - States dynamics:

$$da_t = [z_t w_t + r_t a_t - c_t] dt$$
 $z_j \sim \text{Markov jump process } \lambda_j$

1. Hamilton Jacobi Bellman Equation:

$$-\partial_t v_{(t,a,z)} + \rho v_{(t,a,z)} = \max_c u(c) + \mathcal{L}[v]_{(t,a,z)}$$

• Transport/Jump-Operator

$$\mathcal{L}[v|c^{\star}](t,a,z_{j}) = \partial_{a}v(t,a,z_{j})[z_{j}w + ra - c^{\star}] + \lambda_{j}(v(t,a,z_{-j}) - v(t,a,z_{j}))$$

2. Kolmogorov forward Equation:

$$\partial_t g(t,a,z) = \mathcal{L}^* [g | c^*](t,a,z)$$

• Equilibrium:

$$\iint_{z,a \ge \underline{a}} dg_{(t,a,z_j)} = K_t \qquad r_t = \alpha K_t^{\alpha - 1} - \delta$$

Thomas Bourany (UChicago)

Primer on the Master Equation

- The master equation combines in one equation both the HJB and the KFE
 - Case without aggregate risk, c.f. Cardaliaguet et al (2019), Bilal (2023)

evolution of the distribution

- Novelty: dependence on how the distribution g changes notice the forecast from agents (a, z) about all other agents (\tilde{a}, \tilde{z})
- Requires to define the derivative in the space of distribution $\frac{dv(g)[\tilde{x}]}{dg}$: Lions' derivative

Primer on the Master Equation

1

Lions-derivative

Primer on the Lions derivative

Derivative in the space of distribution: how the value v(a, z, g) changes when the distribution of agents g moves?

$$dv(a, z, \boldsymbol{g}) \approx v(a, z, \tilde{\boldsymbol{g}}) - v(a, z, \boldsymbol{g})$$
$$\approx \iint_{\tilde{a}, \tilde{z}} \underbrace{\frac{\partial v(a, z, \boldsymbol{g})}{\partial g}}_{=\text{Fréchet}} [\tilde{a}, \tilde{z}] \left(\tilde{g}(\tilde{a}, \tilde{z}) - g(\tilde{a}, \tilde{z}) \right)$$

$$\approx \iint_{\tilde{a},\tilde{z}} \underbrace{\frac{d}{d\tilde{a}} \frac{\partial v(a,z,\boldsymbol{g})}{\partial g}}_{=\text{Lions}} [\tilde{a},\tilde{z}] \underbrace{\frac{d\tilde{a}}{\partial g}}_{=\text{change in decision}} g(\tilde{a},\tilde{z})$$

 ^{∂v(a,z,g)}/_{∂g} [x̃] Fréchet Derivative, for a change of g in x̃

 ^{dv(a,z,g)}/_{dg} [x̃] = ^d/_{dx} ^{∂v(a,z,g)}/_{∂g} [x̃] Lions Derivative, for a change of x̃, i.e. a *shift* in g(x̃)

Thomas Bourany (UChicago)

Lions derivative and agent decision: toward aggregation?

- Derivative in the space of distribution
 - Change in value v(a, z, g) with moves in the distribution of agents g
 - Lions-derivative: what causes the change in the agents' distribution g? \Rightarrow change in states $(d\tilde{a}, d\tilde{z})$
 - What causes the change in states? \Rightarrow the change in agents' decisions
 - States dynamics $(d\tilde{a}, d\tilde{z})$ change with small change in decision, i.e. consumption-saving: operator $\mathcal{L}^{\star}[g|c^{\star}](!)$
- Can we aggregate?
 - Aggregate the distribution?
 - Aggregate the change in agents' decision?
 - \Rightarrow Goal/method of this project!
 - Before, back to the original question: aggregate risk

Primer on the Master Equation

Master equation with aggregate risk

Adding Aggregate Risk to the Master Equation (ARME?)

- Consider aggregate risk
 - Agg. TFP follows a AR(1) Ornstein-Uhlenbeck process

$$dZ_t = -\theta(Z - \bar{Z})dt + \hat{\sigma}dB_t^0$$

• The master equation doesn't change much: value v = v(t,a,z,g,Z)

$$-\partial_{t}v + \rho v = \overbrace{\max_{c}}^{\text{standard HJB continuation value}}_{c} \underbrace{\int_{c}^{\text{direct effect of risk of Z on }v}_{c} -\theta(Z-\bar{Z})v_{Z} + \underbrace{\int_{c}^{\widehat{\sigma}^{2}}v_{ZZ}}_{f} + \underbrace{\int_{c,a}^{f} \frac{dv(t,a,z,g,Z)}{dg}[(\tilde{a},\tilde{z})]\mathcal{L}^{*}[g|c^{*}](t,\tilde{a},\tilde{z})dg(t,\tilde{a},\tilde{z})}_{evolution of the distribution}}$$

• Why?

- Aggregate shocks don't have *direct effects* on the distribution!
- Is that the reason why KS98 model features "approximate aggregation" ?
- \Rightarrow linear in Z / can aggregate capital K easily / doesn't have important implication of risk $\hat{\sigma}$?

Thomas Bourany (UChicago)

Primer on the Master Equation

Master equation with aggregate risk

General Aggregate Risk to the Master Equation (GARME?)

Add agg. risk with *direct effects* on household income, w/ exogenous portfolio share θ

$$dR_t = \overline{\sigma} dB_t^0 \qquad \qquad da = (ra + zw - c)dt + \theta a (dR - r)$$

/24

• The master equation now becomes *second order*! value v = v(t,a,z,g,Z) changes a lot!

$$-\partial_{t}v + \rho v = \overbrace{a_{c}}^{\text{standard HJB continuation value}}_{c} \overbrace{-\theta(Z-\bar{Z})v_{Z} + \widehat{\sigma}^{2}}^{\text{direct effect of risk of Z on }v}}_{c} + \overbrace{\int_{z,a}^{\text{deterministic evolution of the distribution}}}_{c} \left[(\tilde{a}, \tilde{z})\right] \mathcal{L}^{*}[g|c^{*}](t, \tilde{a}, \tilde{z}) dg(t, \tilde{a}, \tilde{z})$$

$$+ \underbrace{\frac{\theta^{2}\overline{\sigma}^{2}}{2}}_{z,a} \underbrace{\int_{z,a}^{d} \frac{d}{d\tilde{a}} \left(\frac{dv}{dg}[(\tilde{a}, \tilde{z})]\right) dg(t, \tilde{a}, \tilde{z})}_{diffusion of the distribution due to risk}} + \underbrace{\theta\overline{\sigma}\widehat{\sigma}}_{z,a} \underbrace{\frac{d}{d\tilde{a}} \frac{d}{dg}[(\tilde{a}, \tilde{z})]}_{z,a} dg(t, \tilde{a}, \tilde{z})}_{covariance of agg. state Z and distribution \tilde{a}} + \underbrace{\theta\overline{\sigma}\widehat{\sigma}}_{z,a} \underbrace{\frac{d}{dZ} \frac{dv}{dg}[(\tilde{a}, \tilde{z})] dg(t, \tilde{a}, \tilde{z})}_{covariance of right agg. state Z and distribution \tilde{a}} + \underbrace{\theta\overline{\sigma}\widehat{\sigma}}_{z,a} \underbrace{\frac{d}{dZ} \frac{dv}{dg}[(\tilde{a}, \tilde{z})] dg(t, \tilde{a}, \tilde{z})}_{covariance of right agg. state Z and distribution \tilde{a}} + \underbrace{\theta\overline{\sigma}\widehat{\sigma}}_{z,a} \underbrace{\frac{d}{dZ} \frac{dv}{dg}[(\tilde{a}, \tilde{z})] dg(t, \tilde{a}, \tilde{z})}_{covariance of right agg. state Z and distribution \tilde{a}} + \underbrace{\theta\overline{\sigma}\widehat{\sigma}}_{z,a} \underbrace{\frac{d}{dZ} \frac{dv}{dZ}[(\tilde{a}, \tilde{z})] dg(t, \tilde{a}, \tilde{z})}_{covariance of right agg. state Z and distribution \tilde{a}} + \underbrace{\frac{\theta^{2}\overline{\sigma^{2}}}{2} \underbrace{\int_{z,a}^{0} \frac{d^{2}v}{dg^{2}}[(\tilde{a}, \tilde{z}, \tilde{a}', \tilde{z}')] dg(t, \tilde{a}, \tilde{z}) dg(t, \tilde{a}', \tilde{z}')}_{covariance of right agg. state Z and distribution \tilde{a}} + \underbrace{\frac{\theta^{2}\overline{\sigma^{2}}}{2} \underbrace{\int_{z,a}^{0} \frac{d^{2}v}{dg^{2}}[(\tilde{a}, \tilde{z}, \tilde{a}', \tilde{z}')] dg(t, \tilde{a}, \tilde{z}) dg(t, \tilde{a}', \tilde{z}')}_{covariance of right agg. state Z and distribution \tilde{a}} + \underbrace{\frac{\theta^{2}\overline{\sigma^{2}}}{2} \underbrace{$$

Primer on the Master Equation

Master equation with aggregate risk

General Aggregate Risk to the Master Equation (GARME?)

- Include controlled drift, diffusion, jump on individual states + mean-field interaction on drift, diffusion and jump on aggregate states
- Encompass most macro-finance models. Exception: Impulse control, fixed cost (yet!)

$$\begin{split} \mathcal{H}(x,m,\mathcal{X},V,D_{x}V,D_{xx}V) &= \max_{c} \mathcal{L}(x,m,\mathcal{X},c) + b(x,m,\mathcal{X},c) \cdot D_{x}V + \mathrm{Tr}\big([\sigma\sigma' + \overline{\sigma\sigma'}](x,m,\mathcal{X},c) \ D_{xx}V\big) \\ &\sum_{n=1}^{n_{j}^{i}} \lambda^{n}(x,m,\mathcal{X},c) \Big(V^{n}(x + \gamma(x,m,\mathcal{X},c),x,m,\mathcal{X}) - V\Big) \\ -\partial_{t}V + \rho V &= \mathcal{H}\big(x,m,\mathcal{X},V,D_{x}V,D_{xx}V,c^{*}\big) \\ &+ \mu(m,\mathcal{X}) \cdot D_{\mathcal{X}}V + \mathrm{Tr}\big(\widehat{\sigma}\widehat{\sigma'}D_{\mathcal{X}\mathcal{X}}V\big) + \sum_{n=1}^{n_{j}^{0}} \widehat{\lambda}^{n}(m,\mathcal{X})\Big(V \circ \widehat{\gamma}^{n}(m,\mathcal{X}) - V\Big) \\ &+ \int_{\mathbb{X}} D_{m}V(x,\cdot;y) \cdot D_{p}\mathcal{H}(y,\cdot)m(dy) + \int_{\mathbb{X}} \sum_{n=1}^{n_{j}^{0}} \lambda^{n}(y,\cdot)\Delta_{m}V(x,\cdot;y) \circ \gamma(y,\cdot)m(dy) \\ &+ \int_{\mathbb{X}} \mathrm{Tr}\big[(\sigma\sigma' + \overline{\sigma\sigma'})(y,\cdot)D_{y}\big(D_{m}V(x,m,\mathcal{X};y)\big)\big](y,m,\mathcal{X})m(dy) \\ &+ 2\int_{\mathbb{X}} \mathrm{Tr}\big(\overline{\sigma}(x,\cdot)\overline{\sigma}(y,\cdot)'D_{x}D_{m}V(x,\cdot;y)\big)m(dy) + \int_{\mathbb{X}} \mathrm{Tr}\big(\overline{\sigma}(y,\cdot)\widehat{\sigma}(\mathcal{X}_{t})'D_{m}D_{\mathcal{X}}V(x,m,\mathcal{X};y)\big)m(dy) \\ &+ \int_{\mathbb{X}} \mathrm{Tr}\big(\overline{\sigma}(y,\cdot)\overline{\sigma}(y',\cdot)'D_{mm}^{2}V\big)(x,\cdot;y,y')m(dy)m(dy') \end{split}$$

Thomas Bourany (UChicago)

Projection and Bounded-rationality in KS98

Back to KS98. What do Households need for decisions?

- Require only changes in prices $(r, w) \Rightarrow$ don't care of the distribution *per se*
- Neoclassical model: only need some moments, *the mean*, of the distribution for asset prices!

$$K = \iint_{a,z} a \, dg(a,z) \qquad \qquad r = \alpha K^{\alpha-1} - \delta$$

• Bounded rationality assumption:s

$$V(a, z, \boldsymbol{g}, Z) \equiv \overline{V}(a, z, K^h, Z)$$

• Nice property in Lions-derivative:

with
$$K^h = \int_x h(x) \, dg(x)$$
 $\frac{d}{dg} V(x, g; y) \equiv \frac{d}{dK^h} \overline{V}(x, K^h) \, h'(y)$

Projection in the Master equation

Can rewrite the Master Equation with this projection on the first-moment: $v = v(a, z, g, Z) \equiv \overline{v}(a, z, K, Z)$

$$\rho \bar{v} = \overbrace{\max_{c} u(c) + \mathcal{L}[\bar{v} | c^{\star}](a, z)}^{\text{direct effect of risk of Z on } \bar{v}} \underbrace{-\theta(Z - \bar{Z})\bar{v}_{Z} + \frac{\hat{\sigma}^{2}}{2}\bar{v}_{ZZ}}_{+ \bar{v}_{K} \iint_{z, a} \underbrace{[\tilde{r}\tilde{a} + w\tilde{z} - c^{\star}(\tilde{a}, \tilde{z}, K, Z)]}_{\text{change in agents } (\tilde{a}, \tilde{z}) \text{ decisions}} dg(\tilde{a}, \tilde{z})$$

Still dependence on g, how to "get rid of it"? Not easy!

Aggregation:

$$dK = \iint_{z,a} [r\tilde{a} + w\tilde{z} - c^{*}(\tilde{a}, \tilde{z}, K, Z)] dg(\tilde{a}, \tilde{z})$$
$$dK = rK + w\bar{L} - \mathcal{C}(K, Z|g)$$

with aggregate consumption function $C(K, Z|g) = \iint_{z,a} c^*(\tilde{a}, \tilde{z}, K, Z) dg(\tilde{a}, \tilde{z})$

Thomas Bourany (UChicago)

The Master Equation becomes a fusion of two familiar equations

▶ The Master Equation becomes a "standard" HJB (!), $v = v(a, z, g, Z) \equiv \overline{v}(a, z, K, Z)$

$$\rho \,\overline{v} = \max_{c} \, u(c) + \left[wz + ra - c\right] \overline{v}_{a} + \lambda \left(\overline{v}(a, z', \cdot) - \overline{v}(a, z, \cdot)\right)$$
$$- \,\theta(Z - \overline{Z}) \overline{v}_{Z} + \frac{\widehat{\sigma}^{2}}{2} \overline{v}_{ZZ} + \underbrace{\left[ZK^{\alpha} - \delta K - \mathcal{C}(K, Z|g)\right]}_{=dK} \,\overline{v}_{K}$$

- Only issue: C(t, K, Z|g) still depends on g
- Looks exactly like the fusion of two standard models
 - RBC: v = v(K, Z)

$$\rho v = \max_{C} u(C) + [ZK^{\alpha} - \delta K - C]v_{K} - \theta(Z - \overline{Z})v_{Z} + \frac{\widehat{\sigma}^{2}}{2}v_{ZZ}$$

– Aiyagari: v = v(a, z)

$$\rho v = \max_{c} u(c) + [wz + ra - c]v_a + \lambda (v(a,z',\cdot) - v(a,z,\cdot))$$

Thomas Bourany (UChicago)

Agents' decision and global dynamical system

▶ With the Master equation and $v = \bar{v}(a, z, K, Z)$ we obtain the individual decision,

$$c^{\star}(\tilde{a},\tilde{z},K,Z) = u'^{-1}(\bar{v}_a(a,z,K,Z))$$

• Hence we get the dynamical system:

$$\begin{cases}
a_{da} = \left[z\overbrace{(1-\alpha)ZK^{\alpha}}^{=w} + \overbrace{(\alpha ZK^{\alpha-1}-\delta)}^{=r} a - c^{*}(a, z, K, Z)\right]dt \\
dz = \gamma(z)dJ_{t} & \text{intensity} \quad \lambda(z) \\
dK = \left(ZK^{\alpha} - \delta K - C(K, Z|g)\right)dt \\
dZ = \mu(Z)dt + \widehat{\sigma}dB_{t}^{0}
\end{cases}$$

► For a guess of g(a,z) and $C(K, Z|g) = \iint_{a,z} c^*(a,z,K,Z)g(a,z)$ we have a complete characterization of the system

 \Rightarrow Can get a Kolmogorov forward equation for the system (a, z, K, Z) (!!)

Thomas Bourany (UChicago)

"Master-" Kolmogorov Forward for the global system

► For a guess of g(a, z) and $C(K, Z|g) = \iint_{a,z} c^*(a, z, K, Z)g(a, z)$, the Master-KFE for states $x = (a, z, K, Z) \in \widetilde{X}$ writes:

$$0 = -\partial_a \left[s(x, \overline{v}_a) \widetilde{g}(x) \right] + \sum_n \lambda(z^n) \widetilde{g}(x^n) - \lambda(z) \widetilde{g}(x) - \partial_K \left[\left(ZK^\alpha - \delta K - \mathcal{C}(K, Z|g) \right) \widetilde{g}(t, \widetilde{x}) \right] - \partial_Z [\mu(Z) \widetilde{g}(x)] + \widehat{\sigma} \partial_{ZZ}^2 \widetilde{g}(x)$$

Easy to get from the Master-HJB's operator using standard finite-difference methods
 Consistency condition for rational-expectation equilibrium:

$$dg(a,z)\big|_{K,Z} = \int_{\widetilde{\mathbb{X}}} \delta_{\{\widetilde{K}=K,\widetilde{Z}=Z\}} d\widetilde{g}_{(a,z,\widetilde{K},\widetilde{Z})}$$

• Consistency for the first moment: $\iint_{a,z} adg(a, z^n) = \int_{\widetilde{\mathbb{X}}} \delta_{\{\widetilde{K}=K, \widetilde{Z}=Z\}} ad\widetilde{g}(a, z^n, \widetilde{K}, \widetilde{Z}) = K$

Thomas Bourany (UChicago)

Summary and numerical methods

- 1. General Master equation
 - Summarize MFG systems with one equation: v(a, z, g, Z)
- 2. Master HJB for "bounded-rational" agents: $v = \bar{v}(a, z, K, Z)$
 - Start from guess g(a, z) and C(K, Z|g)
 - Solve Master-HJB: standard finite difference methods
 - Get individual decisions $c^{\star}(a,z,K,Z)$ and operator $\mathcal{A}[\bar{v}]$ for (a,z,K,Z)
- 3. Master-Kolmogorov forward for (a, z, K, Z)
 - Obtain distribution \tilde{g} over all states (a, z, K, Z) for "free" with $\mathcal{A}^*[\tilde{g}]$
 - Update g thanks to \tilde{g} and update $\mathcal{C}(K, Z|g)$
 - Obtain Capital dynamics: potentially very non-linear!!

$$dK = ZK^{\alpha} - \delta K - \mathcal{C}(K, Z|g)$$

Procedure standard and general

- No need for deep-learning/splines/polynomials: use standard finite difference methods
- Method robust to higher-order moments (in the paper!) $K_2 = \iint_{a,z} (a-K)^2 dg(a,z)... \Rightarrow$ imply additional terms in HJB (+ larger state-space)

Thomas Bourany (UChicago)

Master-Equation with higher moments:

- ► HJB with 2nd-order moments: $v = v(a, z, g, Z) \equiv \overline{v}(a, z, K, K_2, L_2, KL, Z) = \overline{v}(a, z, K, K_2, Z)$
 - $K_2 = \mathbb{V}ar(a), L_2 = \mathbb{V}ar(z), KL = \mathbb{C}ov(a, z)$
 - In KS98, you don't need all of them!

$$\rho \,\overline{v} = \max_{c} \, u(c) + \left(wz + ra - c\right) \overline{v}_{a} + \lambda \left(\overline{v}(a, z', \cdot) - \overline{v}(a, z, \cdot)\right) - \theta(Z - \overline{Z}) \overline{v}_{Z} + \frac{\widehat{\sigma}^{2}}{2} \overline{v}_{ZZ}$$
$$+ \underbrace{\left[ZK^{\alpha} - \delta K - \mathbb{E}^{g}[c^{\star}]\right]}_{=dK} \overline{v}_{K} + \underbrace{\left[-\mathbb{C}\mathrm{ov}^{g}(a, c^{\star})\right]}_{dK_{2}} \overline{v}_{K_{2}}$$

- Similarly, solve for dynamical system (a, z, K, K₂, Z), the "master" KFE and then plug g back into E^g[c^{*}] = ∬ c^{*}dg and Cov^g(a, c^{*}) = ∬(a ā)(c^{*} c̄)dg
- Theoretical insight: if $\bar{v}_{K_2} > 0$ and $\mathbb{C}ov^g(a, c^*) > 0$, it reinforces the precautionary saving motive and lower value

Numerical experiment - Aiyagari model

Numerical experiment - Brock-Mirman / RBC

Numerical experiment - Brock-Mirman / RBC

Master equation for HA models

Numerical experiment - Master equation, Krusell-Smith

Conclusion

- In this project, I propose a new method to solve Heterogeneous Agent Models with aggregate risk
- Next steps:
 - Properties of KS98: is the model Markovian in capital? i.e. is the consumption function C(K, Z|g) robust to change in g (e.g. to change in $K_2 = Var(a)$).
 - Comparison with Krusell-Smith's linearity in capital flow
 - Overidentification test for SMM: do agents need second-order (or higher-order) moments when making their decision?
 - Solving a "more interesting" macro-finance model: Model with a meaningful distribution of portfolios, exposure, and impact of aggregate risk