When is aggregation enough? Aggregation and Projection with the Master Equation WORK IN PROGRESS

Thomas Bourany THE UNIVERSITY OF CHICAGO

April 2024

Thomas Bourany (UChicago) Master equation for HA models April 2024 1/24

Limitation of current methods for Heterogeneous Agents models

- \triangleright Since Krusell, Smith (1998), a large array of methods have been developed to tackle *Heterogeneous Agent models with Aggregate Shocks*
	- Perturbation methods, Sequence space methods, Truncation methods, Machine Learning based methods
- Many of the recent operational methods rely on certainty equivalence
- \triangleright By design, they can not speak about aggregate risk and decisions under aggregate uncertainty
- \triangleright Some exceptions:
	- Second order perturbations, e.g. Bhandari, Bourany, Evans, Golosov (2024) \Rightarrow are still local approximations around a stationary equilibrium
	- Machine-Learning-based methods, e.g. Fernandez-Villaverde, Hurtado, Nuno (2023) Gu, Laurière, Merkel, Payne (2024) \Rightarrow might be a bit opaque / case specific

This project

- **ID** To solve *Heterogeneous Agent models with Aggregate Shocks*, new approaches have been developed by mathematician using the Master equation
	- Mean-Field Games with Common Noice: Cardaliaguet, Delarue, Lions, Lasry (2019)
	- Also used in economics by Schaab (2021), Bilal (2023), Gu, Laurière, Merkel, Payne (2024)
- In My project is proposing a new method to talk about risk in H.A. models
	- Relying solely on "projection" to characterize the distribution of agents
	- Idea analogous to the original approach by Krusell-Smith (1998)
	- Extend it to more generic models of macro-finance

Krusell-Smith: General idea

- Take Krusell, Smith (1998) Consumption-saving model, *c*, *a*, with (i) idiosyncratic income risk *z*, (ii) incomplete market, (iii) credit constraints $a \ge a$ (iv) aggregate shock on aggregate TFP *Z*.
- Firm side:

$$
Y = ZK^{\alpha} \qquad \Rightarrow \qquad r = \alpha K^{\alpha - 1} - \delta \qquad \qquad w = (1 - \alpha)K^{\alpha}
$$

- Distribution of households *g*(*a*,*z*) over wealth and income
- Household decision (KS98)

$$
V(a, z, g, Z) = \max_{c, a'} u(c) + \beta \mathbb{E}^{z', Z'} [V(a', z', g', Z') | z, Z]
$$

s.t.
$$
c + a' = zw + (1+r)a
$$

$$
g' = H(g, Z, Z')
$$

• Equilibrium

$$
K = \int_{a,z} a \, dg(a,z)
$$

Thomas Bourany (UChicago) [Master equation for HA models](#page-0-0) April 2024 4/24

General idea and KS98 global solution

- Difficulty: Value function $V(a, z, g, Z)$ depends on the whole distribution $g(!)$
- I Need to forecast the evolution of $g \Rightarrow$ very difficult with aggregate risk
	- Need to follow the distribution g_t on *every path* of $\{Z_t\}_t$
	- Brute force: computationally intensive, c.f. Bourany (2018)
- I Krusell-Smith solution: two assumptions related to *bounded-rationality*
	- 1. Assume the Household only care about aggregate capital / First-moment $K = \int a \, dg(a, z)$
	- 2. Assume *Linear* forecasting-rule for future capital

$$
K'=a_1^ZK+a_2^Z
$$

- Choose parameters (a_1^Z, a_2^Z) to match the *realized* path of $\{K_t\}_t$
- \blacktriangleright Proposal today:
	- remove assumption 2 \Rightarrow bypass the linearity assumpt \circ (in that sense close to FVHN)
	- test robustness to 1 and 2, using methods based on the Master equation

Primer on the Mean Field Games and the Master Equation

- \triangleright Rewriting the Aiyagari model as a Mean Field Game involves a system of PDEs:
	- States dynamics:

$$
da_t = [z_t w_t + r_t a_t - c_t] dt \t z_j \sim \text{Markov jump process } \lambda_j
$$

1. Hamilton Jacobi Bellman Equation:

$$
-\partial_t v(t,a,z) + \rho v(t,a,z) = \max_c u(c) + \mathcal{L}[v](t,a,z)
$$

• Transport/Jump-Operator

$$
\mathcal{L}[v|c^{\star}](t,a,z_j) = \partial_a v(t,a,z_j)[z_jw + ra - c^{\star}] + \lambda_j(v(t,a,z_{-j}) - v(t,a,z_j))
$$

2. Kolmogorov forward Equation:

$$
\partial_t g(t,a,z) = \mathcal{L}^*[g|c^*](t,a,z)
$$

• Equilibrium:

$$
\iint\limits_{z,a\geq\underline{a}} a\,dg(t,a,z_j)=K_t \qquad \qquad r_t=\alpha K_t^{\alpha-1}-\delta
$$

Thomas Bourany (UChicago) [Master equation for HA models](#page-0-0) April 2024 6/24

Primer on the Master Equation

- In The master equation combines in *one equation* both the HJB and the KFE
	- Case without aggregate risk, c.f. Cardaliaguet et al (2019), Bilal (2023)

- Novelty: dependence on how the distribution *g* changes notice the forecast from agents (a, z) about all other agents (\tilde{a}, \tilde{z})
- Requires to defines the derivative in the space of distribution $\frac{dv(g)[\tilde{x}]}{dg}$: Lions' derivative

[Master equation for HA models](#page-0-0) **[Primer on the Master Equation](#page-5-0)** $L_{\text{Lions-derivative}}$ $L_{\text{Lions-derivative}}$ $L_{\text{Lions-derivative}}$

Primer on the Lions derivative

 \triangleright Derivative in the space of distribution: how the value $v(a, z, g)$ changes when the distribution of agents *g* moves?

$$
dv(a, z, \mathbf{g}) \approx v(a, z, \tilde{\mathbf{g}}) - v(a, z, \mathbf{g})
$$

$$
\approx \iint_{\tilde{a}, \tilde{z}} \underbrace{\frac{\partial v(a, z, \mathbf{g})}{\partial g} [\tilde{a}, \tilde{z}] (\tilde{g}(\tilde{a}, \tilde{z}) - g(\tilde{a}, \tilde{z}))}_{= \text{Fréchet}}
$$

• ∂*v*(*a*,*z*,*g*) $\frac{a,z,\mathbf{g}}{\partial g}$ [\tilde{x}] Fréchet Derivative, for a change of *g* in \tilde{x} \bullet $\frac{dv(a,z,g)}{dg}[\tilde{x}] = \frac{d}{dx}$ ∂*v*(*a*,*z*,*g*) $\frac{a,z,\mathbf{g}}{\partial g}$ [\tilde{x}] Lions Derivative, for a change of \tilde{x} , i.e. a *shift* in $g(\tilde{x})$

Agent states

Thomas Bourany (UChicago) [Master equation for HA models](#page-0-0) April 2024 8 / 24

Lions derivative and agent decision: toward aggregation?

- \triangleright Derivative in the space of distribution
	- Change in value $v(a, z, g)$ with moves in the distribution of agents **g**
	- Lions-derivative: what causes the change in the agents' distribution *g*? \Rightarrow change in states (*dã*, *d* \tilde{z})
	- What causes the change in states? \Rightarrow the change in agents' decisions
		- $-$ States dynamics ($d\tilde{a}$, $d\tilde{z}$) change with small change in decision, i.e. consumption-saving: operator $\mathcal{L}^{\star}[g|c^{\star}]$ (!)
- \triangleright Can we aggregate?
	- Aggregate the distribution?
	- Aggregate the change in agents' decision?
	- \Rightarrow Goal/method of this project!
	- Before, back to the original question: aggregate risk

[Master equation for HA models](#page-0-0) **-[Primer on the Master Equation](#page-5-0)**

 \Box [Master equation with aggregate risk](#page-9-0)

Adding Aggregate Risk to the Master Equation (ARME?)

- \triangleright Consider aggregate risk
	- Agg. TFP follows a AR(1) Ornstein-Uhlenbeck process

$$
dZ_t = -\theta(Z - \bar{Z})dt + \hat{\sigma}dB_t^0
$$

• The master equation doesn't change much: value $v = v(t, a, z, g, Z)$

$$
-\partial_t v + \rho v = \overbrace{\max_{c} u(c) + \mathcal{L}[v|c](t, a, z)}^{\text{standard HJB continuation value}} + \underbrace{\int_{-\theta(Z-\overline{Z})v_Z + \frac{\widehat{\sigma}^2}{2}v_{ZZ}}^{\text{direct effect of risk of Z on } v} + \underbrace{\int_{z,a}^{\text{direct effect of risk of Z on } v} \left(\frac{dV(t, a, z, g, z)}{dg} \right)[(\tilde{a}, \tilde{z})] \mathcal{L}^*[g|c^*](t, \tilde{a}, \tilde{z}) dg(t, \tilde{a}, \tilde{z})}^{\text{standard HJB continuation}}
$$
\n
$$
= \underbrace{\int_{-\theta(z-\overline{Z})v_Z + \frac{\widehat{\sigma}^2}{2}v_{ZZ}}^{\text{distubulo}}}_{\text{evolution of the distribution}}
$$

• Why?

- Aggregate shocks don't have *direct effects* on the distribution!
- Is that the reason why KS98 model features "approximate aggregation" ?
- \Rightarrow linear in *Z* / can aggregate capital *K* easily / doesn't have important implication of risk $\hat{\sigma}$?

Thomas Bourany (UChicago) [Master equation for HA models](#page-0-0) April 2024 10/24 10/24

[Master equation for HA models](#page-0-0) **[Primer on the Master Equation](#page-5-0)** \Box [Master equation with aggregate risk](#page-9-0)

General Aggregate Risk to the Master Equation (GARME?)

Add agg. risk with *direct effects* on household income, w/ exogenous portfolio share θ

$$
dR_t = \overline{\sigma} dB_t^0 \qquad da = (ra + zw - c)dt + \theta a (dR - r)
$$

• The master equation now becomes *second order*! value $v = v(t, a, z, g, Z)$ changes a lot!

$$
-\partial_t v + \rho v = \overbrace{\max_{c} u(c) + \mathcal{L}[v|c](t, a, z)}^{\text{standard HJB continuation value}} -\overbrace{\theta(Z-\bar{Z})v_Z + \frac{\hat{\sigma}^2}{2}v_{ZZ}}^{\text{direct effect of risk of Z on } v} + \underbrace{\iint_{z,a} \frac{dv(t, a, z, g, Z)}{dg} \left[(\tilde{a}, \tilde{z}) \right] \mathcal{L}^*[g|c^*](t, \tilde{a}, \tilde{z}) dg(t, \tilde{a}, \tilde{z})}_{z, a} + \underbrace{\frac{\theta^2 \overline{\sigma}^2}{2} \iint_{z,a} \frac{d}{d\tilde{a}} \left(\frac{dv}{dg} [(\tilde{a}, \tilde{z})] \right) dg(t, \tilde{a}, \tilde{z}) + \frac{\theta^2 \overline{\sigma}^2}{2} \iint_{z,a} \frac{d}{da} \frac{dv}{dg} [(\tilde{a}, \tilde{z})] dg(t, \tilde{a}, \tilde{z})}{\text{diffusion of the distribution due to risk}} + \underbrace{\theta \overline{\sigma} \widehat{\sigma} \iint_{z,a} \frac{d}{dZ} \frac{dv}{dg} [(\tilde{a}, \tilde{z})] dg(t, \tilde{a}, \tilde{z})}_{z, a} + \underbrace{\frac{\theta^2 \overline{\sigma}^2}{2} \iint_{(\tilde{z}, a)^{\otimes 2}} \frac{d^2 v}{dg^2} [(\tilde{a}, \tilde{z}, \tilde{a}', \tilde{z}')] dg(t, \tilde{a}, \tilde{z}) dg(t, \tilde{a}', \tilde{z}')}_{(z, a)^{\otimes 2}}_{\text{covariance of } \tilde{a} \text{ g} \text{.}}^{\text{invariant set } Z \text{ and distribution } \tilde{a}} \underbrace{\prod_{(z, a)^{\otimes 2}} \frac{d^2 v}{dg^2} [(\tilde{a}, \tilde{z}, \tilde{a}', \tilde{z}')] dg(t, \tilde{a}, \tilde{z}) dg(t, \tilde{a}', \tilde{z}')}_{\text{covariance of } \tilde{a} \text{ s} \text{ in } 2024 \text{ max } \tilde{a} \text{ in } 2024 \text{ max } \tilde{a} \text{ in } 2024 \text{ max } \tilde{a} \text{
$$

[Master equation for HA models](#page-0-0) **[Primer on the Master Equation](#page-5-0)** \Box [Master equation with aggregate risk](#page-9-0)

General Aggregate Risk to the Master Equation (GARME?)

- Include controlled drift, diffusion, jump on individual states + mean-field interaction on drift, diffusion and jump on aggregate states
- Encompass most macro-finance models. Exception: Impulse control, fixed cost (yet!)

$$
\mathcal{H}(x, m, \mathcal{X}, V, D_x V, D_{xx} V) = \max_{c} \mathcal{L}(x, m, \mathcal{X}, c) + b(x, m, \mathcal{X}, c) \cdot D_x V + \text{Tr}\left[(\sigma \sigma' + \overline{\sigma} \sigma'](x, m, \mathcal{X}, c) D_{xx} V\right)
$$

\n
$$
\sum_{n=1}^{n_f} \lambda^n(x, m, \mathcal{X}, c) \left(V^n(x + \gamma(x, m, \mathcal{X}, c), x, m, \mathcal{X}) - V\right)
$$

\n
$$
-\partial_t V + \rho V = \mathcal{H}(x, m, \mathcal{X}, V, D_x V, D_{xx} V, c^*)
$$

\n
$$
+ \mu(m, \mathcal{X}) \cdot D_{\mathcal{X}} V + \text{Tr}\left(\widehat{\sigma} \widehat{\sigma}' D_{\mathcal{X} \mathcal{X}} V\right) + \sum_{n=1}^{n_f^0} \widehat{\lambda}^n(m, \mathcal{X}) \left(V \circ \widehat{\gamma}^n(m, \mathcal{X}) - V\right)
$$

\n
$$
+ \int_{\mathbb{X}} D_m V(x, \cdot; y) \cdot D_p \mathcal{H}(y, \cdot) m(dy) + \int_{\mathbb{X}} \sum_{n=1}^{n_f^0} \lambda^n(y, \cdot) \Delta_m V(x, \cdot; y) \circ \gamma(y, \cdot) m(dy)
$$

\n
$$
+ \int_{\mathbb{X}} \text{Tr}\left[(\sigma \sigma' + \overline{\sigma} \sigma')(y, \cdot) D_y(D_m V(x, m, \mathcal{X}; y))\right](y, m, \mathcal{X}) m(dy)
$$

\n
$$
+ 2 \int_{\mathbb{X}} \text{Tr}\left(\overline{\sigma}(x, \cdot) \overline{\sigma}(y, \cdot)' D_x D_m V(x, \cdot; y)) m(dy) + \int_{\mathbb{X}} \text{Tr}\left(\overline{\sigma}(y, \cdot) \widehat{\sigma}(\mathcal{X}_t)' D_m D_{\mathcal{X}} V(x, m, \mathcal{X}; y)\right) m(dy)
$$

\n
$$
+ \int_{\mathbb{Y}} \text{Tr}\left(\overline{\sigma}(y, \cdot) \overline{\sigma}(y', \cdot)' D_{mm}^2 V\right)(x, \cdot; y, y') m(dy) m(dy')
$$

Projection and Bounded-rationality in KS98

Back to KS98. What do Households need for decisions?

- Require only changes in prices $(r, w) \Rightarrow$ don't care of the distribution *per se*
- Neoclassical model: only need some moments, *the mean*, of the distribution for asset prices!

$$
K = \iint_{a,z} a \, dg(a,z) \qquad \qquad r = \alpha K^{\alpha - 1} - \delta
$$

• Bounded rationality assumption:s

$$
V(a,z,\mathbf{g},Z)\equiv \overline{V}(a,z,K^h,Z)
$$

• Nice property in Lions-derivative:

with
$$
K^h = \int_x h(x) dg(x)
$$

$$
\frac{d}{dg} V(x, g; y) \equiv \frac{d}{dK^h} \overline{V}(x, K^h) h'(y)
$$

Projection in the Master equation

• Can rewrite the Master Equation with this projection on the first-moment: $v = v(a, z, \mathbf{g}, Z) \equiv \overline{v}(a, z, K, Z)$

standard HJB continuation value
\n
$$
\overline{\rho v} = \overbrace{\max_{c} u(c) + \mathcal{L}[\overline{v} | c^{*}] (a,z)}^{\text{standard HJB continuation value}} -\overbrace{\theta(Z-\overline{Z})\overline{v}_{Z} + \frac{\widehat{\sigma}^{2}}{2} \overline{v}_{ZZ}}^{\text{direct effect of risk of } Z \text{ on } \overline{v}}
$$
\n
$$
+ \overline{v}_{K} \iint_{z,a} [\overline{r\tilde{a} + w\tilde{z} - c^{*}(\tilde{a},\tilde{z},K,Z)}] d g(\tilde{a},\tilde{z})
$$
\nchange in agents (\tilde{a},\tilde{z}) decisions

Still dependence on *g*, how to "get rid of it"? Not easy!

Aggregation:

$$
dK = \iint\limits_{z,a} [\tilde{r}\tilde{a} + w\tilde{z} - c^*(\tilde{a}, \tilde{z}, K, Z)] dg(\tilde{a}, \tilde{z})
$$

$$
dK = rK + w\bar{L} - C(K, Z|g)
$$

with aggregate consumption function $C(K, Z|g) = \iint_{z,a} c^*(\tilde{a}, \tilde{z}, K, Z) dg(\tilde{a}, \tilde{z})$

Thomas Bourany (UChicago) [Master equation for HA models](#page-0-0) April 2024 14/24

The Master Equation becomes a fusion of two familiar equations

▶ The Master Equation becomes a "standard" HJB (!), $v = v(a, z, \mathbf{g}, Z) \equiv \bar{v}(a, z, K, Z)$

$$
\rho \bar{v} = \max_{c} u(c) + [wz + ra - c] \bar{v}_a + \lambda (\bar{v}(a, z', \cdot) - \bar{v}(a, z, \cdot))
$$

$$
- \theta (Z - \bar{Z}) \bar{v}_Z + \frac{\hat{\sigma}^2}{2} \bar{v}_{ZZ} + \underbrace{[ZK^{\alpha} - \delta K - C(K, Z|g)]}_{=dK} \bar{v}_K
$$

- Only issue: $C(t, K, Z|g)$ still depends on g
- Looks exactly like the fusion of two standard models
	- $-$ RBC: $v = v(K, Z)$

$$
\rho v = \max_{C} u(C) + [ZK^{\alpha} - \delta K - C]v_K - \theta (Z - \bar{Z})v_Z + \frac{\hat{\sigma}^2}{2}v_{ZZ}
$$

- Aiyagari:
$$
v = v(a, z)
$$

$$
\rho v = \max_{c} u(c) + [wz + ra - c]v_a + \lambda (v(a,z',\cdot) - v(a,z,\cdot))
$$

Thomas Bourany (UChicago) [Master equation for HA models](#page-0-0) April 2024 15/24 15/24

Agents' decision and global dynamical system

If With the Master equation and $v = \bar{v}(a, z, K, Z)$ we obtain the individual decision,

$$
c^{\star}(\tilde{a}, \tilde{z}, K, Z) = u'^{-1}(\bar{v}_a(a, z, K, Z))
$$

 \blacktriangleright Hence we get the dynamical system:

$$
\begin{cases}\n da = \left[z \overbrace{(1-\alpha)Z K^{\alpha}} + \overbrace{(\alpha Z K^{\alpha-1} - \delta)}^{=r} a - c^{\star}(a, z, K, Z) \right] dt \\
dz = \gamma(z) dJ_{t} & \text{intensity} \lambda(z) \\
dK = \left(ZK^{\alpha} - \delta K - C(K, Z|g) \right) dt \\
dZ = \mu(Z) dt + \hat{\sigma} dB_{t}^{0}\n\end{cases}
$$

▶ For a guess of *g*(*a*,*z*) and $C(K, Z|g) = \iint_{a,z} c^{*}(a,z,K,Z)g(a,z)$ we have a complete characterization of the system

 \Rightarrow Can get a Kolmogorov forward equation for the system (a, z, K, Z) (!!)

Thomas Bourany (UChicago) [Master equation for HA models](#page-0-0) April 2024 16/24 16/24

"Master-" Kolmogorov Forward for the global system

▶ For a guess of $g(a, z)$ and $C(K, Z|g) = \iint_{a,z} c^{*}(a, z, K, Z)g(a, z)$, the Master-KFE for states $x = (a, z, K, Z) \in \widetilde{\mathbb{X}}$ writes:

$$
0 = -\partial_a [s(x, \overline{v}_a)\widetilde{g}(x)] + \sum_n \lambda(z^n)\widetilde{g}(x^n) - \lambda(z)\widetilde{g}(x)
$$

$$
- \partial_K [(ZK^{\alpha} - \delta K - \mathcal{C}(K, Z|g))\widetilde{g}(t, \widetilde{x})] - \partial_Z[\mu(Z)\widetilde{g}(x)] + \widehat{\sigma} \partial_{ZZ}^2 \widetilde{g}(x)
$$

Easy to get from the Master-HJB's operator using standard finite-difference methods Consistency condition for rational-expectation equilibrium:

$$
dg(a,z)|_{K,Z} = \int_{\widetilde{\mathbb{X}}} \delta_{\{\widetilde{K}=K,\widetilde{Z}=Z\}} d\widetilde{g}(a,z,\widetilde{K},\widetilde{Z})
$$

• Consistency for the first moment: $\iint_{a,z} a dg(a,z^n) = \int_{\tilde{\mathbb{X}}} \delta_{\{\tilde{\mathbf{K}} = \mathbf{K}, \tilde{\mathbf{Z}} = \mathbf{Z}\}} a d\tilde{g}(a,z^n, \tilde{\mathbf{K}}, \tilde{\mathbf{Z}}) = K$

Thomas Bourany (UChicago) [Master equation for HA models](#page-0-0) April 2024 17/24

Summary and numerical methods

- 1. General Master equation
	- Summarize MFG systems with one equation: $v(a, z, g, Z)$
- 2. Master HJB for "bounded-rational" agents: $v = \bar{v}(a, z, K, Z)$
	- Start from guess $g(a, z)$ and $C(K, Z|g)$
	- Solve Master-HJB: standard finite difference methods
	- Get individual decisions $c^*(a,z,K,Z)$ and operator $\mathcal{A}[\bar{v}]$ for (a, z, K, Z)
- 3. Master-Kolmogorov forward for (*a*,*z*, *K*, *Z*)
	- Obtain distribution \tilde{g} over all states (a, z, K, Z) for "free" with $\mathcal{A}^*[\tilde{g}]$
• Undate *a* thanks to \tilde{g} and undate $\mathcal{C}(K, Z|g)$
	- Update *g* thanks to \tilde{g} and update $C(K, Z|g)$
	- Obtain Capital dynamics: potentially very non-linear!!

$$
dK = ZK^{\alpha} - \delta K - C(K, Z|g)
$$

lacktriangleright Procedure standard and general

- No need for deep-learning/splines/polynomials: use standard finite difference methods
- Method robust to higher-order moments (in the paper!) $K_2 = \iint_{a,z} (a-K)^2 dg(a,z)...$ \Rightarrow imply additional terms in HJB (+ larger state-space)

Thomas Bourany (UChicago) [Master equation for HA models](#page-0-0) April 2024 18/24 18/24

Master-Equation with higher moments:

- \blacktriangleright HIB with 2nd-order moments: $v = v(a, z, g, Z) \equiv \overline{v}(a, z, K, K_2, L_2, KL, Z) = \overline{v}(a, z, K, K_2, Z)$
	- $K_2 = \mathbb{V}\text{ar}(a)$, $L_2 = \mathbb{V}\text{ar}(z)$, $KL = \mathbb{C}\text{ov}(a, z)$
	- In KS98, you don't need all of them!

$$
\rho \bar{v} = \max_{c} u(c) + (wz + ra - c) \bar{v}_a + \lambda (\bar{v}(a, z', \cdot) - \bar{v}(a, z, \cdot)) - \theta (Z - \bar{Z}) \bar{v}_z + \frac{\partial^2}{2} \bar{v}_{ZZ} + \underbrace{[ZK^{\alpha} - \delta K - \mathbb{E}^g[c^*]]}_{=dK} \bar{v}_K + \underbrace{[-\mathbb{C}\text{ov}^g(a, c^*)]}_{dK_2} \bar{v}_{K_2}
$$

- Similarly, solve for dynamical system (a, z, K, K_2, Z) , the "master" KFE and then plug *g* back into $\mathbb{E}^g[c^*] = \iint c^* dg$ and $\mathbb{C}ov^g(a, c^*) = \iint (a - \bar{a})(c^* - \bar{c})dg$
- Theoretical insight: if $\bar{v}_{K_2} > 0$ and $\mathbb{C}ov^g(a, c^*) > 0$, it reinforces the precautionary saving motive and lower value

Numerical experiment - Aiyagari model

Numerical experiment - Brock-Mirman / RBC

Numerical experiment - Brock-Mirman / RBC

Numerical experiment - Master equation, Krusell-Smith

Conclusion

- In this project, I propose a new method to solve Heterogeneous Agent Models with aggregate risk
- \blacktriangleright Next steps:
	- Properties of KS98: is the model Markovian in capital? i.e. is the consumption function $C(K, Z|g)$ robust to change in *g* (e.g. to change in $K_2 = \mathbb{V}\text{ar}(a)$).
	- Comparison with Krusell-Smith's linearity in capital flow
	- Overidentification test for SMM: do agents need second-order (or higher-order) moments when making their decision?
	- Solving a "more interesting" macro-finance model: Model with a meaningful distribution of portfolios, exposure, and impact of aggregate risk