Optimal taxation and R&D policies Akcigit, Hanley, Stantcheva (2022) Econometrica

Thomas Bourany

PhD Reading Group – Industrial Policy – Columbia

September 2025

- ➢ Governments spend heavily to foster innovation, through tax credits, deductions, subsidies, and grants for R&D. What is the optimal design of these policies?
- ▶ Main issues:

- □ Governments spend heavily to foster innovation, through tax credits, deductions, subsidies, and grants for R&D. What is the optimal design of these policies?
- ▶ Main issues:
 - Technology spillovers: Innovations by one firm raise productivity in others, but individual firms do not internalize such benefits

- □ Governments spend heavily to foster innovation, through tax credits, deductions, subsidies, and grants for R&D. What is the optimal design of these policies?
- ▶ Main issues:
 - Technology spillovers: Innovations by one firm raise productivity in others, but individual firms do not internalize such benefits
 - Non-appropriability of innovation: Without Intellectual Property Rights (IPR), any firm could freely use another's idea. With IPR/patents, it creates monopoly distortions

- □ Governments spend heavily to foster innovation, through tax credits, deductions, subsidies, and grants for R&D. What is the optimal design of these policies?
- ▶ Main issues:
 - Technology spillovers: Innovations by one firm raise productivity in others, but individual firms do not internalize such benefits
 - Non-appropriability of innovation: Without Intellectual Property Rights (IPR), any firm could freely use another's idea. With IPR/patents, it creates monopoly distortions
 - Asymmetric information: Firms' underlying research productivity (turning R&D into innovation) is private information and some R&D inputs (like effort) are unobservable to policymakers

- □ Governments spend heavily to foster innovation, through tax credits, deductions, subsidies, and grants for R&D. What is the optimal design of these policies?
- ▶ Main issues:
 - Technology spillovers
 - Non-appropriability of innovation
 - Asymmetric information
- ▶ Dynamic mechanism design with spillovers, to study corporate taxation and R&D policy

- □ Governments spend heavily to foster innovation, through tax credits, deductions, subsidies, and grants for R&D. What is the optimal design of these policies?
- ▶ Main issues:
 - Technology spillovers
 - Non-appropriability of innovation
 - Asymmetric information
- ▶ Dynamic mechanism design with spillovers, to study corporate taxation and R&D policy
- ► Contribution:
 - Mechanism design method/revelation principle extended to settings with spillovers and infinite-horizon dynamic firm heterogeneity
 - Characterize constrained efficient allocation when planner can't observe firm types or hidden R&D effort
 - Show an implementation with simple corporate tax and R&D subsidy schedules
 - Estimate the model using firm-level data matched to U.S. Patent Office Patent data

Model of Innovation with Asymmetric Information

- Firms produce differentiated goods and engage in R&D r to improve the quality q, $\Rightarrow q = q_0 + \lambda$
- Endogenous quality improvement "step size" $\lambda = \lambda(r, \ell, \theta)$, with
 - R&D investment r: observable inputs spent (e.g. lab, material, scientists), with cost M(r)
 - R&D effort ℓ : unobservable actions that cannot be monitored, with cost $\phi(\ell)$
 - Firm type θ : Research productivity (e.g. efficiency of management/practices/ideas) with distribution $f(\theta)$ and $F(\theta)$

Model of Innovation with Asymmetric Information

- Firms produce differentiated goods and engage in R&D r to improve the quality q, $\Rightarrow q = q_0 + \lambda$
- ▶ Endogenous quality improvement "step size" $\lambda = \lambda(r, \ell, \theta)$, with
 - R&D investment r: observable inputs spent (e.g. lab, material, scientists), with cost M(r)
 - R&D effort ℓ : unobservable actions that cannot be monitored, with cost $\phi(\ell)$
 - Firm type θ : Research productivity (e.g. efficiency of management/practices/ideas) with distribution $f(\theta)$ and $F(\theta)$
- Quality spillovers: $\bar{q} = \mathbb{E}[q(\theta)] = \int_{\Theta} q(\theta) f(\theta) d\theta$
- ► Final goods production: $Y = \int_{\Theta} Y(q(\theta), k(\theta)) f(\theta) d\theta$
- Monopoly power and demand p(q, k) and production decision for quantity k, and firms' problem $\pi(q(\theta), \bar{q}) = \max_k p(q(\theta), k)k C(k, \bar{q})$

Model of Innovation: First-Best

- Consumer surplus: $Y(k(\theta), q(\theta)) C(k(\theta), \bar{q}) M(r(\theta)) T(\theta)$ for $T(\theta)$ transfer from HH to the firm of type θ , and consumption net of cost: $\mathcal{Y}(q(\theta), \bar{q}) = Y(k^*(q(\theta), \bar{q}), q(\theta)) C(k^*(q(\theta), \bar{q}), \bar{q})$
- Firm surplus $v(\theta) = T(\theta) \phi(\ell(\theta))$
- ► First Best:
 - Optimal R&D investment choice: $M'(r(\theta)) = \mathbb{E}\left[\left(\frac{\partial \mathcal{Y}(q(\theta),\bar{q})}{\partial q} + \frac{\partial \mathcal{Y}(q(\theta),\bar{q})}{\partial \bar{q}}\right)\frac{\partial \lambda(\theta)}{\partial r(\theta)}\right]$
 - Optimal effort: $\phi'(\ell(\theta)) = \mathbb{E}\left[\left(\frac{\partial \mathcal{Y}(q(\theta),\bar{q})}{\partial q} + \frac{\partial \mathcal{Y}(q(\theta),\bar{q})}{\partial \bar{q}}\right)\frac{\partial \lambda(\theta)}{\partial \ell(\theta)}\right]$
 - \Rightarrow Reward R&D and efforts for their positive externality using type θ-specific transfers $T(\theta) = \phi(\ell(\theta))$
- ► Asymmetric information: cannot observe or condition policies on certain factors

Asymmetric Information and Mechanism Design setting

- ▶ Direct revelation mechanism
 - θ and ℓ are private information, government observe step size λ and quality q and efforts r
 - Firms report $\hat{\theta}$ and then government allocate transfers $T(\hat{\theta})$

Asymmetric Information and Mechanism Design setting

- ▶ Direct revelation mechanism
 - θ and ℓ are private information, government observe step size λ and quality q and efforts r
 - Firms report $\hat{\theta}$ and then government allocate transfers $T(\hat{\theta})$
 - Incentive constraint:

$$V(\boldsymbol{\theta}) = T(\boldsymbol{\theta}) - \phi \big(\ell(\boldsymbol{\theta}) \big) \geq T(\hat{\boldsymbol{\theta}}) - \phi \big(\ell \big(\lambda(\hat{\boldsymbol{\theta}}), r(\hat{\boldsymbol{\theta}}), \boldsymbol{\theta} \big) \big) =: V \big(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}} \big) \qquad \forall \boldsymbol{\theta}, \hat{\boldsymbol{\theta}}$$

with $\ell(\lambda(\hat{\theta}), r(\hat{\theta}), \theta)$ the effort provided by θ to "mimic" the type- $\hat{\theta}$ to still provide step $\lambda(\hat{\theta})$ (e.g. high type might pretend they are low type and provide less effort)

• Participation constraint $V(\theta) \ge 0$

Asymmetric Information and Mechanism Design setting

- ▶ Direct revelation mechanism
 - θ and ℓ are private information, government observe step size λ and quality q and efforts r
 - Firms report $\hat{\theta}$ and then government allocate transfers $T(\hat{\theta})$
 - Incentive constraint:

$$V(\boldsymbol{\theta}) = T(\boldsymbol{\theta}) - \phi \big(\ell(\boldsymbol{\theta}) \big) \geq T(\hat{\boldsymbol{\theta}}) - \phi \big(\ell \big(\lambda(\hat{\boldsymbol{\theta}}), r(\hat{\boldsymbol{\theta}}), \boldsymbol{\theta} \big) \big) =: V \big(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}} \big) \qquad \forall \boldsymbol{\theta}, \hat{\boldsymbol{\theta}}$$

with $\ell(\lambda(\hat{\theta}), r(\hat{\theta}), \theta)$ the effort provided by θ to "mimic" the type- $\hat{\theta}$ to still provide step $\lambda(\hat{\theta})$ (e.g. high type might pretend they are low type and provide less effort)

- Participation constraint $V(\theta) \ge 0$
- ► First order approach:
 - IC constraints are complicated to manipulate, have to do it for every θ , $\hat{\theta}$
 - Replace them with their envelop conditions with $\frac{dV(\theta,\hat{\theta}())}{d\theta} = \frac{\partial V(\theta,\hat{\theta})}{\partial \theta} = \phi'(\ell(\theta)) \frac{\partial \lambda/\partial \theta}{\partial \lambda/\partial \ell}$
 - Maximize the virtual surplus, net of the informational rent:

$$W(\bar{q}) = \mathbb{E}\Big[\mathcal{Y}\big(q(\theta), \bar{q}\big) - M\big(r(\theta)\big) - \phi\big(\ell(\theta)\big) - \frac{1 - F(\theta)}{f(\theta)} \frac{\partial V(\theta, \hat{\theta})}{\partial (\theta)}\Big] \qquad \qquad \text{with} \qquad \bar{q} = \int q(\theta) f(\theta) d\theta$$

The optimal (non-linear, type-specific!) profit wedge $\tau(\theta)$ and R&D subsidy wedge $s(\theta)$, s.t. $\tilde{\pi} = \pi(1 - \tau(\cdot)) - (1 - s(\cdot))M(r)$

▶ R&D subsidy wedge: $s(\theta)$

$$s(\theta) = \underbrace{\mathbb{E}\left[\frac{\partial \mathcal{Y}}{\partial \overline{q}} \frac{\partial \lambda(\theta)}{\partial r}\right]}_{Pigouvian \ correction} + \underbrace{\mathbb{E}\left[\left(\frac{\partial \mathcal{Y}}{\partial q} - \frac{\partial \pi}{\partial q}\right) \frac{\partial \lambda(\theta)}{\partial r}\right]}_{Monopoly \ quality \ valuation \ correction} + \underbrace{\frac{1 - F(\theta)}{f(\theta)}}_{Type} \phi'(\ell(\theta)) \frac{\lambda_{\theta} \lambda_{r}}{\lambda \lambda_{\ell}} \underbrace{\left(\rho_{\ell,r} - \rho_{\theta,r}\right)}_{relative \ complementarity}$$

- The optimal (non-linear, type-specific!) profit wedge $\tau(\theta)$ and R&D subsidy wedge $s(\theta)$, s.t. $\tilde{\pi} = \pi(1 \tau(\cdot)) (1 s(\cdot))M(r)$
- ▶ R&D subsidy wedge: $s(\theta)$

$$s(\theta) = \underbrace{\mathbb{E}\left[\frac{\partial \mathcal{Y}}{\partial \overline{q}} \frac{\partial \lambda(\theta)}{\partial r}\right]}_{Pigouvian \ correction} + \underbrace{\mathbb{E}\left[\left(\frac{\partial \mathcal{Y}}{\partial q} - \frac{\partial \pi}{\partial q}\right) \frac{\partial \lambda(\theta)}{\partial r}\right]}_{Monopoly \ quality \ valuation \ correction} + \underbrace{\frac{1 - F(\theta)}{f(\theta)} \phi'(\ell(\theta)) \frac{\lambda_{\theta} \lambda_{r}}{\lambda \lambda_{\ell}}}_{Type} \underbrace{\left(\rho_{\ell,r} - \rho_{\theta,r}\right)}_{relative \ complementarity}$$

• *Monopoly quality valuation correction:* positive (smaller with IPR), allocate a larger share of the social surplus to firms

- The optimal (non-linear, type-specific!) profit wedge $\tau(\theta)$ and R&D subsidy wedge $s(\theta)$, s.t. $\tilde{\pi} = \pi(1 \tau(\cdot)) (1 s(\cdot))M(r)$
- ightharpoonup R&D subsidy wedge: $s(\theta)$

$$s(\theta) = \underbrace{\mathbb{E}\Big[\frac{\partial \mathcal{Y}}{\partial \overline{q}}\frac{\partial \lambda(\theta)}{\partial r}\Big]}_{Pigouvian \ correction} + \underbrace{\mathbb{E}\Big[\Big(\frac{\partial \mathcal{Y}}{\partial q} - \frac{\partial \pi}{\partial q}\Big)\frac{\partial \lambda(\theta)}{\partial r}\Big]}_{Monopoly \ quality \ valuation \ correction} + \underbrace{\frac{1 - F(\theta)}{f(\theta)}\phi'(\ell(\theta))\frac{\lambda_{\theta}\lambda_{r}}{\lambda\lambda_{\ell}}}_{Type}\underbrace{\Big(\rho_{\ell,r} - \rho_{\theta,r}\Big)}_{relative \ complementarity}$$

- *Monopoly quality valuation correction:* positive (smaller with IPR), allocate a larger share of the social surplus to firms
- Pigouvian correction for tech. spillover: positive to correct the lack of alignment in quality q

- The optimal (non-linear, type-specific!) profit wedge $\tau(\theta)$ and R&D subsidy wedge $s(\theta)$, s.t. $\tilde{\pi} = \pi(1 \tau(\cdot)) (1 s(\cdot))M(r)$
- ightharpoonup R&D subsidy wedge: $s(\theta)$

$$s(\theta) = \underbrace{\mathbb{E}\Big[\frac{\partial \mathcal{Y}}{\partial \overline{q}}\frac{\partial \lambda(\theta)}{\partial r}\Big]}_{Pigouvian \ correction} + \underbrace{\mathbb{E}\Big[\Big(\frac{\partial \mathcal{Y}}{\partial q} - \frac{\partial \pi}{\partial q}\Big)\frac{\partial \lambda(\theta)}{\partial r}\Big]}_{Monopoly \ quality \ valuation \ correction} + \underbrace{\frac{1 - F(\theta)}{f(\theta)}\phi'(\ell(\theta))\frac{\lambda_{\theta}\lambda_{r}}{\lambda\lambda_{\ell}}}_{Type}\underbrace{\Big(\rho_{\ell,r} - \rho_{\theta,r}\Big)}_{relative \ complementarity}$$

- *Monopoly quality valuation correction:* positive (smaller with IPR), allocate a larger share of the social surplus to firms
- Pigouvian correction for tech. spillover: positive to correct the lack of alignment in quality q
- Screening and incentives: may push in opposite direction, do not want to distort efforts ℓ compared to reported type θ , as it facilitates the mimicking of lower types

- ► The optimal (non-linear, type-specific!) profit wedge $\tau(\theta)$ and R&D subsidy wedge $s(\theta)$, s.t. $\tilde{\pi} = \pi (1 - \tau(\cdot)) - (1 - s(\cdot)) M(r)$
- R&D subsidy wedge: $s(\theta)$

$$s(\theta) = \underbrace{\mathbb{E}\Big[\frac{\partial \mathcal{Y}}{\partial \overline{q}}\frac{\partial \lambda(\theta)}{\partial r}\Big]}_{Pigouvian\ correction} + \underbrace{\mathbb{E}\Big[\Big(\frac{\partial \mathcal{Y}}{\partial q} - \frac{\partial \pi}{\partial q}\Big)\frac{\partial \lambda(\theta)}{\partial r}\Big]}_{Monopoly\ quality\ valuation\ correction} + \underbrace{\frac{1 - F(\theta)}{f(\theta)}}_{Type}\phi'(\ell(\theta))\underbrace{\frac{\lambda_{\theta}\lambda_{r}}{\lambda\lambda_{\ell}}}_{complementarity}\underbrace{(\rho_{\ell,r} - \rho_{\theta,r})}_{relative\ complementarity}$$

- Monopoly quality valuation correction: positive (smaller with IPR), allocate a larger share of the social surplus to firms
- Pigouvian correction for tech. spillover: positive to correct the lack of alignment in quality q
- Screening and incentives: may push in opposite direction, do not want to distort efforts ℓ compared to reported type θ , as it facilitates the mimicking of lower types

• Similar for profit tax:
$$\tau(\theta)$$

$$\tau(\theta) = -\mathbb{E}\Big[\frac{\partial \mathcal{Y}}{\partial \bar{q}}\frac{\partial \lambda(\theta)}{\partial r}\Big] - \mathbb{E}\Big[\Big(\frac{\partial \mathcal{Y}}{\partial q} - \frac{\partial \pi}{\partial q}\Big)\frac{\partial \lambda(\theta)}{\partial r}\Big] + \underbrace{\frac{1 - F(\theta)}{f(\theta)}\frac{\phi'(\ell(\theta))\lambda_{\theta}}{\lambda(\theta)}\Big[\frac{1}{\varepsilon_{\lambda,\ell}\,\varepsilon_{\ell,\tau}} + \rho_{\theta,\ell}\Big]}_{Screening and incentive term}$$

Pigouvian correction Monopoly quality valuation correction

elasticities Optimal taxation and R&D policies, Akcigit, Hanley, Stantcheva (2022)

distribution

Screening and incentive term

6/9

- ► Contribution of this paper is to extend it to a dynamic setting
 - Markov process for θ^t , need to take all the terms in PDV, with a term I_t that controls how more persistent types confer more private information.
 - Make the taxes/subsidy $\tau(\theta^t)/s(\theta^t)$ increase/decrease over time depending on the sign of screening terms $\rho_{\ell,r} \leq \rho_{\theta,r}$
 - Always converges to the sum of Pigouvian+Monopoly corrections terms: screening terms decay with the age of the firm $I_t = p^t$

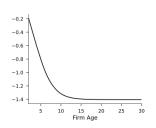
- ► Contribution of this paper is to extend it to a dynamic setting
 - Markov process for θ^t , need to take all the terms in PDV, with a term I_t that controls how more persistent types confer more private information.
 - Make the taxes/subsidy $\tau(\theta^t)/s(\theta^t)$ increase/decrease over time depending on the sign of screening terms $\rho_{\ell,r} \leq \rho_{\theta,r}$
 - Always converges to the sum of Pigouvian+Monopoly corrections terms: screening terms decay with the age of the firm $I_t = p^t$
- Implementability: rewrite the tax function $T(\theta)$ as fct of observable $T_t(\pi_t, r_t, \pi_{t-1}, r_{t-1})$

- ► Contribution of this paper is to extend it to a dynamic setting
 - Markov process for θ^t , need to take all the terms in PDV, with a term I_t that controls how more persistent types confer more private information.
 - Make the taxes/subsidy $\tau(\theta^t)/s(\theta^t)$ increase/decrease over time depending on the sign of screening terms $\rho_{\ell,r} \leq \rho_{\theta,r}$
 - Always converges to the sum of Pigouvian+Monopoly corrections terms: screening terms decay with the age of the firm $I_t = p^t$
- Implementability: rewrite the tax function $T(\theta)$ as fct of observable $T_t(\pi_t, r_t, \pi_{t-1}, r_{t-1})$
- ▶ Data: match Census LBD and US Patent data (USPTO)
 - Variable taken directly from data, e.g. R&D spending $M(r) \equiv R$ &D expense, step size $\lambda_t \equiv$ forward citations received on all innovations patented /year.

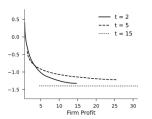
- ► Contribution of this paper is to extend it to a dynamic setting
 - Markov process for θ^t , need to take all the terms in PDV, with a term I_t that controls how more persistent types confer more private information.
 - Make the taxes/subsidy $\tau(\theta^t)/s(\theta^t)$ increase/decrease over time depending on the sign of screening terms $\rho_{\ell,r} \leq \rho_{\theta,r}$
 - Always converges to the sum of Pigouvian+Monopoly corrections terms: screening terms decay with the age of the firm $I_t = p^t$
- Implementability: rewrite the tax function $T(\theta)$ as fct of observable $T_t(\pi_t, r_t, \pi_{t-1}, r_{t-1})$
- ▶ Data: match Census LBD and US Patent data (USPTO)
 - Variable taken directly from data, e.g. R&D spending $M(r) \equiv \text{R\&D}$ expense, step size $\lambda_t \equiv$ forward citations received on all innovations patented /year.
- Matching the model with data:
 - Functional forms: standard (CES/isoelastic/linear)
 - SMM / GMM with moments, e.g. (i) elasticity of patent quality to R&D spending,
 (ii) R&D intensity / sales, other about the firm distribution, etc.

Quantitative results – optimal R&D policies

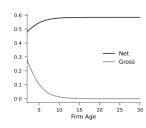
(a) Profit Wedge by Age



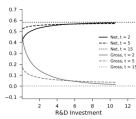
(c) Profit Wedge as Function of Profits



(b) R&D Wedges by Age



(d) R&D Wedges as Functions of R&D Investments



Quantitative results – simpler R&D policies

 $\label{eq:table_variance} TABLE\ V$ Welfare from optimal simpler policies.

Policy Type		Welfare Achieved Relative to Full Optimum	
Toncy Type		Benchmark	No spillovers
A. Current US policy $T'(\pi) = 0.23$	S'(M) = 0.19	18%	31.1%
B. Optimal Linear $T'(\pi) = \tau_0$	$S'(M) = s_0$	89%	88.5%
C. Linear With Interaction Term $T'(\pi, M) = \tau_0 + \tau_1 M$	$S'(M) = s_0$	93.5%	93.7%
D. Heathcote–Storesletten–Violante $T'(\pi) = \tau_0 - \tau_1 \pi^{\tau_2}$	(HSV) $S'(M) = s_0 - s_1 M^{s_2}$	97.4%	98.2%
E. HSV Tax on Profits and Linear St $T'(\pi) = \tau_0$	$ubsidy S'(M) = s_0 - s_1 M^{s_2}$	94.7%	95.6%
F. HSV Subsidy on R&D and Linear $T'(\pi) = \tau_0$	Profit Tax $S'(M) = s_0 - s_1 M^{s_2}$	97.3%	97.4%
G. HSV With Interaction Term $T'(\pi, M) = \tau_0 + \tau_3 M^{s_2} - \tau_1 \pi^{\tau_2}$	$S'(M) = s_0 - s_1 M^{s_2}$	97.4%	98.3 %

Note: The table shows the share of welfare from the full unrestricted optimum that is achieved by the optimal policy within each class. Each panel shows a different class. Column (1) shows the welfare relative to the benchmark optimum; Column (3) for the benchmark optimum but when there is no spillover ($\zeta = 0$).